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Abstract—In this paper, we present a new formal method
to analyze cryptographic protocols statically for the property
of secrecy. It consists in inspecting the level of security of
every component in the protocol and making sure that it does
not diminish during its life cycle. If yes, it concludes that the
protocol keeps its secret inputs. We analyze in this paper an
amended version of the Woo-Lam protocol using this new
method.
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I. INTRODUCTION

In this paper, we present the witness-functions as a new

formal method for analyzing protocols and we run an analysis

on an amended version of the Woo-Lam protocol using one of

them. The Witness-Functions have been recently introduced

by Fattahi et al. [1]–[5] to statically analyze cryptographic

protocols for secrecy. A protocol analysis with a witness-

function consists in inspecting every component in the protocol

in order to make sure that its security never drops between

any receiving step and a subsequent sending one. If yes, the

protocol is said to be increasing and we conclude that it keeps

its secret inputs. We use the witness-function to evaluate the

security of every component in the protocol.

This paper is organized as follows:

— First, we give some notations that we will use in this

paper;

— then, in the section II, we give some abstract conditions

on a function to be safe for a protocol analysis and we

state that an increasing protocol keeps its secret inputs

when analyzed using such functions;

— then, in the sections III and IV, we present the witness-

function and we highlight its advantages, particularly its

static bounds. We state the theorem of protocol analysis

with the witness-functions, as well;

— then, in the section V, we run an analysis on an amended

version of the Woo-Lam protocol and we interpret the

results;

— finally, we compare our witness-functions with some

related works and we conclude.

NOTATIONS

Here, we give some notations and conventions that will be

used throughout the paper.

+ We denote by C = 〈M, ξ, |=,K,L⊒, p.q〉 the context

containing the parameters that affect the analysis of a

protocol:

• M: is a set of messages built from the algebraic

signature 〈N ,Σ〉 where N is a set of atomic names

(nonces, keys, principals, etc.) and Σ is a set of

functions (enc:: encryption, dec:: decryption, pair::

concatenation (denoted by "." here), etc.). i.e. M =
T〈N ,Σ〉(X ). We use Γ to denote the set of all

substitution from X → M. We designate by A
all atomic messages (atoms) in M, by A(m) the

set of atomic messages in m and by I the set of

principals including the intruder I . We denote by

k−1 the reverse key of a key k and we consider that

(k−1)−1 = k.

• ξ: is the theory that describes the algebraic prop-

erties of the functions in Σ by equations. e.g.

dec(enc(x, y), y−1) = x.

• |=: is the inference system of the intruder under the

theory. Let M be a set of messages and m a message.

M |= m designates that the intruder is able to infer

m from M using her capacity. We extrapolate this

notation to traces as following: ρ |= m designates

that the intruder can infer m from the messages of

the trace ρ.

• K : is a function from I to M, that assigns to any

principal a set of atomic messages describing her

initial knowledge. We denote by KC(I) the initial

knowledge of the intruder, or simply K(I) where

the context is obvious.

• L⊒ : is the security lattice (L,⊒,⊔,⊓,⊥,⊤) used

to assign security values to messages. A concrete

example of a lattice is (2I ,⊆,∩,∪, I, ∅) that will

be used in this paper.

• p.q : is a partial function that assigns a value of

security (type) to a message in M. Let M be a set of

messages and m a sigle message. We write pMq ⊒
pmq when ∃m′ ∈ M.pm′

q ⊒ pmq

+ Let p be a protocol, we denote by RG(p) the set of the

generalized roles extracted from p. A generalized role is

an abstraction of the protocol where the emphasis is put

on a specific principal and all the unknown messages
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are replaced by variables. More details about the role-

based specification could be found in [6]–[8]. We denote

by MG
p the set of messages (closed and with variables)

generated by RG(p), by Mp the set of closed messages

generated by substitution in terms in MG
p . We denote

by R− (respectively R+) the set of received messages

(respectively sent messages) by a principal in the role R.

Conventionally, we use uppercases for sets or sequences

and lowercases for single elements. For example M
denotes a set of messages, m a message, R a role

composed of sequence of steps, r a step and R.r the

role ending by the step r.

+ A valid trace is a close message obtained by substitution

in the generalized roles. We denote by [[p]] the infinite

set of valid traces of p.

+ We suppose that the intruder has the full-control of the

net as given in the Dolev-Yao model [9]. We assume no

restriction neither on the size of messages nor on the

number of sessions.

II. AN INCREASING PROTOCOL KEEPS ITS SECRET INPUTS

Hereafter, we give two abstract conditions on a function to

be good for verification (safe). Then, we enunciate that an

increasing protocol keeps its secret inputs.

A. Safe Functions

Definition II.1. (Well-built Function) Let F be a function and

C be a context. F is C-well-built iff: ∀M,M1,M2 ⊆ M, ∀α ∈

A(M):







F (α, {α}) = ⊥;
F (α,M1 ∪M2) = F (α,M1) ⊓ F (α,M2);
F (α,M) = ⊤, if α /∈ A(M).

A well-built function F must return the infimum for an

atom α that appears in clear in M to express the fact that

is exposed to everybody in M . It should return for it in the

union of two sets, the minimum of the two values evaluated

in each set apart. It returns the supremum for any atom α that

does appear in M to express the fact that none could deduce

it from M .

Definition II.2. (Invariant-by-Intruder Function) Let F be a

function and C be a context. F is C-invariant-by-intruder iff:

∀M ⊆ M,m ∈ M.M |=C m ⇒ ∀α ∈ A(m).(F (α,m) ⊒
F (α,M)) ∨ (pK(I)q ⊒ pαq).

An invariant-by-intruder function F is such that, when it

assigns a security value to an atom α in a set of messages

M the intruder can never deduce, using her knowledge, from

M another message m in which this value decreases (i.e.

F (α,m) 6⊒ F (α,M)), except when α is intentionally destined

to the intruder (i.e. pK(I)q ⊒ pαq).

Definition II.3. (Safe Function) Let F be a function and C
be a context.

F is C-safe iff

{

F is C-well-built

F is C-invariant-by-intruder

A safe function F is well-built and invariant-by-intruder.

Definition II.4. (F -Increasing Protocol) Let F be a function,

C be a context and p be a protocol.

p is F -increasing in C iff:

∀R.r ∈ RG(p), ∀σ ∈ Γ : X → Mp we have:

∀α ∈ A(M).F (α, r+σ) ⊒ pαq ⊓ F (α,R−σ)

An F -increasing protocol generates permanently traces with

atomic messages having always a security value, evaluated

by F , higher when sending (i.e. in r+σ) than it was on its

reception (i.e. in R−σ).

Theorem II.5. (Security of Increasing Protocols) Let F be

a C-safe Function and p an F -increasing protocol.

p keeps its secret inputs.

The theorem II.5 states that a protocol is secure when

verified by a safe function F on which it is proved increasing.

That is, if the intruder manages to infer a secret α (get it in

clear), then its value returned by F is the infimum because F
is well-built. That could not happen due to the protocol rules

because the protocol is increasing by F unless α has initially

the infimum. In this case, α was not from the beginning a

secret. That could not happen neither by using the capacity of

the intruder because F is invariant-by-intruder. Therefore, the

secret is kept forever.

III. SAFE FUNCTIONS

Now, we define three practical functions that meet the

conditions or safety: FEK
MAX , FEK

N and FEK
EK . Each function

among them returns for an atom α in a message m:

1) if α is encrypted by a key k, where k is the most

external protective key (shortly the external protective

key denoted by EK) that satisfies: pk−1
q ⊒ pαq, any

subset among the principals that know k−1 and the

principals that travel with α under the same protection

by k. At this step:

a) FEK
MAX returns the set of all these candidates;

b) FEK
N returns the set of principals that travel with α

under the same protection by k;

c) FEK
EK returns the set of principals that know k−1.

2) for two messages linked by an operator other than an

encryption by a protective key (e.g. pair), the union of

two values evaluated in the two messages apart by F .

3) if α does not have a protective key in m, the infimum

to express the fact that it could be discovered by an

intruder from m;

4) if α does not appear in m, the supremum to reflect that

it could not be discovered by anybody from m;

A such function is well-built by construction. It is invariant-

by-intruder too. The main idea of its invariance by intruder

property is that the returned candidates (principals) are se-

lected from a section (a component of m) protected by

k (invariant by intruder). Hence, to alter this section (to

lower the value of security of an atom α), the intruder must



previously have got the atomic key k−1, so her knowledge

should satisfy: pK(I)q ⊒ pk−1
q. Since the key k−1 must

satisfy: pk−1
q ⊒ pαq, then the knowledge of the intruder

satisfy: pK(I)q ⊒ pαq too (transitivity of "⊒" in the lattice),

which is the definition of an invariant-by-intruder function.

It is very important to mention that we consider the form

m↓ of a message m that removes keys that cancel out (i.e.

dec(enc(m, k), k−1)↓ = m). We suppose in this paper that

we do not have any other special algebraic properties in the

equational theory. This will be the scope of a future work.

Example III.1. Let α be an atom, m be a message and kab be

a key such that: pαq = {A,B, S}; m = {A.{S.α.D}kas
}kab

;

pk−1

ab q = {A,B};

FEK
MAX(α,m) = pk−1

ab q∪{A,S,D} = {A,B} ∪ {A,S,D} =
{A,B, S,D}.

FN
MAX(α,m) = {A,S,D}.

FEK
MAX(α,m) = pk−1

ab q = {A,B}.

In the rest of this paper F refers to any of the functions

FEK
MAX , FEK

N and FEK
EK .

IV. THE WITNESS-FUNCTIONS

According to the theorem II.5, if a protocol p is proved F -

increasing on its valid traces using a safe function F , then

it is secure. However, the set of valid traces is infinite. In

order to be able to analyze a protocol from within its finite

set of the generalized roles, we should adapt a safe function

to the problem of substitution (variables) and look for an

additional mechanism that allows us to propagate any decision

made on the generalized roles to valid traces. The witness-

functions are this mechanism. But first, let us introduce the

derivative messages. A derivative message is a message of the

generalized roles from which we exclude variables that do not

contribute to the evaluation of security. This is described in

the definition IV.1.

Definition IV.1. (Derivation) We define the derivative mes-

sage as follows:

∂Xα = α
∂Xǫ = ǫ

∂XX = ǫ
∂XY = Y

∂{X}m = ∂Xm
∂[X]m = ∂{Xm\X}m

∂Xf(m) = f(∂Xm), f ∈ Σ
∂S1∪S2

m = ∂S1
∂S2

m

Then, we apply a safe function F to derivative messages.

For an atom in the static neighborhood (i.e. in ∂m), we

evaluate its security with no respect to variables. Else, for any

message substituting a variable, it is evaluated as a constant

block, whatever its content, and with no respect to other

variables, if any. This is described by the definition IV.2.

Definition IV.2. Let m ∈ MG
p , X ∈ Xm and mσ be a valid

trace. For all α ∈ A(mσ), σ ∈ Γ, we denote by:

F (α, ∂[α]mσ) =







F (α, ∂m) if α ∈ A(∂m),

F (X, ∂[X]m) if α /∈ A(∂m)
and α = Xσ.

The application in the definition IV.2 could not be used to

analyze protocols. It is harmful. Let us examine its deficiency

in the example IV.3.

Example IV.3. Let m1 and m2 be two messages of MG
p

such that m1 = {α.D.X}kab
and m2 = {α.Y }kab

and

pαq = {A,B}. Let m = {α.D.B}kab
be in a valid trace.

FEK
MAX(α, ∂[α]m) =

{

{A,B,D}, if m = m1σ1|Xσ1 = B,

{A,B}, if m = m2σ2|Y σ2 = D.B

Therefore, FEK
MAX(α, ∂[α]m) is not a function on mσ (i.e. it

returns two possible values for the same preimage).

The witness-function in the definition IV.4 fixes this defi-

ciency: it looks for all the origins m of the substituted message

mσ in the generalized roles, applies the application in the

definition IV.2 and returns the minimum that obviously exists

and is unique in a lattice.

Definition IV.4. (Witness-Function) Let m ∈ MG
p , X ∈ Xm

and mσ be a valid trace. Let p be a protocol and F be a

C-safe Function. We define a witness-function Wp,F for all

α ∈ A(mσ), σ ∈ Γ, as follows:

Wp,F (α,mσ) = ⊓
m′∈M

G
p

∃σ′∈Γ.m′σ′=mσ

F (α, ∂[α]m′σ′)

A witness-function Wp,F is safe when F is. Indeed, it is

easy to verify that it is well-built. It is invariant-by-intruder

as well since the returned values (principal identities) are

those returned by F applied to derivative messages of the

origins of mσ. Derivation does not add new candidates, it just

removes some of them, but returns always candidates from

the same invariant section by the intruder when the message

is substituted.

Since the target of the witness-functions is to analyze

protocols statically and since it still depends on σ (runs), we

will bind it in two static bounds and use them for analysis

instead of the witness-function itself. The lemma IV.5 provides

these bounds.

Proposition IV.5. (Witness-Function Bounds) Let m ∈ MG
p .

Let F be a C-safe function and Wp,F be a witness-function.

For all σ ∈ Γ we have:

F (α, ∂[α]m) ⊒ Wp,F (α,mσ) ⊒ ∪
m′∈M

G
p

∃σ′∈Γ.m′σ′=mσ′

F (α, ∂[α]m′σ′)

For a secret α in a substituted message mσ, the upper-bound

F (α, ∂[α]m) evaluates its security from one confirmed origin

m in the generalized roles, the witness-function Wp,F (α,mσ)
from the set of the exact origins of mσ (when running).

The message m is obviously one of them. The lower-bound



∪
m′∈M

G
p

∃σ′∈Γ.m′σ′=mσ′

F (α, ∂[α]m′σ′) evaluates it from the set of all the

messages that are unifiable with m. This set naturally includes

the set of definition of the witness-function since unifications

include substitutions. Unifications in the lower-bound trap any

intrusion (odd principal identities). Please notice that both the

upper-bound and the lower-bound are static (independent of

σ).

Theorem IV.6. (Analysis Theorem) Let p be a protocol. Le

F be a safe function. Let Wp,F be a witness-function. p keeps

its secrect inputs if:

∀R.r ∈ RG(p), ∀α ∈ A(r+) we have:

⊓
m′∈M

G
p

∃σ′∈Γ.m′σ′=r+σ′

F (α, ∂[α]m′σ′) ⊒ pαq ⊓ F (α, ∂[α]R−)

This theorem states a static criterion for secrecy. It derives

directly from the theorem II.5 and the lemma IV.5. This allows

us to analyze a protocol from within its generalized roles (finite

set) and send any decision made-on to valid traces.

V. ANALYSIS OF THE WOO-LAM PROTOCOL (AMENDED

VERSION) WITH A WITNESS-FUNCTION

Here, we analyze an amended version of the Woo-Lam

protocol with a witness-function and we prove that is correct

for secrecy. This version is denoted by p in Table I.

Table I: Woo-Lam Protocol-Amended version

p = 〈1, A → B : A〉.
〈2, B → A : Nb〉.
〈3, A → B : {B.kab}kas

〉.
〈4, B → S : {A.Nb.{B.kab}kas

}kbs
〉.

〈5, S → B : {Nb.{A.kab}kbs
}kbs

〉

The role-based specification of p is RG(p) =
{A1

G, A2
G, B1

G, B2
G, B3

G, S1
G}, where the generalized

roles A1
G, A2

G of A are as follows:

A1
G = 〈i.1, A → I(B) : A〉

A2
G = 〈i.1, A → I(B) : A〉.

〈i.2, I(B) → A : X〉.
〈i.3, A → I(B) : {B.kiab}kas

〉

The generalized roles B1
G, B2

G, B3
G of B are as follows:

B1
G = 〈i.1, I(A) → B : A〉.

〈i.2, B → I(A) : N i
b〉

B2
G = 〈i.1, I(A) → B : A〉.

〈i.2, B → I(A) : N i
b〉.

〈i.3, I(A) → B : Y 〉.
〈i.4, B → I(S) : {A.N i

b .Y }kbs
〉

B3
G = 〈i.1, I(A) → B : A〉.

〈i.2, B → I(A) : N i
b〉.

〈i.3, I(A) → B : Y 〉.
〈i.4, B → I(S) : {A.N i

b .Y }kbs
〉.

〈i.5, I(S) → B : {N i
b.{A.Z}kbs

}kbs
〉

The generalized role S1
G of S is as follows:

S1
G = 〈i.4, I(B) → S : {A.U.{B.V }kas

}kbs
〉.

〈i.5, S → I(B) : {U.{A.V }kbs
}kbs

〉

Let us have a context of verification such that:

pkasq = {A,S}; pkbsq = {B,S}; pkiabq = {A,B, S};

pN i
bq = ⊥; ∀A ∈ I, pAq = ⊥.

The principal identities are not analyzed since they are set

public in the context.

Let F = FEK
MAX ; Wp,F = Wp,FEK

MAX
;

We denote by W ′
p,F (α,m) the lower-bound

⊓
m′∈M

G
p

∃σ′∈Γ.m′σ′=mσ′

F (α, ∂[α]m′σ′) of the witness-function

Wp,F (α,m).
Let MG

p = {A1, X1, {B1.K
i
A2B1

}KA2S1
, A3, N

i
B2

, Y1,
{A4.N

i
B3

.Y2}KB3S2
, {N i

B4
.{A5.Z1}KB4S3

}KB4S3
,

{A6.U1.{B5.V1}KA6S4
}KB5S4

, {U2.{A7.V2}KB6S5
}KB6S5

}
After elimination of duplicates, MG

p =
{A1, X1, {B1.K

i
A2B1

}KA2S1
, N i

B2
, {A4.N

i
B3

.Y2}KB3S2
,

{N i
B4

.{A5.Z1}KB4S3
}KB4S3

,
{A6.U1.{B5.V1}KA6S4

}KB5S4
, {U2.{A7.V2}KB6S5

}KB6S5
}

The variables are denoted by X1, Y2, Z1, U1, U2, V1 and V2;

The static names are denoted by A1, B1, Ki
A2B1

, KA2S1
,

N i
B2

, A4, N i
B3

, KB3S2
, N i

B4
, A5, KB4S3

, A6, B5, KA6S4
,

KB5S4
, A7 and KB6S5

.

A. Analysis of the Generalized Roles of A

As defined in the generalized role A, an agent A can

participate in some session Si in which she receives an

unkown message X and sends the message {B.kiab}kas
. This

is described by the following rule:

Si :
X

{B.kiab}kas

-Analysis of the messages exchanged in Si:

1- For any kiab:

a- When receiving: R−
Si = X (on receiving, we use the

upper-bound)

F (kiab, ∂[k
i
ab]X) = F (kiab, ǫ) = ⊤ (1.0)



b- When sending: r+
Si = {B.kiab}kas

(on sending, we

use the lower-bound)

∀kiab.{m
′ ∈ MG

p |∃σ
′ ∈ Γ.m′σ′ = r+

Siσ
′}

= ∀kiab.{m
′ ∈ MG

p |∃σ
′ ∈ Γ.m′σ′ = {B.kiab}kas

σ′}
= {({B1.K

i
A2B1

}KA2S1
, σ′

1)} such that: σ′
1 = {B1 7−→

B,Ki
A2B1

7−→ kiab,KA2S1
7−→ kas}

W ′
p,F (k

i
ab, {B.kiab}kas

)
= {Definition of the lower-bound of the witness-function}
F (kiab, ∂[k

i
ab]{B1.K

i
A2B1

}KA2S1
σ′
1)

= {Extracting the static neighborhood}
F (kiab, ∂[k

i
ab]{B.kiab}kas

σ′
1)

= {Definition IV.2}
F (kiab, ∂[k

i
ab]{B.kiab}kas

)
= {Derivation in the definition IV.1}
F (kiab, {B.kiab}kas

)
= {Since F = FEK

MAX}
{B,A, S}(1.1)

2- Compliance with the theorem IV.6:

From (1.0) and (1.1), we have: W ′
p,F (k

i
ab, {B.kiab}kas

) =

{A,B, S} ⊒ pkiabq ⊓ F (kiab, ∂[k
i
ab]X) = {A,B, S} (1.2)

From (1.2) we have: the messages exchanged in the session

Si (i.e. kiab) respect the theorem IV.6. (I)

B. Analysis of the generalized roles of B

As defined in the generalized roles of B, an agent B can

participate in two subsequent sessions: Si and Sj such that j >
i. In the former session Si, the agent B receives the identity

A and sends the nonce N i
b . In the subsequent session Sj , she

receives an unknown message Y and she sends the message

{A.N i
b.Y }kbs

. This is described by the following rules:

Si :
A

N i
b

Sj :
Y

{A.N i
b.Y }kbs

-Analysis of the messages exchanged in Si:

1- For any N i
b:

Since N i
b is declared public in the context (i.e. pN i

bq = ⊥),

then we have directly:

W ′
p,F (N

i
b , N

i
b) ⊒ pN i

bq ⊓ F (N i
b, ∂[N

i
b]A) = ⊥ (2.1)

-Analysis of the messages exchanged in Sj :

1- For any N i
b:

Since N i
b is declared public in the context (i.e. pN i

bq = ⊥),

then we have directly:

W ′
p,F (N

i
b , {A.N

i
b.Y }kbs

) ⊒ pN i
bq ⊓ F (N i

b, ∂[N
i
b ]Y ) = ⊥

(2.2)

2- For any Y :

Since when receiving, we have F (Y, ∂[Y ]Y ) = F (Y, Y ) = ⊥,

then we have directly:

W ′
p,F (Y, {A.N

i
b.Y }kbs

) ⊒ pY q ⊓ F (Y, ∂[Y ]Y ) = ⊥ (2.3)

3- Compliance with the theorem IV.6:

From (2.1), (2.2) and (2.3) we have: the messages exchanged

in the session Si and Sj respect the theorem IV.6. (II)

C. Analysis of the generalized roles of S

As defined in the generalized role S, an agent S can par-

ticipate in some session Si in which she receives the message

{A.U.{B.V }kas
}kbs

and sends the message {U.{A.V }kbs
}kbs

.

This is described by the following rule:

Si :
{A.U.{B.V }kas

}kbs

{U.{A.V }kbs
}kbs

1- For any U :

b- When receiving: R−
Si = {A.U.{B.V }kas

}kbs
(on

receiving, we use the upper-bound)

F (U, ∂[U ]{A.U.{B.V }kas
}kbs

) =
F (U, {A.U.{B}kas

}kbs
) = {A,B, S} (3.2)

b-When sending: r+
Si = {U.{A.V }kbs

}kbs
(on sending,

we use the lower-bound)

∀U.{m′ ∈ MG
p |∃σ

′ ∈ Γ.m′σ′ = r+
Siσ

′}
= ∀U.{m′ ∈ MG

p |∃σ
′ ∈ Γ.m′σ′ = {U.{A.V }kbs

}kbs
σ′}

= {({{U2.{A7.V2}KB6S5
}KB6S5

, σ′
1)} such that:

σ′
1 = {U2 7−→ U,A7 7−→ A, V2 7−→ V,KB6S5

7−→ kbs}

W ′
p,F (U, {U.{A.V }kbs

}kbs
)

= {Definition of the lower-bound of the witness-function}
F (U, ∂[U ]{U2.{A7.V2}KB6S5

}KB6S5
σ′
1)

= {Extracting the static neighborhood}
F (U, ∂[U ]{U.{A.V }kbs

}kbs
σ′
1)

= {Definition IV.2}
F (U, ∂[U ]{U.{A.V }kbs

}kbs
)

= {Derivation in the definition IV.1}
F (U, {U.{A}kbs

}kbs
)

= {Since F = FEK
MAX}

{A,B, S}(3.2)

2- For any V :

a- When receiving: R−
Si = {A.U.{B.V }kas

}kbs
(on

receiving, we use the upper-bound)

F (V, ∂[V ]{A.U.{B.V }kas
}kbs

) =
F (V, {A.{B.V }kas

}kbs
) =























{A,B, S} if kas is the external protective key

of V in {A.{B.V }kas
}kbs

{A,B, S} if kbs is the external protective key

of V in {A.{B.V }kas
}kbs

=

{A,B, S} (3.3)

b-When sending: r+
Si = {U.{A.V }kbs

}kbs
(on sending,

we use the lower-bound)

∀V.{m′ ∈ MG
p |∃σ

′ ∈ Γ.m′σ′ = r+
Siσ

′}
= ∀V.{m′ ∈ MG

p |∃σ
′ ∈ Γ.m′σ′ = {U.{A.V }kbs

}kbs
σ′}



= {({{U2.{A7.V2}KB6S5
}KB6S5

, σ′
1),

({N i
B4

.{A5.Z1}KB4S3
}KB4S3

, σ′
2)} such that:

{

σ′
1 = {U2 7−→ U,A7 7−→ A, V2 7−→ V,KB6S5

7−→ kbs}
σ′
2 = {U 7−→ N i

B4
, A5 7−→ A,Z1 7−→ V,KB4S3

7−→ kbs}

W ′
p,F (V, {U.{A.V }kbs

}kbs
)

= {Definition of the lower-bound of the witness-function}
F (V, ∂[V ]{U2.{A7.V2}KB6S5

}KB6S5
σ′
1)⊓

F (V, ∂[V ]{N i
B4

.{A5.Z1}KB4S3
}KB4S3

σ′
2)

= {Extracting the static neighborhood}
F (V, ∂[V ]{U.{A.V }kbs

}kbs
σ′
1)⊓

F (V, ∂[V ]{N i
B4

.{A.V }kbs
}kbs

σ′
2)

= {Definition IV.2}
F (V, ∂[V ]{U.{A.V }kbs

}kbs
)⊓

F (V, ∂[V ]{N i
B4

.{A.V }kbs
}kbs

)
= {Derivation in the definition IV.1}
F (V, {{A.V }kbs

}kbs
) ⊓ F (V, {N i

B4
.{A.V }kbs

}kbs
)

= {Since F = FEK
MAX}

{A,B, S}(3.4)

3- Compliance with the theorem IV.6:

For any U , from (3.1) and (3.2) we have:

W ′
p,F (U, {U.{A.V }kbs

}kbs
) = {A,B, S} ⊒ pUq ⊓

F (U, ∂[U ]{A.U.{B.V }kas
}kbs

) = pUq ∪ {A,B, S} (3.5)

For any V , from (3.3) and (3.4) we have:

W ′
p,F (V, {U.{A.V }kbs

}kbs
) = {A,B, S} ⊒ pV q ⊓

F (V, ∂[V ]{A.U.{B.V }kas
}kbs

) = pV q ∪ {A,B, S} (3.6)

From (3.5) and (3.6) we have: the messages exchanged in the

session Si respect the theorem IV.6 (III)

VI. RESULTS AND INTERPRETATION

The results of analysis of the amended version of the Woo-

Lam protocol are summarized in Table II. From Table II, we

conclude that this version fully respects the theorem IV.6.

Hence, this protocol keeps its secrect inputs.

Table II: Compliance of the Woo-Lam protocol (amended

version) with the Theorem IV.6

α Role R− r+ The.IV.6

1 ki
ab

A X {B.ki
ab
}kas

Ok

2 X A X {B.ki
ab
}kas

Ok

3 N i

b
B A N i

b
Ok

4 Y B Y {A.N i

b
.Y }kbs

Ok

5 N i

b
B Y {A.N i

b
.Y }kbs

Ok

6 U S {A.U.{B.V }kas
}kbs

{A.V }kbs
}kbs

Ok

7 V S {A.U.{B.V }kas
}kbs

{U.{A.V }kbs
}kbs

Ok

VII. RELATED WORKS

Our witness-functions are comparable to the rank-functions

of Steve Schneider [10]and the interpretation-functions of

Houmani [11]–[14]. Unlike the rank-functions, the witness-

function are easy to build and easy to use. The rank-functions

require CSP [15], [16] and are difficult to search in a

protocol [17]. They could even not exist [18]. Unlike the

interpretation-functions, the witness-functions do not dictate

that a message must be protected by the direct key. Any further

protective key could define a witness-function. Our functions

do not depend on variables thanks to their static bounds. That

is a major fact. All that makes our witness-function more

flexible and would allow us to prove correctness of a wider

range of protocols.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new framework to analyze stat-

ically cryptographic protocols for secrecy using the witness-

functions. We successfully tested them on an amended version

of the Woo-Lam protocol. In a future work, we will test

them on protocols with theories [19]–[21] and on compose

protocols [22]–[24]. We believe that our witness-functions will

help to treat these problems.
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