
@odF- S70337--1 
~ @ N B g & - z % s I  

Ensuring Critical Event Sequences in High Consequence Computer Based 
Systems as Inspired by Path Expressions 
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Abstract 
The goal of our work is to provide a high level of confidence that critical software driven event seq 

will be accomplished by providing dynamic fault management measures directly to the software developer and to 
their varied development environments. The methodology employed here is inspired by previous work in path 
expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed 
methods, and a discussion of the differences between the proposed methods and traditional path expression usage 
and implementation. 

maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environm PS3- ts. I 

Introduction 
Currently, our work focuses on dynamic (run-time) 
fault detection to ensure critical software driven 
event sequences in single processor environments. If 
these methods prove valuable and practical, they will 
be extended to distributed environments and fault 
management. We are in the early phases of applying 
our initial methods to real world projects which are 
predominantly in the embedded systems area. The 
initial methods are manually embedded in software 
models and code. Later work will concentrate on 
adding the extensions to the s o h a r e  development 
environments through compilers, assemblers, and 
modeling tools. It is important to note that since 
high consequence software is often embedded 
software, the compilers are often cross-compilers 
from a high level programming language like C to a 
target processor assembly language like 8051 or 
68020. Also, assembly language is, at times, the only 
programming language used. Thus, our methods 
must be general enough to work in these varied 
environments. 

Perceived challenqes and problems 
A major concern when developing high consequence 
software is ensuring the integrity of critical event 
sequences. The system must be able to execute 
correctly, safely, and reliably even in the face of 
faulty hardware or software, external malevolent 
forces, and environmental stimuli such as lightning 

strikes or static. These forces could, and have been 
proven to, perturb the normal software flow of 
execution. If, for example, the program counter gets 
corrupted, the software flow is moved to an 
unintended software point. The software should not 
continue executing through the code from the failure 
point, but instead should realize that the expected 
flow was corrupted and assume a fail safe mode. 
Figure 1 provides an example of how the sequence of 
events is important. This is the sequence of events 
involved in making a bowl of instant soup. First you 
heat the water. When the water boils, you mix it with 
the soup packet. Then, you must wait for the soup to 
reconstitute and to cool to a temperature that is safe 
for consumption. There is a minor safety problem if 
the cooling stage is skipped. If, for example, you got 
distracted at just the right moment, the result might 
be that you skip the cooling stage and bum your 
tongue and throat by drinking boiling liquid. 

a safety problem mhts 

Figure I - Example of a Simple Event 
Sequence 

The analogy can be extended to a high consequence 
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computer-based system having a prcv1;m such as 
being hit by lightning, zapped by static, or a 
hardware malfunction which leads to a critical event 
being skipped. In that case, rather than a burned 
tongue, the resulting safety problem may involve 
taking the lives of many innocent people. 
Currently,,no formalized methods exist to handle the 

1 ,.. problem’ of ensuring critical event sequences. 
. Therefore, many ad-hoc and creative methods are 
“employed which result in the injection of more 
software bugs, creating hard to maintain software, 
highly clever yet unrepeatable software, or increased 
complexity. 
A recurring informal method has been used in the 
past. It consists of creating a variable that holds 
information describing what events have occurred at 
any point in the execution of a software program. 
Some schemes simply assign a numeric value to each 
critical output event and add that value to the 
variable at runtime. In another method, a byte (or 
word) is bit encoded so that each bit represents the 
state of an event, 0 for not done and 1 for done. 
Usually, the variable’s value is derived in real-time 
during execution through clever logical or 
mathematical equations, but sometimes it is simply 
assigned to the variable. This is a creative and 
manual process done by the software developer and 
embedded in the code. The methods for matching an 
event with a value or figuring out which bits to 
attach to an event are mainly cleverness and trial & 
error. The author was part of one such effort. 
Clearly, a need exists for more reliable, repeatable, 
and easily employed methods for ensuring critical 
software driven event sequences in harsh and 
unstable environments. This work takes the 
informal, ad-hoc cheth~ds7y into consideration and 
applies existing computer science theory to create a 
more formal and reliable method for ensuring 
software event sequences. 

‘ I )  
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Introduction to supporting computer 
science theory 

In order to understand path expressions and our 
methods, it is first necessary to understand its 
theoretical basis. Therefore, a brief review on finite 
automata and regular expressions will be addressed 
before discussing path expressions. 

Finite Automata basics 
The review information in this section is derived 
from [7]. 
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A Finite Automaton (F, 
involving states and input values. 

is L.,Aed as a quintuple 

FA= (Q, E, 6, 90, F3- 
Q is the finite set of states. 

E is the finite input alphabet. 

6 is the transition function mapping Q x Z 
to Q such that the signature of the 
transition function is 6: Q I C + Q. Using 
function notation, this is 6(qt,a) = q. This 
means, when in state qi, which is an 
element of Q, with input a, which is an 
element of E, the resulting state, q, is given 
by the transition function, 6. Another way 
to describe this is that the transition 
function takes each possible state and input 
pair and defines the resulting state. 

qo is the start state (also known as the initial 
state). And, qo E Q, which means qo is an 
element of the set of states, Q. 

F is the finite set of final states. And, F E 
Q, which means the final states, F, are a 
subset of the set of states, Q. 

Two standard representations for finite automatons 
are transition diagrams represented as directed 
graphs and transition tables. Figure 2 displays a 
finite automaton in the form of a transition diagram 
represented as a directed graph. Notice that the 
circles represent states and the arrows represent 
elements of the input alphabet. Final states are often 
marked with a double circle. 

. 

, 

Figure 2 - Example Of A Finite Automaton 

Table 1 is the transition table associated with the 
transition diagram in Figure 2. Notice that this 
example allows only “and’ and “at” as acceptable 
input strings. This means that the “language”, or set 
of strings, accepted by this finite automaton consists 
of “and’ and “at” and nothing else. A string is 
accepted only when the finite automaton finishes in a 
final state. 
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Table 1 - Example 0 Transition Tab ! 

One could visualize the input to a finite automaton 
as an input stream, perhaps written on a tape that 
arrives and is read by a reading head. As the input 
stream is read one character at a time, the transition 
diagram or table executes based on the input 
symbols. This is pictured in the sequence in Figure 
3. The “executio~P of one path through the finite 
automaton is simulated by highlighting the active 
state. 

Figure 3 -An Execution Path Through A 
Finite Automaton 

We have provided only a very basic review of finite 
automata. Indeed, there are more complex and 
advanced areas within automata theory. But, they are 
not necessary for our discussion. 

Regular Expression basics 
The review information in this section is derived 
from [7]. Regular expressions are simple expressions 
describing languages that are accepted by an 
associated finite automaton. For example, the 
previous section gave a finite automaton that accepts 
the set of input strings of the form ‘a ’ fohved  by 
‘nd’ or ‘a’ followed by ‘t’. This is a long winded 
way of describing a very simple expression. Regular 
expressions give us a simple and compact way to 

describe suc expressions. Table 2 gives the basic 
syntax of regular expressions. A and B are sets of 
input symbols. 

Table 2 - Regular Expression Syntax 

syntax 
A B  

A + B  

A* 

A+ 

Meaning 

This is sequence or concatenation. It means 
A followed by B. 
This is selection. It means A or B, but not 
both. 
This is called Kleene Star or Kleene closure 
It means 0 or more occurrences of A which 
is repeated concatenation. 

This is called positive closure. It means 1 or 
more occurrences of A. It is just like Kleene 
closure except that the minimum number of 
occurrences is one. 

In general, capital letters represent sets of strings 
and lower case letters represent set elements 
(strings). Here are some examples using regular 
expressions. Regular expressions may appear in 
terms of sets (capital letters) or elements (lower case 
letters). The “=” below means “denotes the set”. 
Given A = {a} and B = {x, y, z} 

-=(=Yay,@ 

x y = { x Y }  

x+y={x,yI  

A*= (E, a, aa, aaa, ...} 

A+= {a, aa, aaa, ...} 
A + B  = (a, x, y, z} 

Perhaps a more meaninghl example would be to let 
A = (by c> and B = {all, oat, at]. 

AB = {ball, boat, bat, call, coat, cat} 

A + B  = (by c, all, oat, at> 
Here is an example of the seauence notation. Given 
that a specific person is 60 years old, the life 
sequence they went through was birth then infancy 
then childhood and then adulthood. This could be 
described by the following notation birth infancy 
childhood adulthood. If we let b represent birth, i 
represent infancy, c represent childhood, and a 



represent adulthood then we can compress the 
notation above to b i c a. 

to specify all acceptable paths through this directed 
graph. Interpreting the finite automaton in Figure 4 

Here is an example of the selection notation. 
Common house pets are dogs, cats, reptiles, and fish. 
Given one common house pet, that pet is either a 
dog, a cat, a reptile, or a fish. A notation is dog + cat 
+ reptile + fuh. If we let d represent dog, c represent 
cat, r represent reptile, and f represent fish then we 
can again compress the notation above to d + c + r + 
f: Unless my understanding of animal Classification 
is mistaken, this is true selection since a given pet 
can be exactly one of these types of animals with the 
odd cases of multiple inheritance like the duck-billed 
platypus aside. 

Here is an example of the Kleene Star notation. 
Entering the world of “make believe”, assume we 
have an infinite length freeway and an infinite 
number of automobiles. Each automobile has an 
associated driver. This freeway can hold zero 
automobiles, or one automobile, or two 
automobiles, ... or an infinite number of automobiles 
traveling at once. Now, if we let A represent the set 
of all automobiles that can be on the freeway, we can 
represent the freeway activity as A? 
Here is an example of the reuetition of 1 or more 
notation. We must remain in the world of “make 
believe” for this example. Given a functioning and 
insnitely large Emergency Room in a typical 
hospital, there should always be at least one 
physician on duty. So, there will be one physician, or 
two physicians, ... or an infinite number of 
physicians on duty at a given time. If we let A denote 
the set of possible physicians, we can represent this 
example as A’. 
Again, we have only reviewed enough of regular 
expression theory to allow us to talk about path 
expressions. In compiler theory, regular expressions 
are expanded to cover very complex expressions and 
languages. 

Path expression basics 

A look at path expressions 
Figure 4 is a look at a basic path expression 
represented as a finite automaton via a directed 
graph. This path set is interpreted as “a is followed 
by eifher b then d or a is followed by c followed by 
zero or more repetitions of g followed by e. Then, f 
comes I&’’ This is long winded and somewhat 
confusing, not to mention open to different 
interpretations. So, we will use a regular expression 
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produces a regular expression, a(bd + &*)e) f; 
which is an algebraic representation of the path. This 
is also called a path expression since it expresses 
paths through the graph. In this particular case, it 
represents all paths through the given graph. Path 
expressions give us a more concise way to express 
the acceptable sequences just as regular expressions 
did in the earlier section. This example in Figure 4 
depicts one of the many graphical models and 
notations found in the literature. 

Figure 4 - Example Graphical Representation 
Of A Path Expression 

Path expressions are basically extended regular 
expressions2 that denote a specified set of paths 
through a graph where the graph depicts a model of 
flow through software code units. The uses of path 
expressions in the literature vary and will be 
discussed later in this paper. The notations found in 
the literature vary greatly sometimes with good 
reason. For simplicity and consistency, we will 
continue to use regular expression notation 
throughout this paper. 

Current related path expression 
usaQe by application area 

The literature on path expressions introduces many 
variations of path expressions. For example, regular 
path expressions were the first non-shuffle operator 
path expressions based on regular expressions and 
were used to describe synchronization relationships 
among processes sharing resources. Open path 
expressions were created to allow inherent 
unrestricted concurrency. Predicate path expressions 
extend regular path expressions to allow for a level 
of granularity beyond the process/module level and 

Not all of the path expression derivatives are based on regular 
expressions. However, for the context of this paper, we are interested 
in the regular expression based uses. 



to add predicates to the decision process before 
performing an action. Generalized path expressions 
grew out of predicate path expressions and are 
mainly used in the verification and validation area. 
This list goes on. 
However, for our purposes, the different ways in 
which path expressions are used is more important 
than the many specific versions of path expressions. 
Therefore, the term “path expression” in this paper 
refers to the general class of path expressions except 
when a specific version is listed. We focus on the 
concurrent systems and verification & validation 
areas because their uses are somewhat similar to our 
O W .  

Partial Chronology of Path Expression 
Figure 5 shows a partial overview of the chronology 
of Path Expression and related methodologies. This 
figure is included for a historical perspective and 
was derived from [3,6,8, and 91. 

Expression Notations 
beyond RES 

Data Path Expresslons 

B Kolstad, I980 Miner, 1978 
I 

Dkbibuted Path Pascal 
Campbell, 1983 

Figure 5 - Partial Chronology of Path 
Expressions 

Concurrent systems usage 
Path expressions were originally introduced by R 
Campbell and A. Haberman in 1974 to describe 
synchronization relationships and rules. Path 
expressions are initially based on regular 
expressions. [4, 51 
Traditional usage in the concurrent area, whether 
used on distributed processes or not, is based on 
synchronizing concurrent access to shared resources 
like data. Resource allocation is the main objective. 
Furthermore, from the literature, it is clear that most 
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traditional uses do not consider harsh environments 
that could throw the software execution sequence 
“out of whack”. Figure 6 depicts the general usage 
scenario. 

low only one  proces 
a time to wMe and 

~~ 

Figure 6 - Concurrent Systems Path 
Expression Usage Scenario 

In this area, path expressions are derived during the 
analysis and design phases. They are then 
implemented, usually with semaphores or object 
oriented implementation constructs. Path Pascal and 
PPE ALGOL 68 [ 13 are programming languages that 
have been extended to include path expressions. 

Verification & Validation (V&V) usage 
In Verification & Validation, path expressions have 
been used to optimize test case coverage and create 
external monitors. 
Path expressions are used to select software test 
paths. The paths are derived from control flowgraphs 
of the software. Flowgraphs can be used at various 
levels of granularity and are based on the actual 
execution time flow of control through the software. 
A procedure for the conversion of a flowgraph into a 
path expressions is given in the literature. Methods 
exist for determining the longest path, shortest path, 
and other specific paths through the software. [2] 

Another application of path expressions in the 
Validation & Verification area focuses on picking 
actual software paths and verifying that those paths 
occurred during execution as expected. Some 
methods actually implement an external path 
recognizer for this purpose. These methods are 
employed on single processor as well as distributed 
systems. As one can imagine, an external recognizer 
could become quite complex when watching the 
output from many parallel processors in a system. 
Figure 7 shows this scenario. 



Figure 7 -Verification & Validation Path 
Expression Usage Scenario 

Our proposed methodoloqv which 
was inspired bv path expressions 

Basic goals 
The goals are: ensure critical event sequences in 
unstable and harsh operating environments; ensure 
critical event sequences with adjustable granularity; 
and provide software fault management where the 
faults could come from the hardware, software, or 
the operating environment 

Critical event sequence fault management 
method implemented by the developer 
The critical event sequence fault detection method 
implemented by the developer consists of deriving 
regular expressions from a software model or the 
sohare  requirements and then embedding (1) check 
points and (2) update points based on those regular 
expressions into the target code along with a (3) 
module (or object) that implements the underlying 
finite automaton. This extra software is added to the 
target code to verify that the correct event sequence 
is maintained. The granularity of the regular 
expression is flexible and should be determined by 
the software requirements. Examples of appropriate 
software models are data flow diagrams, state- 
transition diagrams, and flowgraphs. All of these 
models chart out a type of software flow. It is the 
flow that regular expressions will be used to enforce 
whether protecting an actual software path or a 
software sequence. 
Basically, a module "in the background" tracks the 
critical event sequence by calls made from the 
epilogues and prologues of each critical event. This 
serves to localize or encapsulate the functionality in 
one module. That module will determine when and 
how to fail safe if necessary as determined by fault 
detection. This one function also maintains the 
history of execution at the critical event sequence 
level of granularity. It is therefore easy to access this 
history after execution if non-volatile memory is 
used (and the memory was not destroyed during 

execution). 
During the current phase of this work, the focus is 
on fault detection in the single processor 
environment. Later phases will deal with more 
complicated fault management issues and distributed 
environments. 
This method lends itself to easy additions of fault 
management at the critical event sequence level 
because the last known good event is known. It is 
also easy to add time bounds or loop iteration bounds 
to the finite automaton nodes. 

Critical event sequence fault management 
method in the development environment 
In the future, the critical event sequence fault 
management method may be embedded in the 
software development environment by placing it in 
extensions to compilers, assemblers, or other 
development tools. In this case, the software 
developer does not have to do anything extra because 
the compiler or other development tools do the work. 
However, the regular expression still must be created 
to express the critical event sequence. 
The two areas of interest are generic extensions to 
any language and language-specific extensions. In 
the language-specific area, languages like Path 
Pascal already exist. Extensions to Ada have also 
been made. However, these are for specific compilers 
and have different intents. The problem for 
embedded software is that other languages are used 
such as C or Assembly language. In these cases, the 
microprocessor used will dictate a subset of 
compilers, crosscompilers, or assemblers. Many 
compiler/assembler options exist and to add to the 
variability, commercial compiler/assembler 
companies constantly change their products and at 
times go out of business. For these reasons, a generic 
set of extensions would be a better method due to the 
variability and dynamic nature of the market. 

Using Event sequence based regular 
expressions vs. path based regular 
expressions 
Our work is more concerned with critical software 
driven event sequences than with the actual paths 
chosen between the events. Figure 8 shows an 
expansion of the basic path based regular expression 
diagram into a path expression application. The 
nodes are now pieces of code which could be code 
fragments, objects, or entire modules. The inverted 
triangle is a check point which could be thought of 
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as a yield point. The large arrow is an update point 
which occurs after the critical output and will update 
the state appropriately. This method tracks the path 
that is taken to get to the events. 

v = check point 
rn = critical event 
= = update point 

0 = piece of code 
* = path 

Figure 8 - Our Usage Of Path Based Regular 
Expressions 

Another way of using path expressions is to use them 
as “event sequence expressions” where the event 
sequence is tracked rather than the path between the 
events. In Figure 9, the “event sequence expression” 
depicted is a@+c+)d. 

a (b + c+)d 6+li 

v =checkpoint - = critical event * = path - = update point 
= piece of code 

Figure 9 - Our Event Sequence Expression 
Scenario 

Both path based regular expressions and “event 
sequence expressions” use regular expressions and 
the underlying finite automaton as a foundation. The 
use of one or the other should be driven by what is 
appropriate for the software requirements. If the path 
is important, use path based regular expressions. If 
the event sequence is important, use “event sequence 
expressions.” These two methods are ways to derive 
the regular expression that will be tracked and 
implemented in the target code. 

Identification of path expression usage in 
the Software Engineering life cycle 
Consider some of the very basic software 
engineering life cycle phases: requirements, design, 

ani implementation. During the Requirements 
phase, regular expressions will be derived fiom the 
analysis diagrams and safety or reliability 
requirements. During the Design phase, regular 
expressions will be embedded into the design 
diagrams. Finally, during the implementation phase, 
regular expressions will be embedded in the code as 
directed by the design. Figure 10 shows our usage 
scenario. 

Augment Design Models 
with RES 

Figure 10 - Our Event Sequence Expression 
Usage Scenario 

The level of granularity of the event sequence is 
flexible. It should be the level that is appropriate to 
the surety requirement. This can be at the module 
level in some areas, above the module level in other 
areas, and even close to the line by line level in 
others. The similarity is that all monitoring 
mechanisms based on the regular expressions are 
internal to the code. 

Differences from traditional path expression 
work 
To help understand the different usage scenarios 
used by the concurrency area and our area, the 
following anthropomorphic questions may help. The 
basic question that is asked in a traditional 
concurrent path expression usage is, “May I have the 
shared resource now?” The answer is either, “yes, 
continue” or, “no, wait until it is your turn.” In our 
usage, the basic question is, “Am I supposed to be 
here now based on order of events?” The answer is 
either “yes, continue” or, “no, fail safe or correct the 
execution flow based on the last known good state.” 

Conclusions 
A major concern when developing high consequence 
software is ensuring the integrity of critical event 
sequences. The system must be able to execute 
correctly, safely7 and reliably even in the face of 
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faulty hardware or software, external malevolent 
forces, and environmental stimuli such as lightning 
strikes or static. If, for example, the program 
counter gets corrupted which results in the software 
flow being moved to an unintended software point, 
the software should not continue executing through 
the code from the failure point, but should instead 
realize that the expected flow was corrupted and 
assume a fail safe mode. 
Currently, no formalized methods exist to handle 
this problem. So, many ad-hoc methods are 
employed. The possible results are infection of more 
bugs into the software, sometimes hard to maintain 
software, and increased complexity. 
Path expressions in software have been used to 
protect shared resources, optimize data base queries, 
for test case coverage optimization, and to create 
external test monitors. This work will extend the use 
to cover critical event sequence concerns in high 
consequence software. This is a unique extension set 
according to the literature and appears to be a 
reasonable and logical direction. 
Because our method is based on deriving a regular 
expression of the critical event sequence, adding 
check points and update points, and adding a module 
that implements the functionality of the underlying 
finite automaton and its tracking, this method is 
repeatable and easy to maintain because of the 
inherent encapsulation. Because the method is based 
on mathematical foundations, it is inherently more 
reliable than the ad-hoc “on the fly” cleverness. 
Upon completion of this work, the deliverable will be 
dynamic fault management (both fault detection and 
fault correction) methods through path expression 
extension inspired methods for ensuring critical 
event sequences in high consequence software. These 
will be in the form of user embedded and compiler 
embedded methods. These methods will also work in 
distributed, multiprocessor environments. 
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