

City, University of London Institutional Repository

Citation: Bayer, J., Gacek, C., Muthig, D. & Widen, T. (2000). PuLSE-I: Deriving instances

from a product line infrastructure. In: Engineering of Computer Based Systems, 2000.
(ECBS 2000) Proceedings. Seventh IEEE International Conference and Workshop. (pp.
237-245). London, UK: IEEE Computer Society. ISBN 0-7695-0604-6 doi:
10.1109/ECBS.2000.839882

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/281/

Link to published version: https://doi.org/10.1109/ECBS.2000.839882

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

PuLSE-I: Deriving Instances from a Product Line Infrastructure

Abstract
Reusing assets during application engineering promises to
improve the efficiency of systems development. However,
in order to benefit from reusable assets, application engi-
neering processes must incorporate when and how to use
the reusable assets during single system development.
However, when and how to use a reusable asset depends
on what types of reusable assets have been created.

Product line engineering approaches produce a reusa-
ble infrastructure for a set of products. In this paper, we
present the application engineering process associated
with the PuLSE product line software engineering method
— PuLSE-I. PuLSE-I details how single systems can be
built efficiently from the reusable product line infrastruc-
ture built during the other PuLSE activities.

1. Introduction

Application engineering is the development of a single
software system. During application engineering, in order
to save time and effort, developers often practice ad-hoc
reuse of software assets.

This ad-hoc process has many problems. First of all,
locating candidate reusable assets is problematic. Devel-
opers typically only look for what they already know
about, thereby, missing many other candidates. Second,
once assets are found, it is often not possible to directly
reuse them. This is because the assets were developed with
certain assumptions about their environment, which are
often not documented. These uncaptured assumptions
often affect how the asset must be adapted. They may also
determine whether the asset can be reused at all. Finally,
managers have trouble estimating the development effort
because they do not know what might be reusable and how
much effort it could take to reuse what is available. Due to
these problems, the original reason to try to reuse assets,
which is to save time and effort during development, is not
realized.

Product line engineering is an approach to improve
development efficiency through reuse for families of sys-
tems whose functionalities overlap. Product line engineer-
ing methods typically focus on building a reuse
infrastructure, which contains reusable assets, that can be

used for efficiently building the members of the product
line. The single products are assembled from reusable
assets, and can therefore be developed more efficiently.
Additionally, the product line infrastructure supports
locating candidate assets for reuse, evaluating these assets,
adapting the assets, as well as helping managers estimate
and plan more accurately.

However, in order to benefit from the reuse infrastruc-
ture, defined methods for application engineering with the
reusable assets must accompany the processes for devel-
oping the reusable infrastructure. These methods are nec-
essarily tightly coupled with the assets to be developed
during product line engineering.

In this paper, we present PuLSE-I, the application engi-

neering process of PuLSETM (Product Line Software

Engineering)1. PuLSE is a full life-cycle product line
process [2]. The application engineering process is cen-
tered around the instantiation of the product line infra-
structure (the I in PuLSE-I stands for instantiation).

PuLSE-I is tightly dependent on the outputs of the
other PuLSE activities, therefore, we present an overview
of PuLSE in Section 2. Section 3 presents PuLSE-I, the
complete process and its underlying steps. Subsequently
an analysis of our approach and discussion of related work
is given in section 4. Section 5 concludes the paper.

2. PuLSE

PuLSE is a method for enabling the conception and
deployment of software product lines within a large vari-
ety of enterprise contexts. This is achieved via a product-
centric focus throughout its phases, customizability of its
components, an incremental introduction capability, a
maturity scale for structured evolution, and adaptions to a
few main product development situations.

Figure 1 shows an overview of PuLSE.
PuLSE is centered around three main elements: the

deployment phases, the technical components, and the
support components.

The deployment phases are logical stages of the prod-
uct line life cycle. They describe activities performed to
set up, use, and evolve product lines. The deployment

1. PuLSE is a registered trademark of the Fraunhofer IESE

Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany

{bayer, gacek, muthig, widen}@iese.fhg.de

Joachim Bayer, Cristina Gacek, Dirk Muthig, Tanya Widen

phases are:

• PuLSE initialization: PuLSE is customized to the con-
text of its application. The principle dimensions of
adaption are the nature of the domain, the project
structure, the organizational context, and the reuse
aims.
The initialization phase is realized by the technical
component for customizing, PuLSE-BC.

• Product line infrastructure construction: The product
line infrastructure is set up. This is done by scoping,
modeling, and architecting the product line.
These activities are realized by the corresponding
technical components PuLSE-Eco, PuLSE-CDA, and
PuLSE-DSSA, respectively.

• Product line infrastructure usage: The product line
infrastructure is used to create a single product line
member. This is done by instantiating the product line
model and architecture.
The PuLSE-I technical component realizes this phase.

• Product line infrastructure evolution: Concepts within
the domain or other requirements on the product line
may change over time. The evolution of the product
line is handled in this phase.
The process for controling evolution is realized by the
PuLSE-EM technical component.

The technical components provide the technical know-
how needed to operationalize the product line develop-
ment. They are used throughout the deployment phases.
The technical components are:

• Baselining and Customzation (PuLSE-BC): Baseline
the enterprise and customize PuLSE. The result is an
instance of PuLSE — that is, instances of the other

technical components — tailored to the specific appli-
cation context.

• Economic scoping (PuLSE-Eco [6]): Identify,
describe, and bound the product line. This is done by
determining the characteristics of the products that
constitute the product line. Economic scoping in
PuLSE means that the scope is determined with
respect to business objectives and planned products.
The output of PuLSE-Eco are the product characteris-
tic information and the scope definition. These out-
puts together describe the contents of the product line.
The product characteristic information describes the
common and variable characteristics of all products in
the product line.
The scope definition identifies the range of character-
istics that systems in the product line should cover.
The basis for the scope definition is a product map
that relates the characteristics to the different prod-
ucts. A product map is a table, which lists the charac-
teristics mentioned in the product characteristic
information as its rows and the products as its col-
umns. The table cells contain a cross when a product
contains a characteristic.
To determine the scope, the benefit provided by
including a characteristic into the scope relative to
business objectives is determined. The scope defini-
tion is then an identification of a subset of the charac-
teristics that shall be developed for reuse.
The benefit is calculated with functions. Characteriza-
tion functions describe the benefit of having a certain
characteristic in a certain product. The business objec-
tives are expressed in terms of benefit functions that
describe the benefit accrued by integrating a certain
characteristic into the product line scope. By gather-
ing values for the characterization functions, the bene-
fit functions can be solved to determine the
appropriate scope.

• Customizable Domain Analysis (PuLSE-CDA [3]):
Elicit the requirements for a domain and document
them in a domain model (a.k.a. product line model).
A product line model is composed of multiple work-
products that capture different views of a domain.
Each view focuses on particular information types
and relations among them. In the workproducts, com-
mon requirements (commonalities) and requirements
that vary for the different systems (variabilities) are
modeled. Therefore, they are referred to as generic
workproducts. There are three types of variabilities:
optional, alternative, and range requirements.
Each generic workproduct has defined meta elements
for each variability type. Meta elements indicate
points of variation and enable the instantiation of the

Customizing (BC)

Product L
ine

Infrastructure
E

volution

PuLSE Initialization

Product Line

Infrastructure

Construction

Product Line
Infrastructure Usage

Scoping (Eco)

Modeling (CDA)

Architecting (DSSA)

Evolving & Mgmt. (EM)

Project Entry Points Maturity Scale Organization Issues

Support Components

Deployment Phases Technical Components

Instantiating (I)

Figure 1. PuLSE Overview

workproducts.
The variabilities (expressed by meta elements) are
connected to decisions that, when completely
resolved, specify a particular system, a member of the
product line. The decisions are at different levels of
abstraction and are hierarchically structured based on
constraints among them. The decision hiearchy is
called the domain decision model.
To specify a particular system in the product line, the
product line model is completely instantiated. The
instance of the product line model is generated by
passing all resolutions of the decisions to the con-
nected meta elements, which instantiate their corre-
sponding part of the product line model.

• Domain Specific Software Architecture development
(PuLSE-DSSA [5]): Develop a reference (or domain
specific) architecture based on the product line model.
A reference architecture description consists of multi-
ple models that describe different views on the refer-
ence architecture. Each of the views is composed of
view-specific components and connectors that
describe the architecture from a different perspective.
Similar to a product line model, a reference architec-
ture description is an architecture description that also
captures variability in the architectures for the differ-
ent systems in the product line.
During the reference architecture development, cer-
tain decisions arise that are not driven by the domain.
These decisions may introduce domain-independent
variabilities. The resulting decision model is called
the architecture decision model.
An optional output of PuLSE-DSSA is a prototype
that may have been created.

• Instantiation (PuLSE-I): Specify, construct and vali-
date one member of the product line. This encom-
passes the instantiation of the product line model and
the reference architecture, the creation and/or reuse of
assets that constitute the instance, and the validation
of the resulting product. Additionally, reusable assets
that are needed, that have not been created yet, are
developed and put into the reusable asset base.

• Evolution and Management (PuLSE-EM): Guide and
support the application of PuLSE throughout the
deployment phases initialization, construction, usage,
and evolution.
PuLSE-EM is centered around three basic tasks: prod-
uct line management, evolution, and learning. Product
line management provides means for scheduling and
coordinating the technical components, as well as for
observing the product line and its environment to be
able to respond quickly to emerging needs. Product
line evolution supports systematic change request

processing. This includes the evaluation of change
requests and the assessment of their effects on exist-
ing parts of the product line infrastructure. Learning
analyzes the product line and changes that occur over
time. The goal is to learn about patterns of product
line evolution that would allow for acting in anticipa-
tion of future problems, needs, or changes.
Additionally, PuLSE-EM includes the configuration
management framework that underlies and supports
the product line infrastructure.

The support components provide guidelines that sup-
port the other components. They are:

• Project entry points: Project entry points are guide-
lines to customize PuLSE for a set of standard situa-
tions. For example, in reengineering driven PuLSE
projects, legacy assets are a major source of informa-
tion and guidelines on how to integrate them are given
in the respective entry point.

• Maturity scale: It is used to evaluate the quality of a
PuLSE process application in enterprises with the
intention to identify and improve weak points. The
levels on the scale are: initial, defined, controlled, and
optimizing.

• Organization issues: For PuLSE to be most effective,
an organization structure has to be set up and main-
tained that supports the development and manage-
ment of product lines. Guidelines on how to do that
are given here.

3. PuLSE-I

PuLSE-I uses the product line infrastructure to create and
maintain one member of the product line. The PuLSE-I
process is illustrated in Figure 2. The trigger for starting
PuLSE-I is a customer or the management having a prod-
uct request that can be satisfied by the product line (i.e.,
the requested product is potentially in the scope of the
product line). Based on the product request and the scope
definition developed in PuLSE-Eco, a plan is created for
the development of the requested product. This step is dis-
cussed in more detail in section 3.1.

The specification for the product is developed by
instantiating the product line model. Driven by the domain
decision model and using the generic workproducts from
PuLSE-CDA, the new product is specified. The instantia-
tion of the product line model is described in section 3.2.

Driven by the architecture decision model and using the
product specification, the architecture for the new product
is derived from the reference architecture. The instantia-
tion of the reference architecture is described in
section 3.3.

In the next step, the product is assembled from assets.
These assets are the result of one of the following activi-
ties: reuse of an existing product line asset, implementa-
tion of a non-existing product line asset, or
implementation of a product-specific asset. These steps
are described in section 3.4.

After the product has been finished, an acceptance test
is performed before the system is delivered (section 3.5).
When this test has been passed, the product is deployed
and enters its maintenance phase. Maintenance of products
created on the basis of a product line is discussed in
section 3.6.

3.1. Plan for Product Line Instance

PuLSE-I is started when there is a request for a new prod-
uct. If the product was considered during scoping, all char-
acteristics this product must have are covered by the
product line infrastructure. That is, they are in the scope
definition of the product line, integrated in the product line
model, and supported by the reference architecture.
Hence, all information needed for planing the project is
available.

However, as product lines are long term investments,
often new products that were not considered up front will

product process step control flow +EM
change request to PuLSE-EMproduce/consumeLegend

product characteristics
Information

scope definition

domain
decision model

product line model

architecture
decision model

prototype

reference
architecture

PuLSE-DSSA

PuLSE-CDA

PuLSE-Eco

PuLSE-I

instantiate and validate
reference architecture

implement non-existing
product line assets

plan for
product line instance

instantiate and validate
product line model

reuse existing
product line assets

implement
product specifics

system
delivery

product construction

product specification

product architecture

code

product

domain decision
model instance

product configuration

architecture decision
model instance

low level
configuration

product

product line
scope history

product line
model history

reference architecture
history

product line
code history

PuLSE-EM

test results

maintenance maintenance request

project plan

change request
customer/

product request

maintenance request

management

+EM

+EM

+EM

+EM

 line history

Figure 2. PuLSE-I Process

project
management

be requested, or individual customers may want custom-
ized versions of the planned products. In this case, an
activity must take place to gather the needed information
before a project plan can be created. That is, the overlap
between the required system and the current scope is eval-
uated and the realization effort for features, characteristics
representing functional requirements, beyond the product
line scope is estimated.

To get the needed information, first, the characteristics
required by and excluded from the new system are listed.
A new column is added to the product map and all
required characteristics are checked. Each additional char-
acteristic, which is beyond the current product line bound-
aries, is integrated into the product map. Then, the
extended product map is passed as a change request to
PuLSE-EM, the management and evolution component of
PuLSE.

In EM, the extended product map is forwarded to
PuLSE-Eco and the scoping process is re-entered to
decide for each additional characteristic whether it will be
integrated into the product line infrastructure. If necessary,
other technical components, the product line modeling and
architecting components, are involved in these decisions.
The result passed back to the planning step of PuLSE-I is
the new scope definition, which represents the (poten-
tially) adapted scope of the product line, as well as the
expected effort for the integration of the new characteris-
tics.

The realization of required characteristics that are still
outside the product line scope must be planned as system-
specific assets (i.e., independent of the product line infra-
structure). Later, these assets must be integrated with sys-
tem parts based on reused product line assets. If this is not
possible for all characteristics, some even required charac-
teristics must be refused because they will conflict with
parts of the product line infrastructure. In extreme cases,
when such a necessary exclusion is not acceptable for the
customer, the system may be developed but not considered
as part of the product line.

The result of the evaluation of the overlap between the
required system and the (potentially changed) product line
scope is the list of characteristics that the final system will
have. This list includes effort estimation for system-spe-
cific characteristics, as well as for characteristics within
the product line scope. This information is equivalent to
the information available when PuLSE-I is started for sys-
tems that have already been considered during the initial
scoping of the product line. Hence, the step for creating
the project plan, which uses the list as major input, can be
started.

The creation of a project plan for the development of a
product line member in PuLSE-I does not significantly
differ from the creation of a project plan for the develop-

ment of an individual product (i.e., one that is not built
using a product line infrastructure) [9]. However, the esti-
mation of reuse and thus of effort is based on more reliable
and explicit experience, as well as the risk of planning for
incompatible features is reduced.

In addition, the understanding of development costs for
single characteristics enables a more substantial negotia-
tion between developers and customers, or developers and
marketing. It enables developers to propose alternative
characteristics that reduce costs, to offer additional charac-
teristics that can be integrated with little effort (but add
value to the product), as well as to identify and plan useful
product increments.

The final result of the planning step is a detailed project
plan. This plan considers the set of characteristics upon
which the customer (or the marketing) and the developers
have agreed.

3.2. Instantiate Product Line Model

The product line model, which has been created during the
infrastructure construction phase, represents the require-
ments for the whole product line. The result of its instanti-
ation is equivalent to the specification of a particular
system, a member of the product line. That is, each
required characteristic is specified by a detailed descrip-
tion of how it will be supported.

Each characteristic specification uses the same product
model but there are two different processes for creating
them. The process depends on whether the characteristic is
covered by the product line scope, or whether it is system-
specific.

When it is in the scope of the product line, the charac-
teristic points to a set of top-level decisions in the decision
model. Where, a decision is an issue that represents a
domain-specific variability. It consists of a set of possible
resolutions and the descriptions of their impact on varia-
tion points within the product line model, or the con-
straints on the resolution of other decisions.

For specifying the product line instance, all decisions
that are constrained by top-level decisions to which at least
one of the required characteristics points and all remaining
decisions that have an impact on used assets must be
resolved. The constraint path defined by the relevant top-
level decisions through the decision hierarchy guides the
specification process and, thus, simplifies the complete
requirements elicitation. During this process, decision by
decision is resolved driven by the customer, and thus the
product line model is incrementally instantiated. The
instantiation result is defined by the impacts of each cho-
sen resolution in the decision model. With a tool (e.g.,
DIVERSITY/CDA [4]), the impacts of decisions made can
be visualized interactively enabling an immediate valida-

tion and feedback loop.
It is possible that none of the provided resolutions

result in a sufficient specification, that is, the requirements
from the current customer for some characteristic are not
captured in the product line model. In such a case, the
uncovered parts of the requirements are manually modeled
in the context of the partially instantiated product line
model. Additionally, a change request is sent to PuLSE-
EM to request the modification of the product line model.
The modification should enable the generation of the
required specification. If this is not possible, alternative
specifications, which fit into the existing infrastructure,
may be proposed to the customer. In cases, when only
specifications are acceptable that do not conform with the
existing product line infrastructure, the features that cause
problems must be ranked as system-specific. This must be
done although the feature is covered by the product line at
the more general characteristic level.

When a characteristic is not covered by the product
line, its requirements are directly elicited like it is done in
the development of single systems. However, the product
model is given by the product line infrastructure. There-
fore, the specifications used for product line and system-
specific features are compatible.

Finally, the specification of all features are integrated
into a single, unified document, the product requirements
of the system to be developed.

3.3. Instantiate Reference Architecture

The reference architecture created during the infrastruc-
ture construction phase must be instantiated for the partic-
ular system at hand (i.e., a software system architecture is
created, which is derived from the reference architecture
and reflects the current requirements).

The instantiation of the reference architecture into a
product-specific architecture is realized in two different
steps. First the reference architecture must be refined into
an intermediate architecture, that has all variabilities from
the reference architecture instantiated. Decisions that were
resolved during the instantiation of the product line model
are used, yet the resolution of architecture specific deci-
sions may also be required. When the currently considered
resolutions for one or more architectural specific decisions
are not satisfactory for the system under development, a
change request is sent to EM which may result in the cur-
rent requirements being revisited and changed, the archi-
tectural decision model being updated to cover the current
needs, or the conflicting requirements being treated as
instance specific ones. By the time all relevant decisions
present in the architectural decision model have been
resolved the resulting architecture does reflect no more
potential variation points, however it still requires the

instance specific parts to be added. The result of this step
is the definition of which parts of the reference architec-
ture should be reflected in the instance architecture, and
which ones should not.

Subsequently, this intermediate architectural represen-
tation must be extended in order to accommodate the
instance-specific requirements. That is, components and
connectors that were not present in the reference architec-
ture but are essential for achieving the features required
must be included in the intermediate architecture in order
to obtain a complete instance architecture. This addition of
components and connectors is not a simple process. Spe-
cial care must be taken so that architectural mismatches
are avoided when possible [7]. When such mismatches are
unavoidable, they must be handled appropriately (e.g., by
using wrappers or instrumented connectors [1]). Depend-
ing on the kind of mismatches encountered, it may even be
required that some of the reference architecture items be
modified to support this instance. In that case the modified
reference architecture items would be treated as instance-
specific items and not as part of the asset base.

The resulting product architecture is then used for
product construction.

3.4. Product Construction

Based on the product architecture, lower level design,
implementation, and testing must occur. This can be done
by (adapting and) reusing existing product line assets,
implementing non-existing product line assets, or imple-
menting product specific parts. Which assets should be
built as part of the product line and which ones should be
considered instance specific is decided while scoping the
product line.

Parts that are common to the product line may already
exist. If so, these may be reused, if not, these should be
developed for reuse. Parts that are instance specific must
also be implemented. All resulting parts must be inte-
grated and tested. This overall process should preferably
be done in an iterative manner.

The existence or not of reusable assets is determined by
following links between assets. During a PuLSE applica-
tion, traceability links are established. These are pointers
between assets that facilitate both assets search and their
consistent evolution. The domain model has concepts that
are reflected in the reference architecture, the reference
architecture has lower level design and code assets that
implement it, and so on. All of these relations among arti-
facts are then reflected via links for both traceability pur-
poses as well as for instantiation and implementation
support.

Reusing existing product line assets consists of finding
the appropriate assets, adapting them as needed, perform-

ing unit test on them to confirm that they may really sup-
port the current need, integrating them in the overall
product being built, and testing the resulting product.
Locating the appropriate assets is achieved by means of
traceability links from reference architecture to lower level
design and code. Since the product line asset base is kept
under configuration management, the usage of its assets is
documented and tracked.

Assets that are required in the product line asset base
but do not yet exist must be developed. Since these assets
are to be part of the product line asset base, their foreseen
uses are already reflected in both the domain model and
reference architecture. Lower level design of these parts
must be done in a generic fashion in order to support all
foreseen uses it may have. Clearly the actual code imple-
mentation should follow such generic low level design.
The assets that have been built for reuse must be thor-
oughly tested and potentially inspected. Their unit test
must reflect the current usage as well as the expected ones,
which may be achieved by simulating expected future
interfaces. After the newly developed asset has been thor-
oughly tested and approved, it should be added to the

product line asset base1 and placed under configuration
management accordingly. At that time the asset should
also be integrated in the product under development and
undergo integration and/or system test.

The reuse infrastructure and reusable assets for specific
product lines may adopt different implementation
approaches. Reusable code assets may be black box com-
ponents, parameterizable black box components, tem-
plates, customizable via scripts, or require manual
adaptations. Hence, upon retrieval of a previously existing
reusable asset or the development of a new one, some
adaptation effort may be required. The amount of adapta-
tion effort required is a function of the implementation
approach adopted by the asset.

As previously discussed, specific products will also
contain some unique requirements which must be fulfilled.
Their design, implementation, and testing are performed
according to criteria different to those imposed on the
reusable assets. They must reflect the current product
requirements and instantiated architecture, but do not have
the same genericity and flexibility needs as the ones
imposed on the reusable assets. This is not to say that they
will be handled with less rigour, this simply means that
their acceptance criteria are less stringent. Still inspec-
tions, unit tests, integration, and integration tests must be
performed.

3.5. System Delivery

After the product construction, which is finished when the
system passed the integration test, the system is delivered.
The delivery process depends on the market size.

For the mass market, the system must first be packaged
together with an installation guide to enable any customer
to install it at his/her machine. This includes the evaluation
and recommendation of possible system environments.
Before the system is publicly available, it enters a beta test
phase. That is, the system is distributed among a selection
of users to test it in real usage environments.

For small markets, like for individual systems for single
customers, the system is installed by the developers at the
customer’s site. There are several strategies for introduc-
ing the new system into the customer’s business processes.
It can immediately replace the running system which is
characterized by low costs, brief instability, and high con-
fidence that the new system works. The opposite strategy,
which duplicates work, is to run both systems, the old and
the new one, in parallel. In most cases, the chosen strategy
is a combination of these two: the new system replaces
part by part the old one. Thereby, a part can be a system
module whose functionality is replaced by the new sys-
tem, or a subset of the customer environment that switches
to the new system.

Independent of the introduction strategy, tutorial mate-
rial, user documentation, and technical training courses
ideally tailored to the needs of each user class must be
planned and prepared. The introduction process for the
new system (or at least parts of it) serves as acceptance test
for the system.

The focus of both the beta testing and the individual
introduction is on useability aspects, such as performance,
security, reliability, and human factors (e.g., the user inter-
face).

In a product line context, all activities during system
delivery are repeated for each member of the product line.
Therefore, the gained experience can be reused and
ensures a high quality of the first system shipped to the
customer. Of course, products like tutorial and training
material can be reused like any other asset of the product
line infrastructure.

3.6. Maintenance

After the system has been delivered and its PuLSE-I
instance enters the maintenance phase. Maintenance is
usually divided into four major categories: corrective,
adaptive, perfective, and preventive [10]. The main goal of
maintenance in the context of software product lines is that
over the whole life-cycle all product line members are
based on the same, common asset base. In PuLSE, the
maintenance activities are distributed among the set of

1. Adding a reusable asset to the product line asset base
involves actions like placing it under configuration man-
agement, introducing the appropriate links, as well as fol-
lowing the appropriate classification scheme being used.

PuLSE-I instances and PuLSE-EM, the product line infra-
structure evolution and management component.

In this section, the maintenance process is described
from a single PuLSE-I instance’s point of view. Its mainte-
nance process is triggered by maintenance requests initi-
ated by users of the local system (i. e., the system that has
been delivered by the PuLSE-I instance itself), or by tasks
sent by PuLSE-EM because of changes made to the prod-
uct line infrastructure.

When a user of the local system initiates a maintenance
request, first, the maintenance must be categorized by the
appropriate PuLSE-I instance to determine how it is han-
dled.

For corrective maintenance, which handles error
reports from users, the diagnosis of the occurred errors, as
well as their local correction are done in the context of the
maintenance request (i.e., in the context of the local sys-
tem). If the correction impacts product line assets, the
maintenance request together with the diagnosis and cor-
rection report are passed as change request to PuLSE-EM.
Then, the locally corrected system is usually not released
(only in critical cases) but the local PuLSE-I instance
waits for the notification by PuLSE-EM when the changes
are integrated into the common product line infrastructure.
Hence, the maintenance process returns into its wait state.

For adaptive and perfective maintenance, which handle
changes of the system environment and requests for new
or modified capabilities, the planning step is re-entered to
prepare a potential new iteration of the development proc-
ess (see section 3.1). Preventive maintenance will never be
requested by users of a specific system. It is done within
the learning process of PuLSE-EM, which analyzes the
evolution of the product line over time to predict changes
anticipated for future products.

When the product line infrastructure has been changed
because of a change request passed by any PuLSE-I
instance to the product line management, PuLSE-EM
sends notifications to all PuLSE-I instances that are in the
maintenance wait state. When such a notification is
received by a PuLSE-I instance, it checks whether the
changed assets of the infrastructure have been used for
generating its local system. If they have not been used, the
local system and its future re-generations are not affected
by the changes made. Then, the PuLSE-I instance returns
immediately to the maintenance wait state.

In the other case, when the changed assets have been
used, it must be ensured that the local system can be
regenerated using the changed product line infrastructure.
Therefore, the existing decision model instances are used.
If the re-generation is possible, the product is still a mem-
ber of the product line and thus can share the common
product line infrastructure. Before the PuLSE-I instance
returns into the maintenance wait state, it decides whether

the regenerated system is released. This decision depends
on the quality and quantity of the changes made since the
last release of the local product.

If the re-generation of the product is not possible, a
change request is sent to PuLSE-EM, which describes the
problems occurred during the re-generation process. When
the infrastructure can be modified to support both the lat-
est maintenance requests and the requirements of the local
product, the problems are solved and thus a re-generation
can be successful. The maintenance process decides (as
described above) upon releasing the generated product and
then returns into its wait state.

If it is not possible to solve the problems concerning
the generation, the local product is no longer a member of
the product line. Consequently, there cannot be any
releases or updates on the basis of the common product
line infrastructure in the future. Except, the local require-
ments are changed to enable the product generation again.
To decide upon useful adaptations of the requirements to
the common infrastructure, the planning step is re-entered
(see section 3.1). If no acceptable adaptation of the
requirement can be found, the product is either maintained
individually or can no longer be supported. However, the
maintenance in the context of the product line infrastruc-
ture and thus the local PuLSE-I instance for the particular
product is stopped.

4. Related Work and Analysis

PuLSE-I was developed to ensure a tight connection
between the results created during product line infrastruc-
ture development and the process that uses these results.
The PuLSE method is in the same category as domain
engineering methods, for example, Organizational
Domain Modeling (ODM), the Domain-Specific Software
Architecture approach (DSSA), and Synthesis [12, 13,
11]. However, most of these methods do not supply spe-
cific processes for application engineering that define how
to use the results produced for reuse. Synthesis does actu-
ally provide such a process, and in some respects PuLSE-I
is similar to that process. Both application engineering
processes are driven by a decision model. However, the
assets in the reuse infrastructures created by PuLSE and
Synthesis are different. Therefore, the application engi-
neering processes differ by optimizing the benefits of the
reusable assets produced.

PuLSE-I is also related to the process for Application
System Engineering (ASE) described by Jacobson et al.
[8]. However, the ASE process has no decision model.
Therefore, all the models produced are checked for what is
needed in the instance and system specifics are added to
those chosen.

PuLSE-I has to also deal with many of the same issues

that more general reuse techniques, such as component
libraries, deal with. These issues include finding, evaluat-
ing, adapting, and combining components. The PuLSE
reusable assets: product line scope, domain model, and
architecture, address all of these issues.

First of all, traces, or links, are maintained between the
architecture to the reusable code components, so possible
reusable components can be found with the instantiated
architecture. Evaluation of the possible components to
reuse out of a given set of candidates is also simplified
through the explicit modeling of variabilities and their
impact on components. Additionally, all of PuLSE’s reusa-
ble assets (scope, domain model, architecture) provide
information related to the context of use of reusable code
assets, and, therefore, provide additional information (that
is not available for generally reusable components) that
help in adapting components. Finally, the architecture
addresses the issue of how to combine components. There
are still open issues concerning the creation of architec-
tures that best support combining components.

5. Conclusion

To succeed with product line engineering it is necessary to
have a systematic application engineering process that
incorporates when and how to use the assets from the
reuse infrastructure. This process enables product line
members to be built efficiently. Such a process is necessar-
ily tightly coupled with the type of reusable assets pro-
duced.

In this paper, PuLSE-I, the application engineering
process for PuLSE, was presented. This process is cen-
tered around the decision models. The decision models,
along with the traceability links between all other outputs,
enable the identification of reusable assets at all levels
from the top level decisions.

So far, experience with the process has been positive.
However, it is still only described at a high level. We are
currently working on a guidebook, with lessons learned
from our experience, to extend the process.

Acknowledgements
The authors would like to thank all the other contributors
to PuLSE: Oliver Flege, Peter Knauber, Roland Laqua,
and Klaus Schmid.

References
[1] Balzer, R. “An Architectural Infrastructure for Prod-

uct Families.” In Proceedings of the Second Interna-
tional ESPRIT ARES Workshop, February 1998.

[2] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig,
D., Schmid, K., Widen, T., DeBaud, J.M. “PuLSE: A
methodology to develop software product lines.” In
Proceedings of the Symposium on Software Reusa-
bility (SSR’99), May 1999.

[3] Bayer, J., Muthig, D., and Widen, T. “Customizable
Domain Analysis,” in Proceedings of Generative
and Component-Based Software Engineering Con-
ference, September 1999.

[4] Bayer, J., Muthig, D., and Widen, T. “Support for
Domain and Variant Engineering: Diversity/CDA,”
Submitted for publication, 1999.

[5] Bayer, J., Flege, O., and Gacek, C., “Creating Prod-
uct Line Architectures,” submitted for publication,
1999.

[6] DeBaud, J.M. and Schmid, K. “A Systematic Ap-
proach to Derive the scope of Software Product
Lines.” In Proceedings of the 20th International
Conference on Software Engineering (ICSE’99), pp.
34-43, IEEE Computer Society Press, 1999.

[7] Gacek C., Detecting Architectural Mismatches Dur-
ing Systems Composition, Doctoral Dissertation,
Center for Software Engineering, University of
Southern California, Los Angeles, CA 90089, USA,
December 1998.

[8] Jacobson, I., Griss, M., and Jonsson, P. Software Re-
use Architecture, Process and Organization for Busi-
ness Success, ACM Press, 1997.

[9] Miller W. B., “Fundamentals of Project Manage-
ment,” in Software Engineering Project Manage-
ment edited by Thayer R. H., IEEE Computer
Society Press, 1997.

[10] Pressman R. S., Software Engineering; A Practition-
er’s Approach, McGraw-Hill Book Company, 1996.

[11] Software Productivity Consortium Services Corpo-
ration. Reuse Adoption Guidebook, Version
02.00.05, November 1993.

[12] Software Technology for Adaptable Reliable Sys-
tems. Organization Domain Modeling (ODM)
Guidebook, Version 2.0. Unisys STARS Technical
Report STARS-VC-A025/001/00, Reston VA, June
1996.

[13] Tracz, W. and Coglianese, L. Domain-Specific Soft-
ware Architecture Engineering Process Guidelines,
Technical Report ADAGE-IBM-92-02, Loral Federal
Systems, 1992.

