
HAL Id: hal-04254446
https://hal.science/hal-04254446

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting fault injection vulnerabilities in binaries with
symbolic execution

Julien Lancia

To cite this version:
Julien Lancia. Detecting fault injection vulnerabilities in binaries with symbolic execution. 14th
International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2022, pp.1-8.
�10.1109/ECAI54874.2022.9847500�. �hal-04254446�

https://hal.science/hal-04254446
https://hal.archives-ouvertes.fr

Detecting fault injection vulnerabilities in binaries
with symbolic execution

Julien Lancia
NXP

Toulouse, France
julien.lancia@nxp.com

Abstract—We propose a framework based on symbolic exe-
cution to identify automatically and consistently the effects of
fault injection on embedded software at assembly level, for C
(compiled to assembly) and Java (compiled to bytecode) binaries,
for faults affecting the control flow or the values in memory. We
implement our framework on top of the angr symbolic execution
engine, with built-in support for various fault models (Stuck-at,
Hamming weight, Unconstrained). We assess the performances of
our framework on open source programs considering single and
double fault injections, showing that it identifies all possible fault
injections in a fraction of the time required by manual review.

Keywords—security, fault injection, symbolic execution, em-
bedded software

I. INTRODUCTION

We observe that physical attacks on embedded software
are becoming increasingly popular [1], [2] while at the same
time the equipment to perform such attacks is becoming
more and more accessible and affordable [3]–[5]. To protect
against these attacks, founders and developers can implement
hardenings both at hardware and software level. This is even
more prominent for products targeting certifications such as
Common Criteria with certification laboratories inspecting the
source code and compiled binaries for vulnerabilities and
running penetration testing campaigns on the products.

To address this challenge, the traditional approach consists
of performing manual (static) source code security reviews to
identify the potential vulnerabilities that could be exploited
with hardware fault injection and adding hardening where
necessary. However, given the large size of source codebases
in today’s embedded software, such a task may be time
consuming, resource consuming and error prone.

1 x = int(input())
2 if x >= 10:
3 if x < 100:
4 print "ROM verified"
5 return 0
6 else:
7 print "Error abort 1"
8 return 1
9 else:

10 print " Error abort 2"
11 return 2

Listing 1. Pseudo-code example

For example, consider the pseudo-code in listing 1. Depend-
ing on the fault model considered the following fault injection
could lead to an invalid status of ROM verified:

• one fault injected at line 2 can corrupt the conditional
instruction and let the control flow progress to the ROM
verified state at line 4,

• one fault injected on the x variable assignment at line 1
can change the value of x to satisfy the conditions and
reach the ROM verified state at line 4,

• one fault injected at line 8 can corrupt the return state-
ment and let the control flow progress after the return
statement.

• one fault injected at line 11 can corrupt the return
statement and let the control flow progress after the return
statement.

We can see that a very small code extract has already several
potential vulnerabilities, and we could potentially identify
more if reviewing the compiled binary code instead of the
source code. This highlights the need for a more automated
and consistent way for security reviews of embedded software
to protect against fault injections.

We propose a framework based on symbolic execution to
identify automatically and consistently the effects of fault
injection on embedded software at assembly level, both for
C (compiled to assembly) and Java (compiled to bytecode)
programs. Thanks to this flexibility, our framework allows
detecting fault injection vulnerabilities in C binaries, Java
applications, JavaCard applications, pure Java Android appli-
cations as well as native Android applications using a mix of
C and Java through JNI calls.

Our symbolic execution framework performs code execution
at symbolic level, stepping through all control flow blocks
without concretizing the data. For each block, it generates both
control flow fault injections and memory fault injections at
symbolic level, keeping track of the faults that are generated
along the symbolic execution. The fault model used for
memory fault injection is fully customizable, only limited by
the expressivity of the constraint solver. The identification of
successful fault injection (indication of vulnerability) is also
fully customizable and can be expressed by any condition on
a symbolic state (expressed in python language in the current
implementation).

Our symbolic execution framework identifies automatically
all attack paths resulting from fault injections on the control
flow or the memory. It can perform the analysis for an arbitrary
number of fault injections in the same run, only constrained
by the computing resources necessary to store and process the

978-1-6654-9535-622$31.00 ©2022 IEEE

20
22

 1
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
le

ct
ro

ni
cs

, C
om

pu
te

rs
 a

nd
 A

rt
ifi

ci
al

 In
te

lli
ge

nc
e

(E
CA

I)
|

97
8-

1-
66

54
-9

53
5-

6/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EC

AI
54

87
4.

20
22

.9
84

75
00

Authorized licensed use limited to: STMicroelectronics international NV. Downloaded on October 23,2023 at 09:17:41 UTC from IEEE Xplore. Restrictions apply.

resulting symbolic graph. In the following sections we first
describe the principle of symbolic execution with a constraint
solver, then we describe the symbolic fault engine added to
the symbolic execution framework, and finally we present the
current implementation of the framework.

The structure of this paper is as follows. Section II presents
the generic concept of symbolic execution and our concep-
tual approach to simulate control flow and memory value
fault injection at symbolic level. Section III overviews the
implementation and tools used to implement our approach.
Section IV assesses the performance of our approach and
implementation on open source softwares in C and Java.
Section V discusses related work. Section VI concludes this
paper.

II. SYMBOLIC FAULT INJECTION

A. Symbolic execution

A symbolic execution engine executes the code at symbolic
level, which means that the actual values the program is
operating on (register, memory values) are replaced with
symbolic placeholders that can take any value. Along the
program execution, concrete operations on the actual values
are modelized with constraints on the symbolic values.

When the program control flow branches, the symbolic
execution engine virtually follows all branches and applies
on each path a set of condition called path guards. Usually,
a symbolic execution engine operates on an intermediate
representation of the source or binary code which allows the
execution engine to be independent of the language executed.

For example, given the source code presented in listing 1 the
symbolic execution engine will generate the graph presented
in figure 1.

In this graph, for convenience, the state number identifies
the line number of the basic block (the code between two
conditional or unconditional jumps) in the original source code
the graph is representing. As a result, in this notation several
states can have the same identifier, but in the framework each
state is modelled independently.

We can see that the symbolic variable x is never concretized,
however new constraints are added to the symbolic variable
x when new conditional instructions are encountered. As the
execution progresses, new symbolic variables are created,
and constraints are added. The symbolic execution engine is
coupled with a constraint solver where all the constraints are
stored and associated with the relevant states. The constraint
solver allows reasoning on the constraints at a given state. For
example, on state 7 a request to the constraint solver “x <
10” would return false because the constraints on the state
don’t allow it. This ability to perform symbolic analysis on
states through the constraint solver becomes very handy when
working on hundreds or thousands of constraints.

Input values that are not explicitly concretized are initialized
as symbolic values (like the variable x in the listing 1).
Therefore the symbolic execution engine explores all possible
code paths without having to specify any specific input test
value.

Fig. 1. Graph representation of the code

B. Symbolic fault engine

The symbolic fault engine is the core of our contribution.
We developed as symbolic fault engine on top of a symbolic
execution engine, thus leveraging the benefits of symbolic
execution (systematic code exploration using symbolic input
values, constraint solving) to identify fault injection vulnera-
bilities in binary executables. Our symbolic fault engine offers
two main features: control flow symbolic fault injection and
memory symbolic fault injection.

1) Control flow symbolic fault injection: Control flow sym-
bolic fault injection mimics a hardware fault injection whose
effect modifies the control flow of the program. At symbolic
level, this control flow modification is represented by an
additional state, where the guard constraint (the constraint that
is added based on the entry condition) is inverted. In addition,
the state is flagged as “faulted” to allow tracing the fault. The
faulted state is equivalent to the original state, except the entry
condition is inverted. The symbolic execution is carried out on
the faulted state to allow identifying successful attacks in the
remaining code, and to perform additional faults in the rest of
the code.

We present in figure 2 a graph where a symbolic fault has
been injected on state 3, creating a state 3F. We can see that
the guard constraint “x ≥ 10” has been inverted to model
the fault and is now “x < 10”, and the state is flagged as
faulted. The execution graph continues from this state and the
following constraints are added normally. In this example the
faulted flow reaches the state 4.

A full representation of the faulted graph would contain a
faulted state for each normal state to model all possible control
flow faults on each state. To prevent combinatorial explosion,

Authorized licensed use limited to: STMicroelectronics international NV. Downloaded on October 23,2023 at 09:17:41 UTC from IEEE Xplore. Restrictions apply.

1 x = 4
2 if x >= 10:
3 if x < 100:
4 print "ROM verified"
5 return 0
6 else:
7 print "Error abort 1"
8 return 1
9 else:

10 print " Error abort 2"
11 return 2

Listing 2. Pseudo-code example for value fault

we use the constraint solver to identify impossible states (states
where two conditions are contradictory) and remove them from
the graph. For example, the state 7 after fault injection has two
contradictory conditions “x < 10” and “x ≥ 10” so it would
be automatically removed from the graph as unsolvable.

The faulted graph shows that the state 4 ”ROM verified”
can be reached with a single fault injection on control flow at
state 3. If the success condition was expressed as “reaching
instruction print ROM verified” the symbolic fault engine
would store the path as a valid attack path.

Fig. 2. Graph with control flow faulted state

2) Memory symbolic fault injection: Memory symbolic
fault injection mimics a hardware fault injection whose effect
modifies the value stored or read in memory. At symbolic
level, this memory modification is represented by an additional
state, where the constraint representing the memory update is
modified according to a fault model. The memory symbolic
fault injection is enforced on instructions that perform either
memory write, or memory read.

We consider in listing 2 a modified version of the program
presented in listing 1. In this new code, the x variable is
assigned before checking its value.

The source code in listing 2 will be represented in the
symbolic execution engine by the graph presented in figure 3.
Given the value assigned to x, the line 4 (i.e. state 4) is
identified by the solver as an impossible state, meaning it will

never be reached in a normal execution. Indeed, the variable x
cannot be simultaneously equal to 4 and greater equal to 10.

Fig. 3. Graph representation of the code for memory fault

Let us now consider a “stuck at” fault model. This fault
model sets the value at a given address in memory to either
all binaries 0 or all binaries 1. The memory symbolic fault
injection would change the constraint in state 2 from “x==4”
to “x==0 AND x==0xFFFF”. The ability of the symbolic
fault injection engine to reason on constraints rather than on
concrete values allows capturing two different faults (resulting
from the same fault model) in a single state. However, this
fault model does not allow reaching the success state at line
4 as the path guard (“x ≥ 10 AND x < 100”) is not fulfilled
by the faulted constraint.

Let us now consider a “bit flip” fault model. This fault
model switches a single bit in memory. According to this
fault model, the fault injection engine would now change
the constraint in state 2 to “x==0 OR x==5 OR x==6 OR
x==12 OR . . . OR x==32772” (a constraint with 16 clauses,
which can be easily generated with a bit shift). Here again, the
symbolic fault engine compacts 32 different faults in a single
state thanks to the use of the constraint model. The faulted
constraint now allows reaching the success state at line 4,
therefore the fault will be stored as a valid attack path. Figure 4
represents the graph resulting from the memory symbolic fault
injection on state 2.

As shown in figure 4, the symbolic fault injection engine
creates a new state for the memory fault injection, that will
have its own execution flow after the fault injection.

When considering multiple faults, the number of vulnera-
bilities found is artificially increased. Indeed, one fault can
be actively corrupting the binary execution flow to reach the
success condition while the other faults are not relevant to
the success condition. The framework reports these cases as
vulnerabilities as the success condition is reached. A task of
manual review of reported vulnerabilities is then necessary to
sort the vulnerabilities that are single faults duplicates, and real
double faults in the reported vulnerabilities. Note that running
a first pass with only single faults enabled helps to eliminate
the single faults and identify the successful double faults.

Figure 5 illustrates this particular case where a double fault
duplicates a single fault. First fault on state 1 has no effect on

Authorized licensed use limited to: STMicroelectronics international NV. Downloaded on October 23,2023 at 09:17:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Graph with value faulted state

reaching the success condition as both faulted and unfaulted
flows reach state 3. Only the fault on state 3 is relevant to
reach the success state.

Fig. 5. Graph representation of a double fault duplicating a single fault

Both control flow and memory fault injection engine can
be combined to allow representing a very large scope of the
possible fault injections on an embedded application. The
ability to represent fault models as constraints instead of
values prevents combinatorial explosion of states even when
representing complex fault models such as bitflip on 32-bit or
64-bit values. The resulting analysis provides a complete view
of all possible attack paths given a set of success conditions.

III. IMPLEMENTATION

Our implementation relies on the angr symbolic execution
framework [6]–[9]. This framework is composed of the fol-
lowing parts:

• CLE, the binary loader. It loads binary and creates an
object-oriented representation of the binary. It supports
several architectures and languages,

• Archinfo, the architecture database. Archinfo is a list of
architecture description containing map of the register

1 project = angr.Project("./test_binary",
auto_load_libs=False)

2 main = project.loader.find_symbol("main")
3 initial_state = project.factory.entry_state(entry=

main)
4 sm = project.factory.simulation_manager(

initial_state)
5 sm.use_technique(
6 Faulter(enable_cond_fault=True,
7 enable_write_fault=True,
8 max_faults=2,
9 mem_range=[main_addr, main_endaddr],

10))
11 sm.explore(find= 0x40116f)
12 for attack in sm.found:
13 attack.print_details()

Listing 3. Angr script with fault exploration technique

file, bit width, usual endian-ness, etc. CLE relies on this
database to make binary representation,

• SimEngine, the symbolic execution engine,
• PyVEX, the intermediate language. It is actually a python

wrapper of VEX, the intermediate representation used
by the Valgrind tools. VEX is an architecture-agnostic,
side-effects-free representation of various target machine
languages.

• Claripy, the solver engine. Claripy is responsible for
creating, composing, and eventually solving the symbolic
constraints,

• SimOS, the implementation of OS level features (files,
networking, I/O, ...). It offers a symbolic representation
of OS resources to the the symbolic execution engine.

Angr offers several ways of extending the framework.
Among these extension points, we use two to create our fault
engines: state plugins and exploration techniques. State plugin
allows adding properties to the states. We create a new state
plugin to store all the information related to fault injection:
faulted tag, history of previous faults injected, number of faults
so far.

Exploration techniques define the behavior of the symbolic
execution engines when it steps through the states. The default
behavior is a ”step everything at once” strategy (effectively
breadth-first search), but angr offers other exploration tech-
niques such as depth-first search or thread-level parallelism.
We define a new exploration technique that extends the
default breadth-first search with control flow and memory
fault injection capabilities. Concretely, when evaluating a new
state, the exploration technique clones the state, updates the
fault properties in the state fault plugin and updates the state
constraints according to the fault model.

Listing 3 shows an angr script that loads a binary, applies the
fault exploration technique and runs until the success condition
is reached. The success condition is here defined as reaching
a specific success address, but it could be any condition on
the state.

At line 1 and 2 the binary is loaded and initialized to start
at function main. At line 5 the simulation manager (symbolic
execution engine) is configured to use our Faulter exploration

Authorized licensed use limited to: STMicroelectronics international NV. Downloaded on October 23,2023 at 09:17:41 UTC from IEEE Xplore. Restrictions apply.

1 def check_memory(current_state):
2 if current_state.mem[0x41414141].long.concrete

== 0:
3 return True
4 return False
5 sm.explore(find= check_memory)

Listing 4. Angr script with arbitrary fault success condition

technique. We can see that our Faulter exploration technique
can be customized to enable or disable fault on control flow,
on memory, to set the maximum number of faults on a path
and to limit the address range the memory faults apply to.
On line 11 the simulation manager is started, with the find
parameter that defines the address to reach for success. This
is the default success condition, but it is also possible to pass
a function in the find argument. In this case the find function
accepts a state argument and should return True in case of
success. Listing 4 shows an example of a success condition
defined as a function of state. Instead of defining the success
condition as reaching a specific address, the check memory
method checks for a specific value at a memory address.

IV. EVALUATION

Our evaluation is performed on a core i7 with 8GB of RAM.
The framework runs on a Linux OS inside a VMWare virtual
machine. Performance results are presented in table I. Fault
model is either conditional or memory fault, depending on the
type of fault chosen for the test. For memory faults, the fault
model is either:

• Hamming-weight (HW): the faulted value takes all values
with a hamming distance of 1 to the original value (using
constraints on a symbolic variable),

• Stuck-at (SA): the faulted value is all 0s and all 1s (using
constraints on a symbolic variable),

• Unconstrained(U) : the faulted value takes all values fit-
ting in the variable type (using an unconstrained symbolic
variable).

The initialization time is the time in seconds to load the
binary in the framework. The run time is the time in seconds
to execute the binary in the framework and explore all possible
faults for the fault type and fault model chosen. The full time
is the sum of the initialization time and run time. Finally,
the number of vulnerabilities found is the number of faults
that triggered the success condition, reported at the end of the
execution.

For double faults test cases, the number of vulnerabilities
found is artificially increased. Indeed, as explained in sec-
tion II-B2, some double faults can be duplicating single fault
effects.

Table I shows the time necessary for our framework to
identify all fault injection vulnerabilities in test programs and
real world, open source programs. From our experience, the
analysis time of our framework represent a small fraction
of what would be necessary to identify these vulnerabilities,
including double fault injections, by manual review.

To evaluate our framework, we run a set of experiments
and measure the performances. For each test, we evaluate
separately:

• The conditional fault injection detection and the memory
fault injection detection,

• For memory fault injection detection, the Hamming-
weight, the unconstrained and the stuck-at fault models,

• Single fault injections and double fault injections.

A. Considerations on path explosion

During our experiment, we did not encounter path explosion
issues for the program that we evaluated. However, it is
possible that path explosion occurs when analyzing larger
programs, which would cause the framework to freeze or
crash. Indeed, angr default exploration strategy is a breadth-
first strategy, meaning that it ”steps everything at once” for
a given program state. This exploration strategy is efficient
but resource intensive. In case of path explosion issue, angr
provides another built-in strategy that can be configured at
instantiation using angr constructor parameters, Depth First
Search, that keeps only one state active at once, putting the
rest in a deferred state until it dead-ends or errors. This strategy
explores one path at a time, thus trading resource for analysis
time. Another approach when facing path explosion issues is to
reduce the search space by limiting the analysis to the security
critical functions of the program. This can also easily be done
at instantiation using angr constructor parameters that define
an address range or an accept-list of functions to be considered
for symbolic execution.

B. Assessment on sample programs

We first evaluate the performances of our framework on
small C and Java example binaries that we developed for this
purpose.

1) We compile the small C program presented in listing 5
and run fault injection vulnerability detection on the
resulting binary. The C program contains an unreachable
statement at line 8. The success condition is defined as
reaching this statement address using fault injection.

2) We compile the small Java program presented in list-
ing 6 and run fault injection vulnerability detections
on the resulting binary. The Java program contains two
unreachable calls to the success method at line 12 and
17. The success condition is defined as reaching these
method calls using fault injection.

C. Assessment on open source programs

After evaluating our framework on small C and Java ex-
ample binaries, we then evaluate the performances of our
framework on real-world C and Java binaries provided as part
of open source projects.

1) openCryptoki: openCryptoki [10] is an implementation
of the PKCS#11 API [11] that allows interfacing to devices
(such as a smart card, smart disk, HSM) that hold crypto-
graphic information and perform cryptographic functions. The
openCryptoki API provides a standard programming interface

Authorized licensed use limited to: STMicroelectronics international NV. Downloaded on October 23,2023 at 09:17:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PERFORMANCE EVALUATION

Name Fault type Fault model Nb. faults Init. time (s) Run time (s) Full time (s) Nb vuln found

C sample

conditional - 1 0.07 0.55 0.62 1
- 2 0.08 0.55 0.63 1

memory

HW 1 0.14 1.10 1.24 2
HW 2 0.06 3.01 3.07 10
SA 1 0.17 1.24 1.42 0
SA 2 0.07 2.35 2.42 0
U 1 0.08 0.87 0.94 2
U 2 0.07 2.18 2.25 11

Java sample

conditional - 1 6.88 0.06 6.93 2
- 2 6.67 0.03 6.71 2

memory

HW 1 6.79 0.56 7.35 2
HW 2 6.83 3.10 9.92 21
SA 1 7.68 0.57 8.25 0
SA 2 7.80 2.61 10.41 0
U 1 8.07 0.97 9.04 2
U 2 7.87 1.29 9.17 21

openCryptoki

conditional - 1 0.13 5.66 5.79 2
- 2 0.13 13.15 13.28 14

memory

HW 1 0.12 26.04 26.17 1
HW 2 0.14 103.40 103.54 14
SA 1 0.30 26.75 27.05 1
SA 2 0.12 370.83 370.94 22
U 1 0.16 25.85 26.01 1
U 2 0.14 313.81 313.95 22

Wallet

conditional - 1 14.00 2.40 16.40 1
- 2 12.20 9.06 21.26 13

memory

HW 1 12.17 13.71 25.87 1
HW 2 12.15 421.15 433.30 63
SA 1 20.36 68.48 88.85 1
SA 2 14.34 268.26 282.60 63
U 1 16.67 12.93 29.60 1
U 2 14.33 290.02 304.35 63

1 int main(int argc, char **argv){
2 int a = 0;
3 int b = 0;
4

5 a = b;
6

7 if(a==2){
8 b=10;
9 }

10

11 return 0;
12 }

Listing 5. Simple C binary for performance evaluation

between applications and all kinds of portable cryptographic
devices. Certain PKCS#11 operations, such as accessing pri-
vate keys, require a login using a Personal Identification
Number, or PIN, before the operations can proceed.

We compile the sample login program provided by the
openCryptoki project and run fault injection vulnerability
detection on the resulting binary. Listing 7 shows an extract
of this sample program. The success condition is defined as
reaching the logged state at line 12 of the listing without
providing a valid PIN to the program.

When running the program in our framework, we disable
external library loading. As a result, all PKCS#11 API calls are
hooked by the framework and automatically return symbolic

1 class TestJava {
2

3 public static void main (String[] args){
4 run();
5 }
6

7 public static void run(){
8 int a = 0;
9 int b = 0;

10

11 if(a==2){
12 b=10;
13 success();
14 }
15

16 if(b==2){
17 b=10;
18 success();
19 }
20 }
21

22 public static void success() {}
23 }

Listing 6. Simple Java binary for performance evaluation

values. This allows us to run the program without deploying
the full PKCS#11 infrastructure such as the PKCS#11 demon
and file structure.

2) Oracle JavaCard wallet: JavaCard is a Java-based OS
dedicated to secure embedded platforms. JavaCard OS and

Authorized licensed use limited to: STMicroelectronics international NV. Downloaded on October 23,2023 at 09:17:41 UTC from IEEE Xplore. Restrictions apply.

1 rc = funcs->C_OpenSession(slot_id, flags, NULL,
NULL, &session);

2 if (rc != CKR_OK) {
3 show_error("C_OpenSession", rc);
4 return rc;
5 }
6 rc = funcs->C_Login(session, userType, (

CK_CHAR_PTR) pass, strlen(pass));
7 if (rc != CKR_OK) {
8 show_error("C_Login", rc);
9 return rc;

10 }
11

12 printf("Logged in successfully, logging out...\n")
;

13

14 rc = funcs->C_Logout(session);
15 if (rc != CKR_OK) {
16 show_error("C_Logout", rc);
17 return rc;
18 }

Listing 7. openCryptoki program for performance evaluation

applications are often protected against physical fault in-
jections and these protections are typically assessed when
performing security evaluations such as Common Criteria. We
thus decided to evaluate the performances of our framework
on JavaCard based applications.

Oracle provides, as part of its Java Card Platform Develop-
ment Kit [12], a Wallet sample to demonstrate a simple cash
card application. It keeps a balance, and exercises some Java
Card API features such as the use of a PIN to control access
to the applet.

We compile the Wallet program provided by Oracle and run
fault injection vulnerability detection on the resulting applet.
Listing 8 shows an extract of this applet, where the PIN is
checked in the debit method to allow the debit operation. The
success condition is defined as reaching the debit operation at
line 30 without providing a valid PIN to the applet.

Since the applet is a Java program and JavaCard API imple-
mentation is not provided as part of the Java Card Platform
Development Kit, all Java Card API calls are automatically
hooked by the framework and return symbolic values. We had
to add a special hook for the ISOException.throwIt method to
end the program when the API is called to get a consistent
behaviour.

V. RELATED WORK

In [13]–[15] the authors use a similar approach based on
symbolic execution, but their approach is focused on control
flow fault injection while our framework supports both control
flow fault injection and memory fault injection. Moreover,
their approach is targeting C only while our framework sup-
ports both C and Java.

In [16] the authors focus only on memory fault injection.
Their approach requires code annotation to specify the location
of the fault and the targeted variable. On the contrary our
framework support C and Java and does not require any code
annotation as the analysis is performed on the whole code and
faults are generated for every possible memory accesses.

1 private void debit(APDU apdu) {
2

3 // access authentication
4 if (! pin.isValidated())
5 ISOException.throwIt(

SW_PIN_VERIFICATION_REQUIRED);
6

7 byte[] buffer = apdu.getBuffer();
8

9 byte numBytes =
10 (byte)(buffer[ISO7816.OFFSET_LC]);
11

12 byte byteRead =
13 (byte)(apdu.setIncomingAndReceive());
14

15 if ((numBytes != 1) || (byteRead != 1))
16 ISOException.throwIt(ISO7816.

SW_WRONG_LENGTH);
17

18 // get debit amount
19 byte debitAmount = buffer[ISO7816.OFFSET_CDATA

];
20

21 // check debit amount
22 if ((debitAmount > MAX_TRANSACTION_AMOUNT)
23 || (debitAmount < 0))
24 ISOException.throwIt(

SW_INVALID_TRANSACTION_AMOUNT);
25

26 // check the new balance
27 if ((short)(balance - debitAmount) < (short

)0)
28 ISOException.throwIt(SW_NEGATIVE_BALANCE)

;
29

30 balance = (short) (balance - debitAmount);
31

32 } // end of debit method

Listing 8. Wallet sample program for performance evaluation

In [17] the authors work on a first order fault model target-
ing C program control flow to skip instructions (using NOP
or JUMP instructions). In contrast, our framework supports
arbitrary number of fault injection, support both C and Java
and support both control flow and memory fault injection.

[18], [19] are tools based on concolic testing. Concolic
testing is a variant of symbolic execution approach where
symbolic execution runs simultaneously with concrete execu-
tions. Generally, this approach is used to reduce combinatorial
complexity of symbolic execution: concrete execution is used
to test the program, and symbolic execution is used along the
concrete execution path to determine the input that would raise
coverage.

In [18] the authors use concolic execution to generate
functional unit testing of Java programs. In [19] the authors use
concolic execution to generate functional tests of C binaries.

In [13]–[15], the authors use the KLEE concolic execu-
tion engine to identify fault injections targeting control flow
modifications that allow reaching a specific point in code. As
presented above, this work differs from ours as our framework
supports both control flow fault injection and memory fault
injection. Moreover, their approach is targeting C only while
our framework supports both C and Java. Finally, we can

Authorized licensed use limited to: STMicroelectronics international NV. Downloaded on October 23,2023 at 09:17:41 UTC from IEEE Xplore. Restrictions apply.

identify fault success with any symbolic condition while they
only identify fault success as reaching a specific address in
code.

[20] proposes an automatic tool for IoT software, ”Chaos
Duck”, to detect sensitive data leaks, program crashes and
corruptions in control flow caused by fault injections. Chaos
Duck modifies a disassembled binary to produce faulted bina-
ries according to different fault models: modifying a branch
instruction, setting an instruction to a nop or setting a variable
to zero at variable declaration time. Compared to our approach,
this work only covers a subset of fault models as we take
into account any variable corruption happening at any time
during the program execution. Morevover, this work targets
only C binaries, while our framework supports both C and
Java binaries.

In [21], the authors propose an approach based on model
checking to simulate fault injection by generating mutant
binaries. This approach differs from ours as it only considers
fault models on control flow while our approach considers fault
models on both control flow and memory values. Morevover,
their implementation targets only C binaries, while our frame-
work supports both C and Java binaries.

Concolic execution could be a possible improvement of our
approach when combinatorial complexity becomes too high.
Our prototype is implemented with the angr framework that
supports concolic execution, so concolic execution could be
added to our prototype without changing framework.

VI. CONCLUSION

We propose a framework based on symbolic execution to
identify automatically and consistently the effects on fault in-
jection on embedded software at assembly level. Our symbolic
fault injection framework:

• supports C, assembly and Java, thus enabling vulnera-
blity detection in C binaries, Java applications, JavaCard
applications, pure Java Android applications and native
Android applications;

• supports both control flow and memory fault injection;
• automatically analyses the whole program for every pos-

sible control flow and memory faults;
• supports arbitrary fault model based on symbolic con-

straints;
• support arbitrary success condition.
To our knowledge, none of the current existing tools tar-

geting fault injection vulnerability analysis on binary offer the
same features.

REFERENCES

[1] “Trustzone-m(eh): Breaking armv8-m’s security,” https://media.ccc.de/v/
36c3-10859-trustzone-m eh breaking armv8-m s security, accessed:
2021-06-02.

[2] “There’s a hole in your soc: Glitching the medi-
atek bootrom,” https://research.nccgroup.com/2020/10/15/
theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom/, accessed:
2021-06-02.

[3] “Chipwhisperer,” https://github.com/newaetech/chipwhisperer, accessed:
2021-06-02.

[4] “Chipshouter,” https://github.com/newaetech/ChipSHOUTER, accessed:
2021-06-02.

[5] “Voltpillager,” https://zt-chen.github.io/voltpillager/, accessed: 2021-06-
02.

[6] “Angr,” https://angr.io, accessed: 2021-06-02.
[7] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 138–157.

[8] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, no.
2016, 2016, pp. 1–16.

[9] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice-automatic detection of authentication bypass vulnerabilities
in binary firmware.” in NDSS, vol. 1, 2015, pp. 1–1.

[10] “opencryptoki,” https://github.com/opencryptoki/opencryptoki, accessed:
2021-06-02.

[11] O. Standard, “Pkcs# 11 cryptographic token interface base specification
version 3.0,” 2020.

[12] Oracle, Java Card 3 Platform Development Kit User Guide. Oracle
America, Inc., 500 Oracle Parkway, Redwood City, CA 94065: Oracle,
2015, no. Version 3.0.5.

[13] M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A symbolic
approach for evaluation the robustness of secured codes against control
flow injections,” in 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation. IEEE, 2014, pp. 213–222.

[14] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and
P. de Choudens, “Fissc: A fault injection and simulation secure col-
lection,” in International Conference on Computer Safety, Reliability,
and Security. Springer, 2016, pp. 3–11.

[15] L. Rivière, M.-L. Potet, T.-H. Le, J. Bringer, H. Chabanne, and M. Puys,
“Combining high-level and low-level approaches to evaluate software
implementations robustness against multiple fault injection attacks,”
in International Symposium on Foundations and Practice of Security.
Springer, 2014, pp. 92–111.

[16] D. Larsson and R. Hähnle, “Symbolic fault injection,” in International
Verification Workshop (VERIFY), vol. 259. Citeseer, 2007, pp. 85–103.

[17] X. Kauffmann-Tourkestansky, “Analyses sécuritaires de code de carte à
puce sous attaques physiques simulées,” Ph.D. dissertation, Université
d’Orléans, 2012.

[18] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.
263–272, 2005.

[19] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[20] I. Zavalyshyn, T. Given-Wilson, A. Legay, R. Sadre, and E. Riviere,
“Chaos duck: A tool for automatic iot software fault-tolerance analysis,”
in 2021 40th International Symposium on Reliable Distributed Systems
(SRDS). IEEE, 2021, pp. 46–55.

[21] T. Given-Wilson, A. Heuser, N. Jafri, and A. Legay, “An automated and
scalable formal process for detecting fault injection vulnerabilities in
binaries,” vol. 31, no. 23. Wiley Online Library, 2019, p. e4794.

Authorized licensed use limited to: STMicroelectronics international NV. Downloaded on October 23,2023 at 09:17:41 UTC from IEEE Xplore. Restrictions apply.

