
@odF- S70337--1
~ @ N B g & - z % s I

Ensuring Critical Event Sequences in High Consequence Computer Based
Systems as Inspired by Path Expressions

Marie-Elena C. Kidd, Sandia National Laboratories'

Abstract
The goal of our work is to provide a high level of confidence that critical software driven event seq

will be accomplished by providing dynamic fault management measures directly to the software developer and to
their varied development environments. The methodology employed here is inspired by previous work in path
expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed
methods, and a discussion of the differences between the proposed methods and traditional path expression usage
and implementation.

maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environm PS3- ts. I

Introduction
Currently, our work focuses on dynamic (run-time)
fault detection to ensure critical software driven
event sequences in single processor environments. If
these methods prove valuable and practical, they will
be extended to distributed environments and fault
management. We are in the early phases of applying
our initial methods to real world projects which are
predominantly in the embedded systems area. The
initial methods are manually embedded in software
models and code. Later work will concentrate on
adding the extensions to the s o h a r e development
environments through compilers, assemblers, and
modeling tools. It is important to note that since
high consequence software is often embedded
software, the compilers are often cross-compilers
from a high level programming language like C to a
target processor assembly language like 8051 or
68020. Also, assembly language is, at times, the only
programming language used. Thus, our methods
must be general enough to work in these varied
environments.

Perceived challenqes and problems
A major concern when developing high consequence
software is ensuring the integrity of critical event
sequences. The system must be able to execute
correctly, safely, and reliably even in the face of
faulty hardware or software, external malevolent
forces, and environmental stimuli such as lightning

strikes or static. These forces could, and have been
proven to, perturb the normal software flow of
execution. If, for example, the program counter gets
corrupted, the software flow is moved to an
unintended software point. The software should not
continue executing through the code from the failure
point, but instead should realize that the expected
flow was corrupted and assume a fail safe mode.
Figure 1 provides an example of how the sequence of
events is important. This is the sequence of events
involved in making a bowl of instant soup. First you
heat the water. When the water boils, you mix it with
the soup packet. Then, you must wait for the soup to
reconstitute and to cool to a temperature that is safe
for consumption. There is a minor safety problem if
the cooling stage is skipped. If, for example, you got
distracted at just the right moment, the result might
be that you skip the cooling stage and bum your
tongue and throat by drinking boiling liquid.

a safety problem mhts

Figure I - Example of a Simple Event
Sequence

The analogy can be extended to a high consequence

' The work presented in this paper is part of the High Integrity Sohare (HIS) Project which is supported by the Strategic Surety Backbone of the
Defense Programs Sector at Sandia National Laboratories. Although our funding and initial focus stems fiom defense applications, our methods will
be applicable to the general high integrity sohare developer.

This work was supported by the United States Department of Energy under contract DEAC04-94AL85000.

DISCLAIMER

This report was prepared as an account of work sponsored by a n agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or resporm'bility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or sem'ke by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available oFiginal
document.

1

computer-based system having a prcv1;m such as
being hit by lightning, zapped by static, or a
hardware malfunction which leads to a critical event
being skipped. In that case, rather than a burned
tongue, the resulting safety problem may involve
taking the lives of many innocent people.
Currently,,no formalized methods exist to handle the

1 ,.. problem’ of ensuring critical event sequences.
. Therefore, many ad-hoc and creative methods are
“employed which result in the injection of more
software bugs, creating hard to maintain software,
highly clever yet unrepeatable software, or increased
complexity.
A recurring informal method has been used in the
past. It consists of creating a variable that holds
information describing what events have occurred at
any point in the execution of a software program.
Some schemes simply assign a numeric value to each
critical output event and add that value to the
variable at runtime. In another method, a byte (or
word) is bit encoded so that each bit represents the
state of an event, 0 for not done and 1 for done.
Usually, the variable’s value is derived in real-time
during execution through clever logical or
mathematical equations, but sometimes it is simply
assigned to the variable. This is a creative and
manual process done by the software developer and
embedded in the code. The methods for matching an
event with a value or figuring out which bits to
attach to an event are mainly cleverness and trial &
error. The author was part of one such effort.
Clearly, a need exists for more reliable, repeatable,
and easily employed methods for ensuring critical
software driven event sequences in harsh and
unstable environments. This work takes the
informal, ad-hoc cheth~ds7y into consideration and
applies existing computer science theory to create a
more formal and reliable method for ensuring
software event sequences.

‘ I)

‘

Introduction to supporting computer
science theory

In order to understand path expressions and our
methods, it is first necessary to understand its
theoretical basis. Therefore, a brief review on finite
automata and regular expressions will be addressed
before discussing path expressions.

Finite Automata basics
The review information in this section is derived
from [7].

2

A Finite Automaton (F,
involving states and input values.

is L.,Aed as a quintuple

FA= (Q, E, 6, 90, F3-
Q is the finite set of states.

E is the finite input alphabet.

6 is the transition function mapping Q x Z
to Q such that the signature of the
transition function is 6: Q I C + Q. Using
function notation, this is 6(qt,a) = q. This
means, when in state qi, which is an
element of Q, with input a, which is an
element of E, the resulting state, q, is given
by the transition function, 6. Another way
to describe this is that the transition
function takes each possible state and input
pair and defines the resulting state.

qo is the start state (also known as the initial
state). And, qo E Q, which means qo is an
element of the set of states, Q.

F is the finite set of final states. And, F E
Q, which means the final states, F, are a
subset of the set of states, Q.

Two standard representations for finite automatons
are transition diagrams represented as directed
graphs and transition tables. Figure 2 displays a
finite automaton in the form of a transition diagram
represented as a directed graph. Notice that the
circles represent states and the arrows represent
elements of the input alphabet. Final states are often
marked with a double circle.

.

,

Figure 2 - Example Of A Finite Automaton

Table 1 is the transition table associated with the
transition diagram in Figure 2. Notice that this
example allows only “and’ and “at” as acceptable
input strings. This means that the “language”, or set
of strings, accepted by this finite automaton consists
of “and’ and “at” and nothing else. A string is
accepted only when the finite automaton finishes in a
final state.

L 4 1

Table 1 - Example 0 Transition Tab !

One could visualize the input to a finite automaton
as an input stream, perhaps written on a tape that
arrives and is read by a reading head. As the input
stream is read one character at a time, the transition
diagram or table executes based on the input
symbols. This is pictured in the sequence in Figure
3. The “executio~P of one path through the finite
automaton is simulated by highlighting the active
state.

Figure 3 -An Execution Path Through A
Finite Automaton

We have provided only a very basic review of finite
automata. Indeed, there are more complex and
advanced areas within automata theory. But, they are
not necessary for our discussion.

Regular Expression basics
The review information in this section is derived
from [7]. Regular expressions are simple expressions
describing languages that are accepted by an
associated finite automaton. For example, the
previous section gave a finite automaton that accepts
the set of input strings of the form ‘a ’ fohved by
‘nd’ or ‘a’ followed by ‘t’. This is a long winded
way of describing a very simple expression. Regular
expressions give us a simple and compact way to

describe suc expressions. Table 2 gives the basic
syntax of regular expressions. A and B are sets of
input symbols.

Table 2 - Regular Expression Syntax

syntax
A B

A + B

A*

A+

Meaning

This is sequence or concatenation. It means
A followed by B.
This is selection. It means A or B, but not
both.
This is called Kleene Star or Kleene closure
It means 0 or more occurrences of A which
is repeated concatenation.

This is called positive closure. It means 1 or
more occurrences of A. It is just like Kleene
closure except that the minimum number of
occurrences is one.

In general, capital letters represent sets of strings
and lower case letters represent set elements
(strings). Here are some examples using regular
expressions. Regular expressions may appear in
terms of sets (capital letters) or elements (lower case
letters). The “=” below means “denotes the set”.
Given A = {a} and B = {x, y, z}

-=(=Yay,@

x y = { x Y }

x+y={x,yI

A*= (E, a, aa, aaa, ...}

A+= {a, aa, aaa, ...}
A + B = (a, x, y, z}

Perhaps a more meaninghl example would be to let
A = (by c> and B = {all, oat, at].

AB = {ball, boat, bat, call, coat, cat}

A + B = (by c, all, oat, at>
Here is an example of the seauence notation. Given
that a specific person is 60 years old, the life
sequence they went through was birth then infancy
then childhood and then adulthood. This could be
described by the following notation birth infancy
childhood adulthood. If we let b represent birth, i
represent infancy, c represent childhood, and a

represent adulthood then we can compress the
notation above to b i c a.

to specify all acceptable paths through this directed
graph. Interpreting the finite automaton in Figure 4

Here is an example of the selection notation.
Common house pets are dogs, cats, reptiles, and fish.
Given one common house pet, that pet is either a
dog, a cat, a reptile, or a fish. A notation is dog + cat
+ reptile + fuh. If we let d represent dog, c represent
cat, r represent reptile, and f represent fish then we
can again compress the notation above to d + c + r +
f: Unless my understanding of animal Classification
is mistaken, this is true selection since a given pet
can be exactly one of these types of animals with the
odd cases of multiple inheritance like the duck-billed
platypus aside.

Here is an example of the Kleene Star notation.
Entering the world of “make believe”, assume we
have an infinite length freeway and an infinite
number of automobiles. Each automobile has an
associated driver. This freeway can hold zero
automobiles, or one automobile, or two
automobiles, ... or an infinite number of automobiles
traveling at once. Now, if we let A represent the set
of all automobiles that can be on the freeway, we can
represent the freeway activity as A?
Here is an example of the reuetition of 1 or more
notation. We must remain in the world of “make
believe” for this example. Given a functioning and
insnitely large Emergency Room in a typical
hospital, there should always be at least one
physician on duty. So, there will be one physician, or
two physicians, ... or an infinite number of
physicians on duty at a given time. If we let A denote
the set of possible physicians, we can represent this
example as A’.
Again, we have only reviewed enough of regular
expression theory to allow us to talk about path
expressions. In compiler theory, regular expressions
are expanded to cover very complex expressions and
languages.

Path expression basics

A look at path expressions
Figure 4 is a look at a basic path expression
represented as a finite automaton via a directed
graph. This path set is interpreted as “a is followed
by eifher b then d or a is followed by c followed by
zero or more repetitions of g followed by e. Then, f
comes I&’’ This is long winded and somewhat
confusing, not to mention open to different
interpretations. So, we will use a regular expression

4

produces a regular expression, a(bd + &*)e) f;
which is an algebraic representation of the path. This
is also called a path expression since it expresses
paths through the graph. In this particular case, it
represents all paths through the given graph. Path
expressions give us a more concise way to express
the acceptable sequences just as regular expressions
did in the earlier section. This example in Figure 4
depicts one of the many graphical models and
notations found in the literature.

Figure 4 - Example Graphical Representation
Of A Path Expression

Path expressions are basically extended regular
expressions2 that denote a specified set of paths
through a graph where the graph depicts a model of
flow through software code units. The uses of path
expressions in the literature vary and will be
discussed later in this paper. The notations found in
the literature vary greatly sometimes with good
reason. For simplicity and consistency, we will
continue to use regular expression notation
throughout this paper.

Current related path expression
usaQe by application area

The literature on path expressions introduces many
variations of path expressions. For example, regular
path expressions were the first non-shuffle operator
path expressions based on regular expressions and
were used to describe synchronization relationships
among processes sharing resources. Open path
expressions were created to allow inherent
unrestricted concurrency. Predicate path expressions
extend regular path expressions to allow for a level
of granularity beyond the process/module level and

Not all of the path expression derivatives are based on regular
expressions. However, for the context of this paper, we are interested
in the regular expression based uses.

to add predicates to the decision process before
performing an action. Generalized path expressions
grew out of predicate path expressions and are
mainly used in the verification and validation area.
This list goes on.
However, for our purposes, the different ways in
which path expressions are used is more important
than the many specific versions of path expressions.
Therefore, the term “path expression” in this paper
refers to the general class of path expressions except
when a specific version is listed. We focus on the
concurrent systems and verification & validation
areas because their uses are somewhat similar to our
O W .

Partial Chronology of Path Expression
Figure 5 shows a partial overview of the chronology
of Path Expression and related methodologies. This
figure is included for a historical perspective and
was derived from [3,6,8, and 91.

Expression Notations
beyond RES

Data Path Expresslons

B Kolstad, I980 Miner, 1978
I

Dkbibuted Path Pascal
Campbell, 1983

Figure 5 - Partial Chronology of Path
Expressions

Concurrent systems usage
Path expressions were originally introduced by R
Campbell and A. Haberman in 1974 to describe
synchronization relationships and rules. Path
expressions are initially based on regular
expressions. [4, 51
Traditional usage in the concurrent area, whether
used on distributed processes or not, is based on
synchronizing concurrent access to shared resources
like data. Resource allocation is the main objective.
Furthermore, from the literature, it is clear that most

5

traditional uses do not consider harsh environments
that could throw the software execution sequence
“out of whack”. Figure 6 depicts the general usage
scenario.

low only one proces
a time to wMe and

~~

Figure 6 - Concurrent Systems Path
Expression Usage Scenario

In this area, path expressions are derived during the
analysis and design phases. They are then
implemented, usually with semaphores or object
oriented implementation constructs. Path Pascal and
PPE ALGOL 68 [13 are programming languages that
have been extended to include path expressions.

Verification & Validation (V&V) usage
In Verification & Validation, path expressions have
been used to optimize test case coverage and create
external monitors.
Path expressions are used to select software test
paths. The paths are derived from control flowgraphs
of the software. Flowgraphs can be used at various
levels of granularity and are based on the actual
execution time flow of control through the software.
A procedure for the conversion of a flowgraph into a
path expressions is given in the literature. Methods
exist for determining the longest path, shortest path,
and other specific paths through the software. [2]

Another application of path expressions in the
Validation & Verification area focuses on picking
actual software paths and verifying that those paths
occurred during execution as expected. Some
methods actually implement an external path
recognizer for this purpose. These methods are
employed on single processor as well as distributed
systems. As one can imagine, an external recognizer
could become quite complex when watching the
output from many parallel processors in a system.
Figure 7 shows this scenario.

Figure 7 -Verification & Validation Path
Expression Usage Scenario

Our proposed methodoloqv which
was inspired bv path expressions

Basic goals
The goals are: ensure critical event sequences in
unstable and harsh operating environments; ensure
critical event sequences with adjustable granularity;
and provide software fault management where the
faults could come from the hardware, software, or
the operating environment

Critical event sequence fault management
method implemented by the developer
The critical event sequence fault detection method
implemented by the developer consists of deriving
regular expressions from a software model or the
sohare requirements and then embedding (1) check
points and (2) update points based on those regular
expressions into the target code along with a (3)
module (or object) that implements the underlying
finite automaton. This extra software is added to the
target code to verify that the correct event sequence
is maintained. The granularity of the regular
expression is flexible and should be determined by
the software requirements. Examples of appropriate
software models are data flow diagrams, state-
transition diagrams, and flowgraphs. All of these
models chart out a type of software flow. It is the
flow that regular expressions will be used to enforce
whether protecting an actual software path or a
software sequence.
Basically, a module "in the background" tracks the
critical event sequence by calls made from the
epilogues and prologues of each critical event. This
serves to localize or encapsulate the functionality in
one module. That module will determine when and
how to fail safe if necessary as determined by fault
detection. This one function also maintains the
history of execution at the critical event sequence
level of granularity. It is therefore easy to access this
history after execution if non-volatile memory is
used (and the memory was not destroyed during

execution).
During the current phase of this work, the focus is
on fault detection in the single processor
environment. Later phases will deal with more
complicated fault management issues and distributed
environments.
This method lends itself to easy additions of fault
management at the critical event sequence level
because the last known good event is known. It is
also easy to add time bounds or loop iteration bounds
to the finite automaton nodes.

Critical event sequence fault management
method in the development environment
In the future, the critical event sequence fault
management method may be embedded in the
software development environment by placing it in
extensions to compilers, assemblers, or other
development tools. In this case, the software
developer does not have to do anything extra because
the compiler or other development tools do the work.
However, the regular expression still must be created
to express the critical event sequence.
The two areas of interest are generic extensions to
any language and language-specific extensions. In
the language-specific area, languages like Path
Pascal already exist. Extensions to Ada have also
been made. However, these are for specific compilers
and have different intents. The problem for
embedded software is that other languages are used
such as C or Assembly language. In these cases, the
microprocessor used will dictate a subset of
compilers, crosscompilers, or assemblers. Many
compiler/assembler options exist and to add to the
variability, commercial compiler/assembler
companies constantly change their products and at
times go out of business. For these reasons, a generic
set of extensions would be a better method due to the
variability and dynamic nature of the market.

Using Event sequence based regular
expressions vs. path based regular
expressions
Our work is more concerned with critical software
driven event sequences than with the actual paths
chosen between the events. Figure 8 shows an
expansion of the basic path based regular expression
diagram into a path expression application. The
nodes are now pieces of code which could be code
fragments, objects, or entire modules. The inverted
triangle is a check point which could be thought of

6

as a yield point. The large arrow is an update point
which occurs after the critical output and will update
the state appropriately. This method tracks the path
that is taken to get to the events.

v = check point
rn = critical event
= = update point

0 = piece of code
* = path

Figure 8 - Our Usage Of Path Based Regular
Expressions

Another way of using path expressions is to use them
as “event sequence expressions” where the event
sequence is tracked rather than the path between the
events. In Figure 9, the “event sequence expression”
depicted is a@+c+)d.

a (b + c+)d 6+li

v =checkpoint - = critical event * = path - = update point
= piece of code

Figure 9 - Our Event Sequence Expression
Scenario

Both path based regular expressions and “event
sequence expressions” use regular expressions and
the underlying finite automaton as a foundation. The
use of one or the other should be driven by what is
appropriate for the software requirements. If the path
is important, use path based regular expressions. If
the event sequence is important, use “event sequence
expressions.” These two methods are ways to derive
the regular expression that will be tracked and
implemented in the target code.

Identification of path expression usage in
the Software Engineering life cycle
Consider some of the very basic software
engineering life cycle phases: requirements, design,

ani implementation. During the Requirements
phase, regular expressions will be derived fiom the
analysis diagrams and safety or reliability
requirements. During the Design phase, regular
expressions will be embedded into the design
diagrams. Finally, during the implementation phase,
regular expressions will be embedded in the code as
directed by the design. Figure 10 shows our usage
scenario.

Augment Design Models
with RES

Figure 10 - Our Event Sequence Expression
Usage Scenario

The level of granularity of the event sequence is
flexible. It should be the level that is appropriate to
the surety requirement. This can be at the module
level in some areas, above the module level in other
areas, and even close to the line by line level in
others. The similarity is that all monitoring
mechanisms based on the regular expressions are
internal to the code.

Differences from traditional path expression
work
To help understand the different usage scenarios
used by the concurrency area and our area, the
following anthropomorphic questions may help. The
basic question that is asked in a traditional
concurrent path expression usage is, “May I have the
shared resource now?” The answer is either, “yes,
continue” or, “no, wait until it is your turn.” In our
usage, the basic question is, “Am I supposed to be
here now based on order of events?” The answer is
either “yes, continue” or, “no, fail safe or correct the
execution flow based on the last known good state.”

Conclusions
A major concern when developing high consequence
software is ensuring the integrity of critical event
sequences. The system must be able to execute
correctly, safely7 and reliably even in the face of

I

I

I

7

faulty hardware or software, external malevolent
forces, and environmental stimuli such as lightning
strikes or static. If, for example, the program
counter gets corrupted which results in the software
flow being moved to an unintended software point,
the software should not continue executing through
the code from the failure point, but should instead
realize that the expected flow was corrupted and
assume a fail safe mode.
Currently, no formalized methods exist to handle
this problem. So, many ad-hoc methods are
employed. The possible results are infection of more
bugs into the software, sometimes hard to maintain
software, and increased complexity.
Path expressions in software have been used to
protect shared resources, optimize data base queries,
for test case coverage optimization, and to create
external test monitors. This work will extend the use
to cover critical event sequence concerns in high
consequence software. This is a unique extension set
according to the literature and appears to be a
reasonable and logical direction.
Because our method is based on deriving a regular
expression of the critical event sequence, adding
check points and update points, and adding a module
that implements the functionality of the underlying
finite automaton and its tracking, this method is
repeatable and easy to maintain because of the
inherent encapsulation. Because the method is based
on mathematical foundations, it is inherently more
reliable than the ad-hoc “on the fly” cleverness.
Upon completion of this work, the deliverable will be
dynamic fault management (both fault detection and
fault correction) methods through path expression
extension inspired methods for ensuring critical
event sequences in high consequence software. These
will be in the form of user embedded and compiler
embedded methods. These methods will also work in
distributed, multiprocessor environments.

Ref e re n ces
1. Sten Andler, Predicate Path Expressions: A High-
Level Synchronization Mechanism, Ph.D. thesis,
Computer Science Department, Carnagie Mellon
University, 1979.
2. Boris Beizer, Sofhvare Testing Techniques, Van
Nostrand Reinhold, New York, 1990, Chapters 3 and
8.
3. Bernd Bruegge and Peter Hibbard, “Generalized
Path Expressions: A High-Level Debugging

8

Mechanism,” Journal of Systems and Sofhvare, Vol.

4. Roy H. Campbell, A. N. Habermann, “The
Specification of Process Synchronization by Path
Expressions,” Proceedings of an International
Symposium on Operating Systems, Rocquecourt,
France, April 1974, Lecture Notes in Computer
Science, Springer Verlag, Vol. 16, pp. 89-102.
5. Roy H. Campbell, PATH EXPRESSIONS: A
technique for specifling process synchronization,
Ph.D. thesis, Computing Laboratory, The University
of Newcastle Upon Tyne, Newcastle Upon Tyne,
England, August 1976. Reprinted by the Department
of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Illinois, May 1977.
6. Mark R Headington and Arthur E. Oldehoeft,
“Open Predicate Path Expressions and their
Implementation in Highly Parallel Computing
Environments,” Proceedings of the 1985
International Conference on Parallel Processing,
IEEE Computer Society Press, Washington, DC,
1985, pp. 239-46.
7. John E. Hopcroft and Jeffrey D. Ullman,
Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Reading, Mass.
1979.
8. C. Samuel Hsieh, “Timing Analysis of Cyclic
Concurrent programs,” 11‘~ InternationaI
Conference on Sofhvare Engineering, ACM, 1989,

9. Alan C. Shaw, “Software Specification Languages
Based on Regular Expressions,” Proceedings of a
Workshop on Software Development Tools, Lecture
Notes in Computer Science, Springer-Verlag, Berlin,
West Germany, 1980, pp. 148-75.

3,1983, pp. 256-276.

pp. 312-318.

Marie-Elena C. Kidd is a computer scientist and
Senior Member of the Technical Staff at Sandia
National Laboratories. During her ten years at
Sandia, she has worked as a software engineer on
embedded, real-time software systems for such
applications as robotics, nuclear weapon
components, and control systems. She has also
worked on lab-wide information sharing ‘software
systems and software engineering initiatives, She has
a B.S. in Computing and Information Sciences from
Trinity University in San Antonio, Texas and an
M.S. in Computer Science from Purdue University in
West Lafayette, Indiana.

