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Abstract-The severity of global magnetic disturbances in 

Near-Earth space can crucially affect human life. These 

geomagnetic disturbances are often indicated by a Kp 

index, which is derived from magnetic field data from 

ground stations, and is known to be correlated with solar 

wind observations. Forecasting of Kp index is important 

for understanding the dynamic relationship between the 

magnetosphere and solar wind. This study presents 3 

hours ahead prediction for Kp index using the NARMAX 

model identified by a novel robust model structure 

detection method. The identified models are evaluated 

using 4 years of Kp data. Overall, the models with robust 

structure can produce very good Kp forecast results and 

provide transparent and compact representations of the 

relationship between Kp index and solar wind variables. 

The robustness and conciseness of the models can highly 

benefit the space weather forecast tasks. 

Keywords-Space weather; Kp forecast; NARMAX 

model; Robust model; Structure selection. 

I.  INTRODUCTION 

Many advanced systems and equipment on or 
nearby earth, for example, navigation systems, 
communication systems, satellites, and power grid, are 
sensitive to space weather changes. Especially when 
severe situation such as magnetic storm occurs, these 
systems and equipment become paralyzed and 
unreliable. In order to understand and forecast the 
geomagnetic activity, the Kp (planetarische Kennziffer) 
index was first introduced by Bartels in 1949 [1]. The 
values of Kp index range from 0 (very quiet) to 9 (very 
disturbed) in 28 discrete steps, resulting values of 0, 0+, 
1-, 1, 1+,2-, 2, 2+, …, 9 [2]. The relatively long record 
makes Kp index an important dataset to discover the 
relationship between magnetic disturbances and space 
weather.  

The correlation between Kp index and solar wind 
parameters has been confirmed in the literature (see for 
example [3][4][5]). There are plenty of studies aiming 
to build models to represent the relationship between 
Kp index and solar wind parameters. Many data based 
studies use neutral network (NN) models. An early-
stage Costello NN Kp model was proposed in 1997 [6] 
for 1 hour ahead prediction for Kp and the correlation 
coefficient between the predicted and official Kp index 
reached 0.75. Later in 2000, Boberg [7] developed a Kp 
NN model which slightly outperformed Costello’s NN 
model with a correlation coefficient of 0.77. Another 
similar NN model was then introduced in 2005 by Wing 
et al [2] where a  pre-estimated nowcast Kp that is 
highly correlated with official Kp was used as a model 

input, based on which the 1 hour ahead model 
prediction performance is much better than most of the 
existing methods [8]. More recently, Rice NN models 
have been introduced in [24]. Many of the reported NN 
models have achieved high correlation coefficients, but 
it turned out that there were some significant lags in the 
model predictions, which make the forecast not as 
useful or reliable as it was expected. In other words, 
models which generate delayed forecast might fail to 
detect magnetic disturbances and can cause crucial 
losses. Probably the lags in the predictions are due to 
the effect of the inclusion of autoregressive variables in 
the models. Therefore, a re-evaluation of the model 
predictive performance in particular the overcoming of 
delay of the predictions becomes highly necessary.     

Another approach is the NARMAX method which 
has been widely used for space weather forecasting 
including Kp index forecasting (see for example 
[2][11][12]). In comparison with NN models, 
NARMAX model can provide a nonlinear transparent 
representation of the system with only a few number of 
effective model terms selected by using an orthogonal 
least squares (OLS) algorithm [10]. The first 
NARMAX Kp model was introduced in 2001 [11]. The 
model uses solar wind variables and previous Kp as 
inputs to generate 3 hours ahead prediction for Kp index. 
The correlation coefficient is 0.77. Recently, the 
NARMAX Kp models have been extended to generate 
3 hours, 6 hours, 12 hours and 24 hours ahead 
predictions of Kp, using both sliding window and 
recursive prediction approaches [12]. 

In general, the above mentioned two models, that is, 
neutral networks and NARMAX models, both have 
achieved good performances on Kp forecast. However, 
there still exist large room for improvement. This is due 
to the fact that though NN models can achieve relatively 
higher performances than other models, the model 
structure can be very complicated and cannot be simply 
written down. In addition, NN models often involve a 
large number of variables and take a long time for 
training. General NN models cannot provide a 
transparent model structure which clearly indicate 
which model terms or variables are significant. In 
comparison with NN models, NARMAX models use a 
nonlinear polynomial structure and often only need a 
small number of effective model terms to describe the 
system.  

Based on the above observations, this study 
proposes a novel robust model structure detection and 
selection method to improve the model robustness and 
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predictive power. This is especially useful for the 
following two scenarios of data based modelling 
problems: i) a large dataset or multiple datasets (e.g. a 
number of datasets for a same system but generated 
under different experimental conditions) are available; 
ii) modelling for a non-stationary system where 
although the key system dynamics can be represented 
using a single model structure, different model 
parameters are needed to adaptively reflect the change 
of system behaviors at different times. The proposed 
algorithm is applied to build NARMAX models for Kp 
index prediction. 

The paper is organized as follows. Section 2 briefly 
introduces the NARMAX model and OLS algorithm. 
The new proposed robust model structure selection 
method is given in Section 3. Section 4 provides a 
description of the data. The results are given and 
analyzed in section 5. The study is concluded in section 
6. 

II. NARMAX MODEL AND OLS ALGORITHM 

This study focuses on linear-in-the-parameters 
representation including NARMAX model. The OLS 
algorithm is used to detect the significant model terms 
and establish parsimonious model structures. 

A. NARMAX Model   

The nonlinear autoregressive moving average with 
exogenous inputs (NARMAX) model [13], is a 
parametric modelling framework that includes many 
traditional linear and nonlinear models such as AR, 
ARX, ARMA, ARMAX and NARX as special cases. 
NARMAX method is powerful for black-box system 
identification where the true model structure is assumed 
to be unknown or unavailable. NARMAX models have 
a number of attractive advantages, for example, the 
model structure can be determined in a stepwise way 
(with the most important model terms being selected 
first), the identification procedure is easy to compute, 
and the final model is compact and transparent and easy 
to communicate. Due to these, NARMAX models have 
been applied to successfully solve a wide range of real 
world problems in various fields including ecological 
[14], environmental [15], geophysical [9][16], medical 
[17], societal [20] and neurophysiological [21] 
sciences.   

The general NARMAX model structure is [19]: y(t) = F[y(k − 1), … , y(k − ny), u(k −1), … , u(k − nu), e(k − 1), … , e(k − ne)]               (1) 

where  y(k)  and u(k)  are systems output and input 
signals; e(k) is a noise sequence which is with zero-
mean and finite variance. ny, nu and  ne  are the 
maximum lags for the system output, input and noise. F[∙] is some nonlinear function.  

B. OLS-ERR Algorithm 

Although there exist some application scenarios 
where the non-linearity is known a priori and therefore 
desirable term clusters can be specified in advance, 
there are many black box system identification 
problems, for which it needs to investigate additional 
information that can be used to detect and indicate the 
significance of the model terms.  In order to solve such 

a problem the orthogonal least squares (OLS) algorithm 
was introduced [10][26] in the late 1980’s. The OLS 
algorithm uses a simple but effective index, called the 
error reduction ratio (ERR) [10], to measure the 
significance of candidate model terms and generate a 
rank according to the contribution made by each of the 
model terms to explaining the variation of the response 
variable. The sum of the error reduction ratio (SERR) 
[18] can be used to indicate how much of the variation 
in the response variable can be explained by the 
selected model terms.  The OLS-ERR algorithm can be 
summarized as follows [18][19]: 

A polynomial NARX model can be written as the 
following linear-in-the-parameters form :  y(k) = ∑ θmφm(k)Mm=1 + e(k)             (2) 

where φm(k) = φm(ϑ(k))  are the model terms 
generated from the regressor vector ϑ(k) = [y(k −1), … , y(k − ny), u(k − 1), … , u(k − nu)] T , θm  are 
the unknown paramters and M  is the number of 
candidate model terms. Now, consider a term selection 
problem for model (2). Let y = [y(1), … , y(N)] T  be 
the output vector of N sampled observations and 𝛅m =[ φm(1), … ,  φm(N)] T be the vector formed by the mth 
model term (m = 1, 2, … ,M). Then a dictionary of all 
the candidate bases can be written as D ={ 𝛅1, … ,  𝛅M} . The term selection problem is actually to 
find a subset Dn = { 𝛅l1 , … ,  𝛅ln}  of n model terms, 
from the full set D, where {l1, … , ln} ∈ {1, 2, … ,M}, so 
that y can be explained using the combination of { 𝛅l1 , … ,  𝛅ln}:  y = ∑ θli  𝛅lini=1 + e                       (3) 

The model terms are selected using the ERR index. 
For the full dictionary D , the ERR index of each 
candidate model term can be calculated by:  ERR(1)[i] = (yT 𝛅i)2(yTy)(𝛅iT 𝛅i)                    (4) 

where i = 1, 2, … ,M,  The first selected model term 
can then be identified as:  l1 = arg max1≤i≤M{ERR(1)[i]}                 (5) 

Then the 1st significant model terms of the subset 
can be selected as α1 = 𝛅l1 , and the 1st associated 
orthogonal variable can be defined as q1 = 𝛅l1 . After 
removal 𝛅l1  from D, the dictionary D is then reduced to 
a sub-dictionary DM−1 , consisting of M-1 model 
candidates.  

At step s (s ≥ 2) , the M-s+1 bases are first 
transformed into new group of orthogonalised bases 
[ 𝐪1(s), 𝐪2(s), … , 𝐪M−s+1(s) ] with orthogonlization 
transformation as (6). 𝐪j(s) = 𝛅j − ∑ 𝛅jTqrqrTqr qrs−1r                      (6) 

where qr(r = 1, 2, … , s − 1)  are orthogonal vectors, φj (j = 1, 2,… ,M − s + 1) are the subset of DM−s+1 
composed of unselected model terms and 𝐪j(j = 1,2, … ,M − s + 1)  are the new orthogonalised bases. 
The rest of the model terms can then be identified step 
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by step using the ERR index of orthogonalised subsets DM−s+1:  ERR(s)[j] = (yT𝐪j(s))2(yTy)(𝐪j(s) T𝐪j(s))                      (7) 

ls = arg max1≤j≤M−s+1{ERR(1)[j]}                (8) 

The selection procedure can be terminated when 
specific conditions are met. The number of model terms 
to be included in the final model can be determined by 
a modified GCV values [22][23]. 

III. ROBUST MODEL SELECTION METHOD 

Following the discussions in the previous section, 
OLS can select the most meaningful terms to establish 
a model structure. However, the algorithm is usually 
working based on the assumption that there is only one 
group of data, based on which it finds a best model for 
the system. In fact, for many real applications, the data 
are usually recorded from a series of experiments under 
different experimental conditions, or the system itself is 
non-stationary and needs to be observed for a long time 
scale. In these scenarios, the model structure might be 
varying with time and/or external environmental 
conditions. Due to these considerations, a novel robust 
model structure selection method is developed to find a 
common model structure that can better fit all the sub-
datasets at a satisfactory level. 

Let d = { 𝛅1, … ,  𝛅M} be the candidate basis vectors 
which are formed by the original data, where  𝛅m =[ φm(1), … ,  φm(N)] T is the vector formed by the mth 
model term (m = 1, 2, … ,M) and N is the number of 
data points. The original data can then be regrouped to 
form K  sub-datasets [d(1), … , d(K)]  dataset through 
some resampling method [25], where d(k) ∈ d (k = 1,2, … , K)  and d = [d(1), … , d(K)] T .To find a robust 
model structure that robust to all the K sub-datasets, an 
error matrix is calculated using the data from all the K 
sub-datasets. In the first selection step, the error matrix 
is defined as: 

Ψ (1) = [  
  e1(1) e2(1)e1(2) e2(2) ⋯ eM(1)eM(2)⋮ ⋱ ⋮e1(K) e2(K) ⋯ eM(K)]  

  
            (9) 

where em(k) (m = 1, 2, … ,M and k = 1, 2, … , K)   is 
the averaged prediction errors when the mth candidate 
model term is used to approximate the dataset. The 
model consists of only a single model term  𝛅m that can 
best fit validation set can be written as: y = αm(k) 𝛅m                           (10) 

where αm(k)  is the parameter for the single term. And em(k) can be calculated: em(k) = Fe(y − 𝑦̂)                    (11) 

where Fe is some function used to calculate the value of 
the indicator of averaged prediction error; 𝑦̂  is the 
model prediction. The indicator used in this study is the 
mean absolute error. The averaged error of each single 
model term can then be calculated:  

e̅m = 1K (em(1) + … + em(K))                 (12) 

where K is the number of sub-datasets and m = 1,2, … ,M. The first model term can then be selected as  𝛅l1:  l1 = arg min1≤m≤M  {e̅m }                   (13) 

Similar to that in OLS algorithm, the selected model 
term  𝛅l1  is removed from the candidate dictionary. At 
step s (s ≥ 2) , the dictionary consists of M − s + 1 
model candidates. The M − s + 1  bases are 
transformed into a new group of orthogonalised bases 
as in OLS algorithm. The error matrix at step s can be 
re-calculated and updated using the new group of bases 
as:  

Ψ (s) = [  
  e1(1) e2(1)e1(2) e2(2) ⋯ eM−s+1(1)eM−s+1(2)⋮ ⋱ ⋮e1(K) e2(K) ⋯ eM−s+1(K) ]  

  
          (14) 

The averaged error can then be calculated and the 
sth robust model terms can be selected as:  ls = arg min1≤m≤M−s+1  {e̅m }               (15) 

Repeating the recursive process, a number of model 
terms can be selected to form a linear-in-parameters 
robust model structure. As each model term is selected 
by the averaged error calculated from all the sub-
datasets, the robustness of the structure is guaranteed. 
The method can be summarized into several steps: 1). 
calculate the error matrix and averaged error of each 
candidate model term; 2). select the model term 
according to the averaged error; 3). remove the selected 
terms in the dictionary and transformed the rest of bases 
to form new orthogonalised bases; 4) repeat the first 3 
steps until enough model terms are selected. 

IV. EXPERIMENTAL DESIGN 

The Kp index was sampled every 3 hours and the 
solar wind variables were sampled every 1 hour. The 
solar wind variables are used as the model inputs and 
Kp index is treated to be the model output. A full 
description of the solar wind variables and derived 
variables is summarized in Table I.  

Table I. Kp index and solar wind variables 
Name Description 

Kp Kp index Bs 
southward component of the interplanetary magnetic 

field n solar wind density (proton density) [n/cc] p solar wind pressure (flow pressure) [nPa] V solar wind speed/velocity (flow speed)  [km/s] VBs V × Bs/1000 

Several derived variables are also considered, which 

are V12, V13, V14, V15, Bs12, Bs13, Bs14 and Bs15.  It should be 
noted that all the models presented in this study predict 
Kp index 3 hours ahead and the model inputs are all 
observed no less than 3 hours before the predicted time. 
Therefore, the unit of time lags of both input and output 
is 3 hours. For example, Kp(t − 1)  is the Kp index 
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recorded 3 hours before Kp(t) and V(t − 2) is the solar 
wind speed recorded 6 hours before V(t).  

The Kp index of the most recent 5 years (2008-
2012) are used for the case study. The data of 2008 is 
used for model training and data of 2009, 2010, 2011 
and 2012 are used for model testing. The maximum 
time lags are chosen as nu = ny = 2 and the nonlinear 
degree is 2. Four types of NARMAX models are 
considered. The first type of model is such that the 
model is identified using traditional OLS algorithm, 
with autoregressive variables (lagged output variables) 
being included in the model (such a model is referred to 
as “regular model with autoregressive variables” in 
later analysis). The second type is that model is 
identified using robust model selection algorithm, with 
autoregressive variables (such a model is referred to as 
“robust model with autoregressive variables’). The 
third and fourth models are such that the model are 
selected using only input lag variables but without using 
autoregressive variables, by the traditional OLS 
algorithm and proposed robust model selection 
algorithm, respectively (the third and fourth models are 
referred to as “regular model without autoregressive 
variables” and “robust model without autoregressive 
variables”, respectively). 

V. RESULTS 

A. Regular Model with Autoregressive Variables 

The OLS-ERR algorithm was employed for model 
term selection. The modified GCV values suggests that 
a model consisting of 13 terms can be a good choice to 
fit the data. The estimated parameters of the 13 terms, 
along with the associated parameters, are shown in 
Table II. As depicted in the OLS algorithm in Section 
II, the model terms are listed in the order of their 
entrance into the model in a forward stepwise way, step 
by step and one in each step.   

Table II. Regular model with autoregressive variables 

No Term 
ERR 

(100%) Parameter 

1 Kp(t − 1) 84.7580 1.2377e+00 

2 p(t − 1) × V(t − 2) 12 2.0343 1.7675e+00 

3 V(t − 1) × V(t − 1) 13 0.3777 4.3448e-01 

4 Kp(t − 1) × V(t − 2) 15 0.0773 -9.9249e-01 

5 p(t − 1) × p(t − 1) 0.1165 -3.5290e-01 

6 V(t − 2) × p(t − 1) 0.1031 -2.0913e+00 

7 p(t − 1) × V(t − 2) 12 0.0714 -1.6569e+00 

8 n(t − 2) × Bs(t − 1) 15 0.0540 -3.4770e-02 

9 Kp(t − 2) × VBs(t − 2) 0.0575 3.5096e+03 

10 V(t − 2) 15 × Bs(t − 2) 15 0.0329 -5.5428e-03 

11 Bs(t − 1) × Bs(t − 1) 12 0.0208 4.7001e-01 

12 Bs(t − 1) × Bs(t − 2) 0.0296 -2.1801e+00 

13 n(t − 2) × Kp(t − 1) 0.0445 5.6394e-01 

Note that the model in Table II should read:  Kp(t) = 1.24 × Kp(t − 1) + ⋯          (16) 

The performance of this model will be analyzed and 
discussed together with the robust model with 
autoregressive variables in the next section.  

B. Robust Model with Autoregressive Variables 

The data of year 2008 are separately into 8 subsets, 
which are used as the subsets in robust structure 
selection process. In total, 13 model terms are selected 
by the proposed robust structure selection method. The 
parameters of these robust terms are estimated from the 
train data of year 2008, shown in Table III. 

Table III. Robust model with autoregressive variables 
No Robust Term Parameter 

1 Kp(t − 1) 5.4181e-01 

2 V(t − 1) 14 7.9072e-02 

3 p(t − 1) × V(t − 2) 12 3.0237e-01 

4 V(t − 1) 13 × V(t − 2) 14 -3.9553e-01 

5 Kp(t − 2) 2.5647e-02 

6 V(t − 1) 7.8019e-01 

7 n(t − 1) ×  V(t − 1) 13 -2.4852e-01 

8 n(t − 1) × V(t − 1) 12 2.4175e-01 

9 V(t − 1) × V(t − 1) 12 -2.7148e-01 

10 n(t − 1) 6.3285e-02 

11 V(t − 2) × V(t − 2) 2.6931e-01 

12 V(t − 2) × V(t − 2) 12 -1.2786e-01 

13 V(t − 1) × V(t − 2) 12 -3.0246e-01 

Note that the model in Table III should read:  Kp(t) = 0.542 × Kp(t − 1) + ⋯         (17) 

The performances of regular and robust model with 
autoregressive terms are shown in Figure 1. The 
averaged correlation coefficients of regular and robust 
model are 0.748 and 0.759, and the averaged prediction 
efficiency of regular and robust model are 0.550 and 
0.575, respectively. The overall performance of the 
robust model is slightly better than the regular model. 
In addition, for the last two test years, the improvements 
achieved by using robust structure are more significant 
than the first two years. The reason might be that the 
robust method is able to detect the significant model 
terms for each short period of data, which is extremely 
important because there exist many severe active times 
(Kp > 5) in the data. The improvement of prediction 
performance of theses active periods would largely 
improve the overall performance. 

 

Figure 1. Performance comparison between the regular 
(blue) models and robust models (red) with autoregressive 

variables (left: correlation coefficient; right: prediction 
efficiency) 

The maximum correlation coefficient of the 4 test 
years reaches 0.78, which is comparable to previous 
best results reported in the literature. The model with 
autoregressive variables has achieved a very good 
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prediction performance. However, there exists a 
common issue in these models with autoregressive 
variables, that is, there is a prediction lag. This lag is 
mostly caused by the inclusion of the autoregressive 
term Kp(t − 1) in the model, which is highly correlated 
with Kp(t), the model term selection algorithm usually 
selects it in the first step. The lag between the prediction 
and the corresponding measurement can be seen in 
Figure 2. The same phenomenon was also obviously 
observed in other linear and nonlinear models for 
example the NN model proposed in [2] has exactly the 
same issue.    

 

Figure 2. Randomly selected 100 observed (red) and 
predicted (blue) Kp values of year 2012 (robust model with 

autoregressive variables) 

C. Regular Model without Autoregressive Variables 

The regular model without autoregressive variables 
was identified based on the same train data as the 
regular model with autoregressive variables, but with 
only input lag variables. The OLS-ERR algorithm was 
employed for model term selection. The selected model 
terms of the model, along with the associated 
parameters, are shown in Table IV.  

Table IV. Regular model without autoregressive variables 

No Term 
ERR 

(100%) Parameter 

1 V(t − 2) × p(t − 1) 79.0105 -1.7336e+02 

2 VBs(t − 1) × Bs(t − 1) 12 3.0698 -5.3816e+00 

3 V(t − 1) 0.4643 -2.8197e+01 

4 VBs(t − 2) × Bs(t − 1) 13 0.5121 3.3031e+00 

5 Bs(t − 2) × Bs(t − 2) 12 0.3814 1.2940e+01 

6 p(t − 1) × VBs(t − 1) 0.2651 1.7469e+02 

7 V(t − 1) × V(t − 2) 14 0.3667 4.5787e+01 

8 p(t − 1) × p(t − 1) 0.3884 -1.9329e+02 

9 Bs(t − 1) × V(t − 2) 14 0.2231 3.1549e+01 

10 Bs(t − 1) × p(t − 2) 0.0893 -1.6555e+02 

11 V(t − 1) × V(t − 1) 0.0660 -1.1536e+01 

12 p(t − 2) × VBs(t − 2) 0.0417 1.0354e+01 

13 VBs(t − 2) × V(t − 2) 12 0.0419 -2.8373e+00 

The model in Table IV should read:  Kp(t) = −173.36 × V(t − 2) × p(t − 1) + ⋯   (18) 

The performance of this model will be analyzed and 
discussed together with the robust model without 
autoregressive variables in the next section.  

D. Robust Model without Autoregressive Variables 

The robust model without autoregressive variables 
was identified based on the same train data as the robust 
model with autoregressive variables, but with only 
input lag variables. In total, 13 model terms are selected 
by the proposed robust structure selection method. The 
parameters of these robust terms are estimated from the 
train data of year 2008.  

 

Table V. Robust model without autoregressive variables 
No Robust Term Parameter 

1 V(t − 2) × p(t − 1) 3.8385e+01 

2 V(t − 1) 13 -2.4865e+01 

3 V(t − 1) 12 2.8368e+01 

4 VBs(t − 1) × V(t − 1) 15 1.7403e+00 

5 n(t − 1) × VBs(t − 1) 1.8330e+00 

6 Bs(t − 2) × Bs(t − 1) 14 1.4216e+01 

7 Bs(t − 1) × Bs(t − 1) 14 1.9646e+01 

8 n(t − 1) 9.6997e+00 

9 Bs(t − 2) 1.5046e+00 

10 n(t − 1) × n(t − 1) -1.2544e+01 

11 Bs(t − 1) × Bs(t − 2) 12 -3.0055e+01 

12 V(t − 2) 15 × V(t − 2) 15 2.2128e+01 

13 Bs(t − 1) × V(t − 2) 15 3.8385e+01 

The model in Table V should read:  Kp(t) = −38.39 × V(t − 2) × p(t − 1) + ⋯   (19) 

The performances of regular and robust model 
without autoregressive terms are shown in Figure 3. 
The averaged correlation coefficients of regular and 
robust models are 0.669 and 0.689, and the averaged 
prediction efficiency of regular and robust model are 
0.430 and 0.460, respectively. Clearly, the performance 
of robust and regular models without autoregressive 
variables are consistent with the models containing 
autoregressive variables: the overall performance of the 
robust model is better than the regular model, especially 
in the last two test years. Overall, the robust structure 
can help to improve the model performances, with and 
without autoregressive variables. Furthermore, the 
proposed robust model selection algorithm can be 
potentially applied to big data or long time period data 
modelling and prediction. 

 
Figure 3. Performance comparison between the regular (blue) 

models and robust models (red) without autoregressive variables 
(left: correlation coefficient; right: prediction efficiency) 

In addition, it can be noted that the performance of 
the model without autoregressive variables is lower 
than the model with autoregressive variables. However, 
the lag in the prediction has been eliminated and the 
model without autoregressive variables is also able to 
detect most of the active times (Figure 4). Based on the 
above considerations, the robust model without 
autoregressive variables can be a better choice for Kp 
index prediction.  
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Figure 4. Randomly Selected 100 observed (red) and 

predicted (blue) Kp values of year 2012 (robust model without 
autoregressive variables) 

VI. CONCLUSION 

This study proposed a new robust model selection 
method for Kp index prediction. With the new selection 
algorithm, robust models with and without 
autoregressive variables were obtained for 3 hours 
ahead prediction of Kp index.  The performance of the 
robust models was evaluated on the test data of 4 years. 
The correlation coefficient and prediction efficiency of 
the robust models are 0.748 and 0.759 (with 
autoregressive terms), 0.669 and 0.689 (without 
autoregressive terms), respectively.  It turned out that 
the robust models outperform the regular models and 
more importantly, the robust model selection algorithm 
can successfully overcome a common issue 
encountered in most existing Kp prediction models, that 
is, there usually exist lags between the predictions and 
real measurements. The advantage of a robust model is 
that it can better capture the inherent dynamics of the 
whole dataset and can thus be well generalized to new 
data. With this advantage, the new robust selection 
method can potentially be applied to big data or long 
period data modelling problems. 
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