
1

An Agent-based Bayesian Forecasting Model for Enhanced Network
Security

J. PIKOULAS, W.J. BUCHANAN, Napier University, Edinburgh, UK.
M. MANNION, Glasgow Caledonian University, Glasgow, UK.

K. TRIANTAFYLLOPOULOS, University of Warwick, UK.

Abstract
Security has become a major issue in many organisations,
but most systems still rely on operating systems, and a
user ID and password system to provide user authentica-
tion and validation. They also tend to be centralized in
their approach which makes them open to an attack. This
paper presents a distributed approach to network security
using agents, and presents a novel application of the
Bayesian forecasting technique to predict user actions.
The Bayesian method has been used in the past on
weather forecasting and has been expanded so that it can
be used to provide enhanced network security by trying to
predict user actions. For this a system can determine if a
user is acting unpredictably or has changed their normal
working pattern. Results are also given which show that
the new model can predict user actions, and a set of ex-
periments are proposed for further exploitation of the
method.

1. Introduction
Computer security is a major concern for organizations.
Whilst security violations can be caused by external users
(hackers), Carter and Catz [1] have shown that the primary
threat comes from individuals inside an organisation.
Hence much more emphasis has to be placed on internal
security mechanisms.
 External network attacks can be categorised [4] into IP
spoofing attacks [5], Packet-sniffing [6], sequence number
prediction attacks and trust-access attacks. Categories of
internal attack include Passwords attacks [7], session hi-
jacking attacks, shared library attacks, social engineering
attacks, and technological vulnerability attack.
 Computer network security programs can be categorised
as follows [3]:

• Security enhancement software. This enhances or

replaces an operating system’s built-in security soft-
ware (for example, Mangle It, Passwd+ and Shadow).

• Authentication and encryption software. This en-
crypts and decrypts computer files (for example, Ker-
beros, MD5, RIPEM, and TIS Firewall Toolkit).

• Security monitoring software monitor. This moni-
tors different operations of a computer network and
outputs the results to system administrators (for ex-
ample, Abacus Sentry, COPS, Tripwire and Tiger).

• Network monitoring software. This monitors user’s
behaviour or monitors incoming or outgoing traffic
(for example, Argus, Arpwatch and ISS).

• Firewall software and hardware. This runs on the
Internet/intranet entrance to a computer network, and
checks all incoming network traffic for its contents at
the network and transport layers of the OSI model. At
the network layer, typically the Internet Protocol (IP)
addresses are filtered for their source and/or destina-
tion, and at the transport layer, the TCP ports and
monitored (thus FTP and TELNET traffic could be
blocked for incoming data traffic, but SMTP (elec-
tronic mail) could be allowed).

These methods are generally centralised applications with
no real time response and have no mechanism to foresee
future user events. These methods also have a central focal
point for security (typically a main server), which could
itself become the focus of an attack (such as a denial-of-
service attack, where the server is bombarded with hoax
requests, which eventually reduces its quality of service to
its clients).
 The method involved in this research is distributed,
and does not depend on a central point of failure. It also
gathers user behavioural information and it makes a pre-
diction on what the user might do in the future. This paper
presents a distributed approach to network security using
agents, and presents a novel application of the Bayesian
forecasting technique to predict user actions. The Bayesian
method has, in the past, been used for weather forecasting
and has been expanded so that it can be used to provide
enhanced network security by trying to predict user ac-
tions. For this a system can determine if a user is acting
unpredictably or has changed their normal working pat-
tern. Results are also given which show that the new
model can predict user actions, and a set of experiments
are proposed for further exploitation of the method.
 In choosing a computer network security solutions, the
dominant issues are: cost; the desired level of security: and
the characteristics of the existing operating system envi-

2

ronment. Three mechanisms for illegal behaviour detec-
tion are commonly used in computer network security
programs [8], and can be applied to all five categories of
computer security program.

Statistical Anomaly Detection
Statistical anomaly detection systems analyse audit-log
data to detect abnormal behaviour [9]. A profile of ex-
pected online behaviour for a normal user is predefined
and derived from how an organisation expects a user to
behave and from a system administrator’s experience of
the way a user is expected to use the resources of a system.
Typically, the audit logs are analysed and processed for
statistical patterns of events for typical operations for
which to determine usage patterns. These patterns are
compared to the user’s profile.
 The system then warns the administrator that there has
been a possible intrusion when a profile is different to a
usage pattern. The major drawback with this technique is
that it cannot predict extreme changes in user behaviours,
as changes in a user’s behaviour normally identify a secu-
rity breach.

Rule Based Detection
Rule-based detection systems use a set of generalised rules
that define abnormal behaviour (10,12,13). These rules are
formed by analysing previous different patterns of attack,
by different people. The drawback of this system is that
the basic rules are predefined by system administrators,
and cannot detect any new attack techniques. If a user ex-
hibits behaviour that is not prescribed by the existing
rules, the user can harm the system without being detected.

Hybrid Detection
Hybrid detection systems are a combination of statistical
anomaly detection and rule-based detection systems.
These, typically, use rules to detect known methods of
intrusion and statistical based methods to detect new
methods of intrusion.
 CMDS (Computer Misuse Detection System) [14] is a
security-monitoring package that provides a method to
watch for intrusions, such as bad logins or file modifica-
tions. It also monitors for the difficult detection problems
such as socially engineered passwords, trusted user file
browsing and data theft that might indicate industrial es-
pionage. CMDS supports a wide variety of operating sys-
tems and application programs. The drawback of this sys-
tem is that it uses statistical analysis to make additional
rules for the system. This is a drawback, as it can only
detect attack patterns that have been used in the past and
identified as attack patterns, or predefined by the system
operators. It also generates long reports and graphs of the
system performance that require to be interpreted by a
security expert.

4 Bayesian Intrusion Detection System
We used a Bayesian multivariate statistical model because
our problem is a linear multivariate problem and it is sim-
pler faster and more accurate to use a linear model than a
non-linear model like neural networks [24]. In order to test
this an intelligent agent security enhancement software
system was constructed, in which a core software agent
resides on one server in a Windows NT network system
and user end software agents reside in each user work-
station. The software for each type of agent was written in
SUN Java JDK Version 1.2 on a Microsoft Windows NT
Version 4 environment running over a 10/100 Mbps net-
work. There is one server and 10 clients. Figure 1 shows a
core agent communicating with many user agents. A
communication thread is a unique process that the core
agent creates to transmit data to the user end agent in re-
sponse to message transmitted from the user end agent.
Unique processes enable the core agent to communicate
with each user agent effectively and efficiently thereby
enabling a fast response to network monitoring. Once the
core agent has responded to a user agent, the process is
killed.

The system uses a hybrid detection technique, where
invalid behaviour is determined by comparing a user’s
current behaviour with their typical behaviour and by
comparing their current behaviour with a set of general
rules governing valid behaviour formed by systems admin-
istrators. Typical behaviour is contained in a user histori-
cal profile.

Profile
reader

Predictor

Sensor

Communication
thread

GUI

Transmitter

Comparator

Communication
thread

Core
connection

engine

Communication
thread

Communication
thread

Communication
threadGUI

Profile
reader

Predictor

Sensor

Communication
thread

GUI

Transmitter

Comparator

Communication
thread

Core
connection

engine

Communication
thread

Communication
thread

Communication
threadGUI

Figure 1: Agent Environment Topology

The user agent software has four components:

• A sensor. The sensor monitors the various software

applications (such as a word processor or a spread-
sheet) that are currently being run by the user on that
workstation. When a user logs-in the sensor polls the
user’s activity every five seconds and records the
user’s identifier and each application’s name and
process identifier.

• A transmitter. After the first polling by the sensor,
the transmitter sends this information to the core
agent. The core agent then responds by sending a user

3

historical profile. With an audit-log file for a period of
one month, we observed that the size of an average
user profile was between 400 KB and 600 KB, with a
download time of between three and five seconds.

• A profile reader. The profile-reader reads the user’s
historical profile.

• A comparator. This compares the user’s historical
profile with the information read by the sensor. If the
current behaviour profile does not fall within the ac-
cepted behaviour pattern defined by the user historical
profile, the comparator provides the transmitter with
the following information: user identifier, invalid be-
haviour type and corresponding invalid behaviour
type data.. This is then sent to the core agent.

When invalid behaviour occurs, several courses of action
are available, such as:

1. Warning message to the system administrator or end

user.
2. Kill the specific application that has caused invalid

behaviour.
3. Prevent the end user from running any further applica-

tions.
Cases 2 and 3 can be achieved locally at the client work-
station, and in Case 1, the user agent informs the core
agent and the core agent informs the systems administra-
tor. The user agent terminates when a user logs off.
 Figure 2 shows the complete model for the forecasting
system, where a core agent reads the user profile, which is
then received by the user agent. The user agent then pre-
dicts the usage against the forecast. Eventually when the
user logs off the user profile is updated and sent back to
the core agent.
 In the traditional method of forecasting, a user event
would be averaged over long time intervals (in Figure 3).

User
agent

User
agent

Core
agent

Core
agent

Core agent
sends forecasting
information

Agent monitors
current usage

Agent compares
usage with
forecast

Agent compares
usage with
forecast

User agent alerts
the core agent on
any differences
in activity.

User logs offUser agent
updates the

forecasting model

User agent
updates the

forecasting model

User agent
returns the
updated model
for the user

ProfileProfile
ProfileProfile

ProfileProfileUser
Profile

User
Profile

User
agent

User
agent

Core
agent

Core
agent

Core agent
sends forecasting
information

Agent monitors
current usage

Agent compares
usage with
forecast

Agent compares
usage with
forecast

User agent alerts
the core agent on
any differences
in activity.

User logs offUser agent
updates the

forecasting model

User agent
updates the

forecasting model

User agent
returns the
updated model
for the user

ProfileProfile
ProfileProfile

ProfileProfileUser
Profile

User
Profile

Figure 2: Agent forecasting model

t

t

t t t
Current
forecasted model

Current
user profile

New user
profile

Usage over
login period New user

profile

× Requires large amounts
of storage

× Gaps in data reduces
prediction

Less storage
Faster processing

Forecasting method of generating user profile for applications

Averaging

User
logins t

tt

t t tt
Current
forecasted model

Current
user profile

New user
profile

Usage over
login period New user

profile

× Requires large amounts
of storage

× Gaps in data reduces
prediction

Less storage
Faster processing

Forecasting method of generating user profile for applications

Averaging

User
logins

Figure 3: Traditional method of generating user profile for

applications

5 Prediction Model
When our intrusion detection system is installed, the pre-
diction part monitors the user behaviour for 15 times. Af-
ter that, it evaluates itself for five times. After this it is
ready to make an accurate prediction. Our model has three
stages of operation. The stages are:

1. Observation stage. In this stage the model is moni-

toring the user and records its behaviour.
2. Evaluation stage. In this stage the model makes a

prediction and also monitors the user actual move-
ments and calculates the result. This stage is critical,
because the model modifies itself according to the
environment that it operates in.

3. One-step prediction. In this stage the model makes
a single step prediction. For example, assume that the
user is logged in for 15 times and the model is con-
figured, and it is ready to start predicting user moves.
Instead of making a five or ten step prediction, like
other mathematical models, our model makes a pre-
diction for the next step. When the user logs in and
out of our model, it takes the actual behaviour of the
user, compares it with the one step prediction that it
has performed before and calculates the error. So the
next time a prediction is made for this user it will in-
clude also the data of the last user behaviour. With
this procedure we maximise the accuracy of the pre-
diction system.

The proposed forecasting method improves this by requir-
ing much less memory storage. Figure 4 shows a generic
model for the predicting using parameters for a given win-
dow size (n), time units and prediction number (z).

4

Window size (n)

Bayesian
method

Bayesian
method

Time unit (i)

A
pp

lic
at

io
n

us
ag

e
(%

)

Prediction number
(z)

Sample parameters:
n = 15
z = 5
Time unit = 1 hour

Window
stored when
user logs off

Window
stored when
user logs off

δ, β

Window size (n)

Bayesian
method

Bayesian
method

Time unit (i)

A
pp

lic
at

io
n

us
ag

e
(%

)

Prediction number
(z)

Sample parameters:
n = 15
z = 5
Time unit = 1 hour

Window
stored when
user logs off

Window
stored when
user logs off

δ, β

Figure 4: Forecasting calculation

The general multivariate model (DLM) is given by the
next equations:

],0[~,' Σ+= NvvFY ttttt θ (1)

],0[~,1 tttttt WNG ωωθθ += − (2)

We use multivariate models because we want to incorpo-
rate and forecast several variables simultaneously. Again
note that the fact that the parameters tθ change both de-
terministically (through t) and stochastically (through the
variance tW), and thus make the model dynamic. Also
standard ARIMA (Auto-Regressive Integrated Moving
Average) models are a special and restrictive case of the
above model, when you set FFt = , GGt = and WWt =
(all these three components are constant over time). This is
restrictive since all these components are likely to change
over time because e.g. (1) changes over time and there are
other external sources of variation (such as extra subjec-
tive information about a variable). Moreover, equation (2)
is not observable. This means that we never are going to
see any evolution or trend in a diagram or a graph. This is
a hidden model that cannot assume tW to be constant over
time. There is another large problem that we cannot ignore
in multivariate models. The variance matrix Σ will not be
known. Often, in standard time series, it is assumed known
and they easily jump to another problem. However, in
practice, this is extremely difficult to set it as a known
matrix. It is very difficult to propose what variance to use
to a system where 20 applications are considered and only
20 or 30 vectors are collected as data.
 So for all these reasons we need to consider the dynamic
models. Also, the system could provide forecasting as
much ahead as we like, proving very accurate according to
the results. For this purpose we used a Bayesian frame-
work, which virtually means that at time t we will have

some kind of knowledge, that is a subjective belief, ex-
pressed in terms of a distribution. This is the prior distri-
bution of)|(1−tt Dθ at time t. In other words, it is what we
know before tY becomes available. Once this happens, we
revise this prior belief, using the likelihood function, to
find the posterior distribution)|(tt Dθ or revised, which is
better and more accurate. Then according to simple calcu-
lations, we find the prior of time t–1 and we calculate the
posterior at t+1, only when information of the data

1+tY comes in to the system (e.g. in our case is the real be-
haviour of the user). The model used becomes:

• Autoregressive moving average model. The general

model introduced by Box and Jenkins (1976) includes
autoregressive as well as moving average parameters,
and explicitly includes differencing in the formulation
of the model. Specifically, the three types of parame-
ters in the model are: the autoregressive parameters
(p), the number of differencing passes (d), and mov-
ing average parameters (q). In the notation introduced
by Box and Jenkins, models are summarized as
ARIMA (p, d and q); so, for example, a model de-
scribed as (0, 1, 2) means that it contains 0 (zero)
autoregressive (p) parameters and 2 moving average
(q) parameters which were computed for the series af-
ter it was differenced once.

• Identification. As mentioned earlier, the input series
for ARIMA needs to be stationary, that is, it should
have a constant mean, variance, and autocorrelation
through time. Therefore, usually the series first needs
to be differenced until it is stationary (this also often
requires log transforming the data to stabilize the
variance). The number of times the series needs to be
differenced to achieve stationary is reflected in the d
parameter (see the previous paragraph). In order to
determine the necessary level of differencing, one
should examine the plot of the data and autocorrelo-
gram. Significant changes in level (strong upward or
downward changes) usually require first-order non-
seasonal (lag=1) differencing; strong changes of slope
usually require second order non-seasonal differenc-
ing. Seasonal patterns require respective seasonal dif-
ferencing (see below). If the estimated autocorrelation
coefficients decline slowly at longer lags, first-order
differencing is usually needed. However, one should
keep in mind that some time series may require little
or no differencing, and that over differenced series
produce less stable coefficient estimates.
At this stage we also need to decide how many auto-
regressive (p) and moving average (q) parameters are
necessary to yield an effective, but still efficient,
model of the process (that is with the fewest parame-
ters and greatest number of degrees of freedom among

5

all models that fit the data). In practice, the values of
the p or q parameters are rarely greater than two (see
below for more specific recommendations).

• Estimation and Forecasting. At the next step (esti-
mation), the parameters are estimated (using function
minimization procedures), so that the sum of squared
residuals is minimised. The estimates of the parame-
ters are used in the last stage (forecasting) to calculate
new values of the series (beyond those included in the
input data set) and confidence intervals for those pre-
dicted values. The estimation process is performed on
transformed (differenced) data; before the forecasts
are generated, the series needs to be integrated so that
the forecasts are expressed in values compatible with
the input data. This automatic integration feature is
represented by the letter I in the name of the ARIMA
methodology.

In addition to the standard autoregressive and moving av-
erage parameters, ARIMA models may also include a con-
stant, as described above. The interpretation of a statisti-
cally significant constant depends on the model that is fit.
Specifically:

if there are no autoregressive parameters in the
model, then the expected value of the constant is
µ the mean of the series;
if there are autoregressive parameters in the se-
ries, then the constant represents the intercept.

If the series is differenced, the constant represents the
mean or intercept of the differenced series; For example, if
the series is differenced once, and there are no autoregres-
sive parameters in the model, the constant represents the
mean of the differenced series, and therefore the linear
trend slope of the un-differenced series.
 ARIMA models are similar to our model. They use the
existing data to calculate the parameters of the model. But
if, for example, some external information is available. For
example, we may know that it is the x user and although he
does not have an illegal user profile, it is very probable
that at a specific point of time he will perform a huge inva-
sion to an important application. ARIMA will try to
change the parameters to adjust the model, but even in this
case, it is doubtful how well the model will do in all the
applications. With our DLM it is not a problem. Simply
we add to the prior information we have, the external in-
formation. This is named expert intervention, and the re-
vised posterior takes into account the new knowledge. Our
system is not assumed perfect when the model is fitted,
and we let information, no matter what its sort, to make us
learn and improve the system.
 Now our model is slightly different than the one we use
for illustration purposes. We find recurrence relationships,

which are more natural to overall long formulae that
ARIMA works out. We note that because ARIMA is quite
complicated, many practitioners end up to a simple, very
simple subclass of ARIMA model, not even sometimes
stating the assumptions. This produces results that some-
times do not correspond to the real application. The only
difficulty with the DLMs is the specification of the initial
values, such that the algorithm may be put into practice. In
general this requires to be solved by the experience of the
individual practitioner.
 In our case, we have to specify the following:

00000 *,,,,,, mFnSCm tδβ is the mean of)|(00 Dθ and 0C
its variance. The choices made are:

• 00 =m . This is set when we expect that the prior

distribution)|(00 Dθ (the distribution of the parame-
ter Θ at time t given 0D - any initial information
which is explicitly known) will not give any drift to

1Y . The fact that we expect this to happen, but we are
not sure, so there is here an uncertainty, which is ex-
pressed by the variance 0C . It is natural and common
policy to assume IC =0 , the identity matrix. But care
must be taken when we are very uncertain about our
choice we MUST increase the diagonal elements of

tC . Of course, this affects all the following results
somehow, but the approach is more realistic. In gen-
eral we will have more data vectors than 15, or 20
(our case), hence initial values will dominate the ac-
tual estimates in a decreasing rate.

• IC =0 . This is motivated by our belief that 0m is not
important to the following values of tY , t=1, ... 0S is
typically, almost always set to I and it has not got any
special meaning. The only one we can find is that it is
chosen such that according to the formula that we
have to calculate 0, SSt must lead to acceptable re-
sults (symmetric matrices). The 0n can be set to 0 (a
case which implies 11 =n , without great loss) or

10 =n (a case which implies 11 += βn). The choice of

0n is not crucial since there is theorem that states that

tS converges to Σ as t goes to infinity and it does not
depend on 0n . But it must take small values.

• δ . The δ choice is discussed with details in Ameen
and Harrison (1982a) where it is shown that it must be

185.0 << δ and quite high. Thus we have set it 0.95.
• β . The β is a discount factor as well. In this docu-

ment we state that it has to be smaller than δ , as, in
general, tS is not so much influenced by the data as it

is tm . Note that δ is in tA and so it influences tm .

6

The components are defined as:

0m : The mean of the influence of 11 ,YΘ from 0D , our
initial info.

0C : Dispersion of the above influence.

0S : No meaning, and is an auxiliary quantity for tS .

0n : No meaning, and is an auxiliary quantity for tn .
β : Factor of the influence of the data to the estimate

tS .
δ : Factor of the influence of the data to the estimate

tm .

tF : A basic quantity that expresses the linearity of the
model and gives different trends to the several val-
ues of tY , both for time series analysis (what has
happened in the past) and forecasting (what will
happen in the future).

Finally, we make clear that when we say factor in the
above explanation we do not mean any percentage or
whatever. Factor means discount factor, which means that
the estimates of tm and tS are discounted somehow and
in different rate, since both are influenced by data.

Window size (n)

Bayesian
method

Bayesian
method

Time unit (i)

A
pp

lic
at

io
n

us
ag

e
(%

)

Sample parameters:
n = 15
z = 5
Time unit = 1 hour

Window
stored when
user logs off

Window
stored when
user logs off

InterventionIntervention

Additional exceptional data
(varies the sensitivity of system)

ωtδ, β

Window size (n)

Bayesian
method

Bayesian
method

Time unit (i)

A
pp

lic
at

io
n

us
ag

e
(%

)

Sample parameters:
n = 15
z = 5
Time unit = 1 hour

Window
stored when
user logs off

Window
stored when
user logs off

InterventionIntervention

Additional exceptional data
(varies the sensitivity of system)

ωtδ, β

Figure 5: Forecasting calculation with intervention

Intervention
Intervention is a mechanism for improving the prediction
accuracy. It is used when there is additional information
about the future behaviour of the system, and can be added
to the model prior the prediction. For example if there is
some users that are keen on using illegal software or there
are new users that there is not enough information about
their behaviour, by applying the intervention mechanism,

we increase the accuracy of the model and can make more
accurate predictions (Figure 5).
 In our model we can observe this by looking at Figure
and Figure . In these we can observe that our model pre-
diction is very close to the actual users behaviour for the
application number one at the specific time t=19. We
achieved this accuracy by applying the intervention tech-
nique. We can also observe that the ARIMA model did not
make any prediction for this particular user behaviour.

Results and experiments
The first set of experiments are made in order to test our
security environment to the extent that it works and to get
some results from our proposed statistical model and com-
pare it with other statistical models.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Invasion time (hours)

Real
observations

Learning
phase

Using
prediction
model

Time (hours)

Prediction for Application 1 (using model) Parameters:
n = 15
z = 5
Time unit = 1 hour

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Invasion time (hours)

Real
observations

Learning
phase

Using
prediction
model

Time (hours)

Prediction for Application 1 (using model) Parameters:
n = 15
z = 5
Time unit = 1 hour

Figure 6: The Real Observations of the Model

Our environment is vastly improved with the use of the
prediction mechanism. Our system is not using the real
time data that its agents gather only for real time detection.
Our addition of the prediction model in our environment,
increases its functionality and its usability to the maxi-
mum.
 Figure 8 shows one user that logged on to the system 20
times and had one hour sessions each time. We monitored
all their moves and all the applications that he used. In our
prediction model we had only three applications to predict.
The intervals are from 0 to 1 and they denote an hour. So,
for example, 0.3 means that the user used this program for
0.3 of the hour (18 minutes), in this specific hour of the
system usage.
 We used our prediction mechanism for the last five ob-
servations. As we can observe from the results, if we com-
pare the graphs in Figure 6, which are the real observa-
tions for the three applications, and the graphs in Figure 7,
we can see that the two figures are almost identical. We
cannot say the same if we compare the real readings from
the results of the ARIMA model. We can see that they are

7

less precise with the actual readings and they fail to pre-
dict the action of the user in application 1 at the time in-
terval nineteen, in comparison with our model that pre-
dicted it with a very close figure.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Invasion time (hours)

Time (hours)

Real
observations

Learning
phase

Using
ARIMA model

Prediction for Application 1 (using ARIMA)
Parameters:
n = 15
z = 5
Time unit = 1 hour

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Invasion time (hours)

Time (hours)

Real
observations

Learning
phase

Using
ARIMA model

Prediction for Application 1 (using ARIMA)
Parameters:
n = 15
z = 5
Time unit = 1 hour

Figure 7: The proposed Model 5 step prediction

Evaluation
Our proposed model is a multivariate linear model that is a
simple and fast adoptive model. It requires far less prepa-
ration than other models like, for example, the neural net
weights that you have to decide before you build your neu-
ral net model. Our proposed environment reacted as ex-
pected to all the tests that were applied. The monitoring of
the user behaviour was successful and the overhead on the
system resources was minimum.
 There was a 1 to 2% increase on the CPU usage, when
the user agent was monitoring the user moves, and the
prediction task only took two seconds to complete with the
three applications and for a fully operational system with
20-25 applications, we estimate that it will take no more
than five seconds.
 Our proposed environment is collecting information
about the user every five seconds. The prediction proce-
dure is taking place at the end of each hour of a user’s use
of the system. If the user log off before one hour com-
pletes, the calculation of the prediction takes place when-
ever the user will finish log on to the system again and
completes one hour.
 Another difference of our model is that the statistical
models that are in use now, work inside acceptable pa-
rameters, only because they make too may assumptions
about the initial parameters, a factor that we believe makes
them give results that does not represent actual situations.

Future Work
The experiments that are conducted up to now were setup

to verify that the environment works and to show that our
statistical proposed model gives better results than the
models that are widely used up to now. In the next stage,
we are planning to expand the number our experiments,
and also the number of the applications that we use, and
the number of users involved. We also planning to fully
exercise our model by instructing users to have some ex-
treme behaviour for sort periods and normal behaviour for
long periods so we want to see if the model detects and
predicts extreme user behaviour (Figure 8).

Bayesian
method

Bayesian
method

A
pp

lic
at

io
n

us
ag

e
(%

)

InterventionIntervention
ωtδ, β

Variation of Window size
(10 to 500)

Variation of
prediction window
(1 to 100)

Variation of time unit (10 min to 1 hour)

Bayesian
method

Bayesian
method

A
pp

lic
at

io
n

us
ag

e
(%

)

InterventionIntervention
ωtδ, β

Variation of Window size
(10 to 500)

Variation of
prediction window
(1 to 100)

Variation of time unit (10 min to 1 hour)
Figure 8: Experimental setup

8 References
[1] Carter and Catz, Computer Crime: an emerging chal-

lenge for law enforcement, FBI Law Enforcement Bul-
leting, pp 1-8, December 1996.

[2] Roger Blake, Hackers in The Mist, Northwestern Uni-
versity, December 2, 1994.

[3] National Institutes of Health. Center for Information
Technology,
http://www.alw.nih.gov/Security/securityprog.html#com
mercial, October 1998.

[4] W.J. Buchanan. Handbook of Data Communications and
Networks, Kluwer, 1998.

[5] SamsNet, A Hacker’s Guide to Protecting Your Internet
Site and Network,
URL:http://mx.nsu.ru/Max_Security/ch28/ch28.htm

[6] NetworkICE Corporation, Packet Sniffing, http:
//www.networkice.com/ advice/ Underground/ Hack-
ing/ Methods/ Technical/ Packet_sniffing/default.htm

[7] Alan Ramsbottom, FAQ: NT Cryptographic Password
Attacks & Defences, 1997,

 http: //www.omikron.de/ ~ecr/ nthack/ samfaq.htm.
[8] Chris Herringshaw, Detecting Attacks on Networks,

IEEE Computer Magazine, pp 16–17, Dec. 1997.
[9] Debra Anderson, Detecting Unusual Program Behavior

Using the NIDES Statistical Component, IDS Report
SRI Project 2596, Contract Number 910097C (Trusted
Information Systems) under F30602-91-C-0067 (Rome
Labs), 1995.

[10] T. Lunt, H. Javitz, A. Valdes, et al. A Real-Time Intru-
sion Detection Expert System (IDES), SRI Project 6784,

8

Feb. 1992. SRI International Technical Report.
[11] J Pikoulas and K Triantafyllopoulos, Bayesian Multi-

variate Regression for Predicting User Behaviour in a
Software Agent Computer Security System”, 20th Interna-
tional Symposium on Forecasting, Lisbon, Portugal,
June 21, 2000.

[12] Sandeep Kumar and Gene Spafford, A Pattern Matching
model for Misuse Intrusion Detection, Proceedings of
the 17th National Computer Security Conference, Oct.
1994.

[13] Mark Crosbie and Gene Spafford, Active Defence of a
Computer System using Autonomous Agents, COAST
Group, Dept. of Computer Science, Prudue University,
Technical Report (95-008),2–3, Feb 1995.

[14] The Computer Misuse Detection System,
http://www.cmds.net/, 1998.

[15] Pikoulas J, Mannion M and Buchanan W, Software
Agents and Computer Network Security, the 7th IEEE
International Conference on the Engineering of Com-
puter Based Systems, pp 211 – 217, Apr. 2000.

[16] Jean O. Dickey, Christian L. Keppenne, and Steven L.
Marcus, FORECASTING REGIONAL CLIMATE
CHANGE WITH ADVANCED STATISTICAL
METHODS, Jet Propulsion Laboratory, California Insti-
tute of Technology, Pasadena.

[17] Professor Hossein Arsham, Statistical Data Analysis:
Prove it with Data, University of Baltimore,
http://ubmail.ubalt.edu/~harsham/stat-data/opre330.htm.

[18] Carlin B. and T. Louis, Bayes and Empirical Bayes
Methods for Data Analysis, Chapman and Hall, 1996.

[19] Stanford University, GENSCAN: A Powerful tool for
Gene Prediction, Vol. 8, N. 1, 1999.

[20] Steven L. Salzberg , Arthur L. Delcher , Simon Kasif and
Owen White, Microbial gene identification using inter-
polated Markov models, pp. 544–548, Nucleic Acids Re-
search, 1998, Vol. 26, No. 2, 1998 Oxford University
Press.

[21] The Great Lakes Forecasting System, The Ohio State
University (OSU) and the National Oceanic and Atmos-
pheric Administration (NOAA) Great Lakes Environ-
mental Research Laboratory (GLERL),
http://superior.eng.ohio-
state.edu/main/noframes/about.html

[22] Sandia National Laboratories, A Smart, Agent based
simulation model,

 http://www-aspen.cs.sandia.gov/, Feb. 2000.
[23] J.R.M. Ameen and P.J. Harrison, Normal discount

Bayesian models, Journal of Bayesian Statistics, 1985.
[24] Georges A. Darbellay and Marek Slama, Forecasting the

sort term demand for electricity. Do neural networks
stand a better chance?, International Journal of
Forecasting, pp. 71-83, 2000

9

