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Abstract—This paper investigates the impact of feature encod-
ing techniques on the explainability of XAI (Explainable Artificial
Intelligence) algorithms. Using a malware classification dataset,
we trained an XGBoost model and compared the performance of
two feature encoding methods: Label Encoding (LE) and One Hot
Encoding (OHE). Our findings reveal a marginal performance
loss when using OHE instead of LE. However, the more detailed
explanations provided by OHE compensated for this loss. We
observed that OHE enables deeper exploration of details in
both global and local contexts, facilitating more comprehensive
answers. Additionally, we observed that using OHE resulted in
smaller explanation files and reduced analysis time for human
analysts. These findings emphasize the significance of considering
feature encoding techniques in XAI research and suggest poten-
tial for further exploration by incorporating additional encoding
methods and innovative visualization approaches.

Index Terms—Explainability, XAI, feature encoding, malware
classification, preprocessing, LE, OHE, XGBoost.

I. INTRODUCTION

Machine learning has witnessed remarkable advancements
in recent years, enabling the development of sophisticated
models that achieve impressive performance on various tasks.
As these tasks and the data they are trained on become more
complex, so does the model complexity. This often causes
the decision-making process to lack transparency, making it
difficult to understand the reasons behind their predictions. In
a society that uses AI for an ever-growing number of use cases,
however, that lack of understanding can pose serious risks
to the users. Averting these risks and allowing more control
over what our AI is doing, thus allowing more responsible
AIs, is the goal behind the Explainable Artificial Intelligence
(XAI) subfield. This subdomain of AI focuses on making
black-box models transparent by providing understandable
explanations for their decisions. XAI also allows us to combine
the powerful pattern-recognition learning capabilities of AI
with human-readable explanations that humans can instinc-
tively understand and explain. the algorithms used in XAI
usually work by finding out what parts of the input and of
the model weights most affect the model’s predictions. The
end result will be a summary of each feature’s contribution
to the model. How helpful are these summaries, however,
which we can call the quality of the generated explanations,
depends on several parameters such as the chosen algorithm,

the model architecture, and the data preprocessing technique.
This last parameter, however, is not as popular as the others.
While most XAI research focuses on algorithms, use cases,
and the quality of explanations generated, there is a lack
of research on the impact of preprocessing on generated
explanations. We think that the preprocessing technique has
a sizable impact on the quality of generated explanations and
should be more explored. More specifically, we are interested
in the feature encoding step of the preprocessing pipeline.
Since XAI methods summarize feature contribution, the way
we encode our models will directly affect the understandability
of the generated explanations. Since preprocessing directly
affects model performance, considerations must be taken to
not trade off too much performance for better explanations,
as better explanations on an unprecise model are not useful.
Nonetheless, we think that a minor performance loss for a
major boost in explainability is worth it, as it also opens up the
door for better model and data understanding, bias discovery,
robustness tests, and overall higher quality assurance. This is
especially important in critical industries such as Medicine,
Finance, and Cyber Security. To showcase the added value of
our idea in a real use case, we will apply Machine Learning
and Explainability on a common problem in Cyber security:
Malware Classification. It is one of the most common tasks
that Machine Learning is applied to in modern antiviruses
and Intrusion Detection Systems. We will train a model on a
publicly available malware dataset, apply the XAI algorithm,
switch the preprocessing technique and compare the generated
explanations. We will show that new rules and pain points
can be detected and further explored by just changing the
preprocessing technique. To the best of our knowledge, no
prior studies specifically addressed the subject of the direct
impact of preprocessing on explanation quality in the field
of XAI have been identified in the existing literature. Our
comprehensive review of the literature revealed that research
in XAI is more geared towards XAI algorithms [1]–[4],
the generated explanations [5], [6], alternative ways to bake
explainability into the input features [7], [8] and other related
problems [9], [10]. Our focus in this paper can be summarized
as follows: Given that XAI algorithms use the input features as
the key components for the generated explanations, it is safe
to assume that the type of feature encoding used will directly
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affect the clarity of the explanations. The more explicit the
feature, the more detailed should be the explanation we get.
With that in mind, we will study two main questions in this
paper:

1) Does feature encoding affect explainability?
2) If yes, what encoding yields better explainability and

why?

II. CONCEPTS

A. Feature Encoding

Feature encoding, also known as feature transformation
or feature representation, is a crucial step in data prepro-
cessing where categorical or textual features are converted
into numerical representations that can be effectively used
by machine learning algorithms. This is a mandatory step as
ML algorithms only deal with numerical features. The choice
of encoding technique directly impacts the ML performance.
Here are some common feature encoding techniques:

• One-Hot Encoding: Each category within a categorical
feature is represented by a binary feature. If a feature has
n categories, it is encoded into n binary features, where
only one feature is active (1) for a particular category,
and the rest are inactive (0). One-hot encoding is useful
when there is no inherent order or relationship among the
categories.

• Label Encoding: Label encoding assigns a unique nu-
merical label to each category within a categorical fea-
ture. Each category is represented by a distinct integer
value. Label encoding is suitable when the categories
have an ordinal relationship or when using algorithms
that can directly work with integer inputs.

• Ordinal Encoding: Similar to label encoding, ordinal
encoding assigns numerical labels to categories. However,
ordinal encoding takes into account the order or rank
of the categories and assigns values accordingly. For
example, ”low,” ”medium,” and ”high” could be encoded
as 1, 2, and 3, respectively.

• Binary Encoding: Binary encoding represents categories
as binary bit patterns. Each category is assigned a unique
binary code, and each bit in the code represents the
presence or absence of a category. Binary encoding can
be efficient for high-cardinality categorical features and
reduces the dimensionality compared to one-hot encod-
ing.

• Embedding: Embedding techniques are commonly used
for encoding textual or high-dimensional categorical fea-
tures. Embeddings are dense, low-dimensional repre-
sentations that capture semantic relationships between
categories. Embeddings are learned using techniques like
Word2Vec [11], [12] or categorical embedding layers in
deep learning models [13].

B. Explainability

Explainability in the context of machine learning [14]–[16]
refers to the ability to understand and interpret the decisions
or predictions made by a machine learning model. It involves

gaining insights into how and why a model arrives at a partic-
ular output, providing transparency and comprehensibility to
the decision-making process. There are various approaches to
achieving explainability:

• Model-Agnostic Approaches: These methods aim to
explain any black-box machine learning model without
relying on its internal structure. They involve techniques
like feature importance analysis, partial dependence plots
[17], and surrogate models, which provide insights into
the relationship between input features and model predic-
tions.

• Rule-Based Approaches: These approaches aim to gen-
erate human-readable rules that describe the decision-
making process of the model. Rule-based models, such
as decision trees or rule lists, can provide explicit if-then
statements that explain how specific features influence
predictions.

• Interpretable Model Architectures: Some machine
learning models, such as linear regression, logistic regres-
sion, or decision trees, inherently provide interpretable
explanations. Their simplicity and transparency allow
users to understand the impact of each feature on the
final prediction.

• Local Explanations: Local explanation methods focus
on explaining individual predictions rather than the model
as a whole. Techniques like LIME [2] (Local Interpretable
Model-Agnostic Explanations) or SHAP [1] (SHapley
Additive exPlanations) provide insights into which fea-
tures contributed the most to a particular prediction.

• Visualizations: Visualizations play a significant role in
explaining complex models and high-dimensional data.
Techniques like heatmaps, bar plots, scatter plots, or
saliency maps help in visualizing feature importance,
decision boundaries, or highlighting influential regions in
the data.

C. Malware Detection

To demonstrate our work, we will take the common task of
detecting malware. Malware are malicious pieces of software
that are designed to infiltrate and damage information systems
without the users’ consent [18]–[22]. The term malware covers
a lot of categories such as viruses, ransomware, worms,
trojans, backdoors, spyware, keyloggers, adware, bots, and
rootkits. Malware analysts have to discover exactly what hap-
pened to a system and make sure that the machines damaged
by malicious software are isolated from the organization’s
network. The analysis done to single out the suspicious parts
of the software can sometimes take a group of analysts and
several hours or even days. Since undetected malware can
have devastating consequences on any organization, malware
detection has been deemed one of the most important tasks
in cybersecurity. Several types of systems have been built
to detect and capture malware such as Intrusion detection
systems, antiviruses and firewalls, and these systems keep
getting smarter thanks to the combined shared knowledge of
the cyber security community and the rapid advancement of



technology. Current Malware detection systems use Machine
Learning and Deep Learning to detect anomalies in files and
network packets to protect the systems they’re installed on.
Since Machine learning has been known for its fantastic classi-
fication capabilities, more and more complex architectures and
models are being tested and deployed to the current market.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Dataset

For this project, we found a Malware classification dataset
from the 2015 Microsoft Malware Classification Challenge
[23]. The public variant we managed to download contains
19611 rows and 78 features. Each row represents a single file.
The dataset is imbalanced as there are 14599 malware files
and 5012 non-malware files, so 3 times as much malware.
The dataset has no missing data and all features are numerical
aside from the ”Name” one.

B. Preprocessing

The ”Name” feature has been modified by the competition
organizers to include ”virus” if the file is malware and thus be
removed since it does not represent real-life data. We do not
apply any other preprocessing on the data aside from feature
encoding. In this work, we apply two encoding techniques to
all the features:

• Label Encoding: Each feature value is represented by a
unique integer.

• One Hot Encoding: Each feature value becomes a
separate binary column where 1 means the file’s value
of that feature is the column name, and 0 if not. This
allows for more precise knowledge of what went wrong.

C. Machine Learning Modeling

For training, we choose XGBoost [24], [25] as our base
model and train it using its default parameters, namely 100
estimators, a max depth of 5 and a learning rate of 0.1. We
use the free Google Colab coding environment which offers a
single sever with 12.7GB of RAM and a single NVIDIA T4
GPU with 15GB of GPU RAM. To evaluate our model, We
use four popular metrics: Accuracy, Precision, Recall and F1.
In a nutshell, accuracy measures the overall correctness of the
model’s predictions by calculating the proportion of correctly
classified instances out of the total number of instances.
Precision quantifies the proportion of true positive predictions
out of all positive predictions made by the model, indicating
the model’s ability to correctly identify positive instances and
minimize false positives. Recall measures the proportion of
true positive predictions out of all actual positive instances in
the dataset, representing the model’s ability to capture positive
instances and minimize false negatives. Finally, the F1 score
combines precision and recall into a single metric by taking
their harmonic mean, providing a balanced assessment of the
model’s accuracy and considering both false positives and false
negatives. We showcase the performance results of XGBoost
on the label encoded dataset in Table I.

TABLE I
XGB RESULTS ON BOTH ENCODING TECHNIQUES

Encoding Technique F1 Accuracy Precision Recall
Label Encoding 0.991 0.993 0.992 0.998
One Hot Encoding 0.988 0.989 0.987 0.998

Although we did not preprocess our data, aside from encod-
ing them differently, we managed to get pretty good results.
We can therefore directly go to the explainability part.

D. Explainability

For starters, we are going to take away non useful features
because one hot encoding all 77 features created 85102 fea-
tures, which kept crashing our environment due to insufficient
RAM. To do that, we will use XGBoost’s built in feature im-
portance function to list each feature’s impact on the model’s
decision making. In Table II, we extract the top 10 influential
features and sort them from most to least important.

TABLE II
FEATURE IMPORTANCE ACCORDING TO XGBOOST

Rank Feature Importance score
1 MajorSubsystemVersion 0.6215
2 Subsystem 0.1362
3 MinorOperatingSystemVersion 0.0575
4 MajorLinkerVersion 0.0454
5 SizeOfStackReserve 0.0198
6 Characteristics 0.0100
7 SectionMaxChar 0.0084
8 ImageBase 0.0081
9 SizeOfHeapReserve 0.0081

10 TimeDateStamp 0.0059

According to Table II, the combined score of the 10 most
important features are 0.9381 which means that they represent
93.81% of the model’s decision making power. We, therefore,
can just keep these 10 features and not use the rest. Doing so,
we get the results shown in Table III.

Comparing the results shown in Table III to those in Table I
show that although we did lose a bit of performance, the drop
is marginal (less than 1%). This means that if the One Hot
encoding does provide us with more explainability power, it
would be recommended to use. For the next par, we will use
a dedicated Explainability Algorithm called Shapley Additive
Explanations (SHAP) to dig deeper into the model’s inner
reasoning.

1) The SHAP algorithm: SHAP [1], [26] was introduced in
2017 and provides a unified way of explaining the contribution
of each input feature to the final prediction of the model,
based on calculated values called Shapley values. A Shapley
value is a measure of the marginal contribution of a feature

TABLE III
XGBOOST RESULTS ON THE TOP 10 FEATURES

Encoding Technique F1 Accuracy Precision Recall
Label Encoding 0.992 0.992 0.991 0.998
One Hot Encoding 0.985 0.985 0.983 0.998



to the prediction, averaged over all possible combinations of
features in the dataset. To calculate the Shapley values for a
particular prediction, SHAP applies a game-theoretic approach
based on the concept of cooperative games. It considers each
feature value as a ”player” in the game and computes the
contribution of each player to the final prediction. It then
calculates the average contribution of each player across all
possible coalitions of players, weighting each coalition by its
probability of occurrence. This approach results in a set of
Shapley values, which represent the relative importance of
each feature to the prediction for a specific instance. These
Shapley values can be used to generate an explanation for the
prediction, showing which features had the greatest impact
and how they affected the final outcome. The mathematical
formula used by SHAP to generate the Shapley Values is
presented in Figure 1.

ϕi(x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(xS ∪{xi})− f(xS)]

(1)
Once generated, SHAP uses these values to display plots

for both global explanations and local explanations.
2) Global feature importance: We use the SHAP algorithm

to generate global summary plots that highlight the importance
of each feature in the model’s decision-making similarly to
what we have done in Table II. Figures 1 and 2 display the
importance plots for the Label Encoded dataset and the One
Hot Encoded dataset, respectively.

Figure 1. Label Encoding global importance plot

IV. DISCUSSION

The main difference between these plots is that while we
know what feature is more important with Label Encoding, we
know what exact value of that feature is more important with
One Hot Encoding. This means that we get more specificity

Figure 2. One Hot Encoding global importance plot

as a feature’s importance is the sum of the importance of its
unique values. A top ranking feature in the Label Encoding
model could have therefore reached its rank because of the
importance of some of its values, but not the others. Using
One Hot Encoding, we can single out what values exactly are
the most relevant to further analyze. For example, the ”Minor-
OperatingSystemVersion” feature in 1 has a mean SHAP value
of almost 0.6, ranking fifth. However, in 2, we can see that
is actually Version 3 of this feature that is really impactful,
ranking first with a mean SHAP value of more than 1.2. Yet,
version 1 of this feature only has a score of almost 0.2, and
the rest of the version are not in the top 10 features. So using
One Hot Encoding, we can single out files with the Version 3
of ”MinorOperatingSystemVersion” and further analyze them
separately in hopes of creating an easy rule for them or see
what more we can learn. One drawback of this plot is that
it is not easy to read when we have hundreds or thousands
of features. In this example, we have 16087 features. It will
be unproductive to use this plot to study feature importance.
Instead, we can extract the raw SHAP values of all one hot
encoded features, group them by original feature, and plot
them side by side in another plot. We propose the plots in
Figures 3 and 4 where we plot the importance of the different
values of the ”MajorSubsystemVersion” feature side by side,
horizontally and vertically respectively. We chose this feature
instead of the number 1 ranking ”MinorOperatingSystemVer-
sion” feature because it has considerably fewer distinct values
making it easier to plot, wasting less space and delivering the
same message. These figures allow us to better visually grasp
the relativity in importance between the different values of a
feature. This way, we can add or remove values to and from
a watchlist and also construct rules for particular values. We
can now combine this with the confidence score of the model
at inference to start a routine, a check or apply a rule when



the score doesn’t hit the certainty thresshold. At that point,
we would start investigating individual instances, thus needing
different explanations called local explanations.

Figure 3. Horizontally stacked bar plot of the ”MajorSubsystemVersion”’s
distinct values importance

Figure 4. Vertically stacked bar plot of the ”MajorSubsystemVersion”’s
distinct values importance

1) local feature importance: Local explanations focus on
individual instances, displaying to the user the step-by-step
contribution of each feature on the model’s decision. Using
SHAP’s local explanation plots, we get Figures 5 and 6 which
display the local explanation of instances 2 and 3 respectively,
first using Label Encoding first and then One Hot Ecoding.

Figure 5. Local explanation for test observation number 2

Figure 6. Local explanation for test observation number 3

Again, the added refinement of the exact feature value gives
us a lot more insight into what pushed the model towards a
certain classification. Although the one hot encoding in this
case may seem useless since we already know what value
of each feature the instance holds, it instead can be used as

an assertion method to make sure there are no anomalies in
the decision shifting. Finally, we can see that being trained
on the individual values changes the base value and decision
shift intensity of each feature, as it has been trained on
more finegrained data and the model had the chance to learn
combinations that go together. These combinations in a tree
based model such as XGBoost can then be used extracted
and used as normal conditional IF rules or analyzed to detect
vulnerabilities that went under the radar. Even then, the feature
encoding will have an impact on the generated rules.

2) IF-Rules: IF-Rules are logical statements that express
conditional relationships between input variables and output
decisions and follow a simple structure: IF a specific condition
or set of conditions is satisfied, THEN a particular action
or decision should be taken. The conditions and actions are
typically expressed using logical operators, such as ”AND,”
”OR,” and ”NOT.” IF rules provide a transparent and in-
terpretable way to encode domain knowledge and decision-
making criteria into a system. Due to their nature, tree-based
models can be seen as a collection of IF rules combined
together to form a decision-making process. Each node in a
decision tree represents an IF statement on a specific feature
or attribute, and the tree structure guides the flow of decision-
making based on these conditions. The splitting criteria at each
node determine the conditions for branching into different
paths, leading to subsequent nodes or leaves with specific
outcomes or predictions. Since XGBoost is a tree based model,
we can extract the IF-Rules it learned during the training phase
and use them to build logical pipelines or to study them. An
example of the IF-Rules learned by our XGBoost model can
be seen in Figures 7 and 8 for Label Encoding and One Hot
Encoding respectively.

Figure 7. Example IF-Rules for Label Encoding

Figure 8. Example IF-Rules for One Hot Encoding

While there is no apparent difference between the IF-Rules
of the two encoding techniques, the difference lies in the
metadata. In Table IV, we can see the difference in the
rules’ total text length in number of characters as well as the
explanation file size in KB. We can see that One Hot Encoding
resulted in less characters which means less file size. The
indirect consequence of this is less analysis time, less system
complexity and less ambiguity, all of which directly benefit
analysts and systems.



TABLE IV
DIFFERENCE IN IF-RULES BETWEEN THE ENCODING TECHNIQUES

Encoding Technique F1 Rules file size Rules text length
Label Encoding 0.991 221 KB 226065 characters
One Hot Encoding 0.982 175 KB 180237 characters

V. CONCLUSION

In this paper, we studied the impact of feature encoding
on the explainability of XAI algorithms. We took a malware
classification dataset as an example on which we trained
an XGBoost model. We tried two different types of feature
encoding: Label Encoding and One Hot Encoding and found
there is a marginal performance loss by the model by using
OHE instead of LE. That loss was made up with thanks to
the more detailed explanations we managed to make thanks
to OHE. We found that OHE allows us to go deeper in the
details when searching for answers, both globally and locally.
We also found that using OHE yields smaller explanation files
and results in less time spent analyzing by human analysts. We
think this is an interesting aspect to be taken into consideration
when working with XAI and could be expanded by including
more feature encoding techniques and more creative plots.
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