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Abstract 
Security has become a major issue in many organisations, 
but most systems still rely on operating systems, and a 
user ID and password system to provide user authentica-
tion and validation. They also tend to be centralized in 
their approach which makes them open to an attack. This 
paper presents a distributed approach to network security 
using agents, and presents a novel application of the 
Bayesian forecasting technique to predict user actions. 
The Bayesian method has been used in the past on 
weather forecasting  and has been expanded so that it can 
be used to provide enhanced network security by trying to 
predict user actions. For this a system can determine if a 
user is acting unpredictably or has changed their normal 
working pattern. Results are also given which show that 
the new model can predict user actions, and a set of ex-
periments are proposed for further exploitation of the 
method. 

1. Introduction 
Computer security is a major concern for organizations. 
Whilst security violations can be caused by external users 
(hackers), Carter and Catz [1] have shown that the primary 
threat comes from individuals inside an organisation. 
Hence much more emphasis has to be placed on internal 
security mechanisms. 
 External network attacks can be categorised [4] into IP 
spoofing attacks [5], Packet-sniffing [6], sequence number 
prediction attacks and trust-access attacks. Categories of 
internal attack include Passwords attacks [7], session hi-
jacking attacks, shared library attacks, social engineering 
attacks, and technological vulnerability attack.  
 Computer network security programs can be categorised 
as follows [3]: 
 
• Security enhancement software. This enhances or 

replaces an operating system’s built-in security soft-
ware (for example, Mangle It, Passwd+ and Shadow).  

• Authentication and encryption software. This en-
crypts and decrypts computer files (for example, Ker-
beros, MD5, RIPEM, and TIS Firewall Toolkit). 

• Security monitoring software monitor. This moni-
tors different operations of a computer network and 
outputs the results to system administrators (for ex-
ample, Abacus Sentry, COPS, Tripwire and Tiger). 

• Network monitoring software. This monitors user’s 
behaviour or monitors incoming or outgoing traffic 
(for example, Argus, Arpwatch and ISS). 

• Firewall software and hardware. This runs on the 
Internet/intranet entrance to a computer network, and 
checks all incoming network traffic for its contents at 
the network and transport layers of the OSI model. At 
the network layer, typically the Internet Protocol (IP) 
addresses are filtered for their source and/or destina-
tion, and at the transport layer, the TCP ports and 
monitored (thus FTP and TELNET traffic could be 
blocked for incoming data traffic, but SMTP (elec-
tronic mail) could be allowed). 

These methods are generally centralised applications with 
no real time response and have no mechanism to foresee 
future user events. These methods also have a central focal 
point for security (typically a main server), which could 
itself become the focus of an attack (such as a denial-of-
service attack, where the server is bombarded with hoax 
requests, which eventually reduces its quality of service to 
its clients). 
 The method involved in this research is distributed, 
and does not depend on a central point of failure. It also 
gathers user behavioural information and it makes a pre-
diction on what the user might do in the future. This paper 
presents a distributed approach to network security using 
agents, and presents a novel application of the Bayesian 
forecasting technique to predict user actions. The Bayesian 
method has, in the past, been used for weather forecasting 
and has been expanded so that it can be used to provide 
enhanced network security by trying to predict user ac-
tions. For this a system can determine if a user is acting 
unpredictably or has changed their normal working pat-
tern. Results are also given which show that the new 
model can predict user actions, and a set of experiments 
are proposed for further exploitation of the method. 
 In choosing a computer network security solutions, the 
dominant issues are: cost; the desired level of security: and 
the characteristics of the existing operating system envi-
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ronment. Three mechanisms for illegal behaviour detec-
tion are commonly used in computer network security 
programs [8], and can be applied to all five categories of 
computer security program. 

Statistical Anomaly Detection  
Statistical anomaly detection systems analyse audit-log 
data to detect abnormal behaviour [9]. A profile of ex-
pected online behaviour for a normal user is predefined 
and derived from how an organisation expects a user to 
behave and from a system administrator’s experience of 
the way a user is expected to use the resources of a system. 
Typically, the audit logs are analysed and processed for 
statistical patterns of events for typical operations for 
which to determine usage patterns. These patterns are 
compared to the user’s profile. 
 The system then warns the administrator that there has 
been a possible intrusion when a profile is different to a 
usage pattern. The major drawback with this technique is 
that it cannot predict extreme changes in user behaviours, 
as changes in a user’s behaviour normally identify a secu-
rity breach. 

Rule Based Detection 
Rule-based detection systems use a set of generalised rules 
that define abnormal behaviour (10,12,13). These rules are 
formed by analysing previous different patterns of attack, 
by different people. The drawback of this system is that 
the basic rules are predefined by system administrators, 
and cannot detect any new attack techniques. If a user ex-
hibits behaviour that is not prescribed by the existing 
rules, the user can harm the system without being detected. 

Hybrid Detection 
Hybrid detection systems are a combination of statistical 
anomaly detection and rule-based detection systems. 
These, typically, use rules to detect known methods of 
intrusion and statistical based methods to detect new 
methods of intrusion. 
 CMDS (Computer Misuse Detection System) [14] is a 
security-monitoring package that provides a method to 
watch for intrusions, such as bad logins or file modifica-
tions. It also monitors for the difficult detection problems 
such as socially engineered passwords, trusted user file 
browsing and data theft that might indicate industrial es-
pionage. CMDS supports a wide variety of operating sys-
tems and application programs. The drawback of this sys-
tem is that it uses statistical analysis to make additional 
rules for the system. This is a drawback, as it can only 
detect attack patterns that have been used in the past and 
identified as attack patterns, or predefined by the system 
operators. It also generates long reports and graphs of the 
system performance that require to be interpreted by a 
security expert.  

4  Bayesian Intrusion Detection System 
We used a Bayesian multivariate statistical model because 
our problem is a linear multivariate problem and it is sim-
pler faster and more accurate to use a linear model than a 
non-linear model like neural networks [24]. In order to test 
this an intelligent agent security enhancement software 
system was constructed, in which a core software agent 
resides on one server in a Windows NT network system 
and user end software agents reside in each user work-
station. The software for each type of agent was written in 
SUN Java JDK Version 1.2 on a Microsoft Windows NT 
Version 4 environment running over a 10/100 Mbps net-
work. There is one server and 10 clients. Figure 1 shows a 
core agent communicating with many user agents. A 
communication thread is a unique process that the core 
agent creates to transmit data to the user end agent in re-
sponse to message transmitted from the user end agent. 
Unique processes enable the core agent to communicate 
with each user agent effectively and efficiently thereby 
enabling a fast response to network monitoring. Once the 
core agent has responded to a user agent, the process is 
killed. 

The system uses a hybrid detection technique, where 
invalid behaviour is determined by comparing a user’s 
current behaviour with their typical behaviour and by 
comparing their current behaviour with a set of general 
rules governing valid behaviour formed by systems admin-
istrators. Typical behaviour is contained in a user histori-
cal profile.  
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Figure 1: Agent Environment Topology 

The user agent software has four components:  
 
• A sensor. The sensor monitors the various software 

applications (such as a word processor or a spread-
sheet) that are currently being run by the user on that 
workstation. When a user logs-in the sensor polls the 
user’s activity every five seconds and records the 
user’s identifier and each application’s name and 
process identifier. 

• A transmitter. After the first polling by the sensor, 
the transmitter sends this information to the core 
agent. The core agent then responds by sending a user 
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historical profile. With an audit-log file for a period of 
one month, we observed that the size of an average 
user profile was between 400 KB and 600 KB, with a 
download time of between three and five seconds. 

• A profile reader. The profile-reader reads the user’s 
historical profile. 

• A comparator. This compares the user’s historical 
profile with the information read by the sensor. If the 
current behaviour profile does not fall within the ac-
cepted behaviour pattern defined by the user historical 
profile, the comparator provides the transmitter with 
the following information: user identifier, invalid be-
haviour type and corresponding invalid behaviour 
type data.. This is then sent to the core agent. 

 
When invalid behaviour occurs, several courses of action 
are available, such as: 
 
1. Warning message to the system administrator or end 

user. 
2. Kill the specific application that has caused invalid 

behaviour. 
3. Prevent the end user from running any further applica-

tions. 
Cases 2 and 3 can be achieved locally at the client work-
station, and in Case 1, the user agent informs the core 
agent and the core agent informs the systems administra-
tor. The user agent terminates when a user logs off. 
 Figure 2 shows the complete model for the forecasting 
system, where a core agent reads the user profile, which is 
then received by the user agent. The user agent then pre-
dicts the usage against the forecast. Eventually when the 
user logs off the user profile is updated and sent back to 
the core agent. 
 In the traditional method of forecasting, a user event 
would be averaged over long time intervals (in Figure 3). 
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Figure 2: Agent forecasting model 
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Figure 3: Traditional method of generating user profile for              

applications 

5 Prediction Model 
When our intrusion detection system is installed, the pre-
diction part monitors the user behaviour for 15 times. Af-
ter that, it evaluates itself for five times. After this it is 
ready to make an accurate prediction. Our model has three 
stages of operation. The stages are: 
 
1. Observation stage. In this stage the model is moni-

toring the user and records its behaviour.  
2. Evaluation stage. In this stage the model makes a 

prediction and also monitors the user actual move-
ments and calculates the result. This stage is critical, 
because the model modifies itself according to the 
environment that it operates in.  

3. One-step prediction. In this stage the model makes 
a single step prediction. For example, assume that the 
user is logged in for 15 times and the model is con-
figured, and it is ready to start predicting user moves. 
Instead of making a five or ten step prediction, like 
other mathematical models, our model makes a pre-
diction for the next step. When the user logs in and 
out of our model, it takes the actual behaviour of the 
user, compares it with the one step prediction that it 
has performed before and calculates the error. So the 
next time a prediction is made for this user it will in-
clude also the data of the last user behaviour. With 
this procedure we maximise the accuracy of the pre-
diction system. 

 
The proposed forecasting method improves this by requir-
ing much less memory storage. Figure 4 shows a generic 
model for the predicting using parameters for a given win-
dow size (n), time units and prediction number (z). 
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Figure 4: Forecasting calculation 

The general multivariate model (DLM) is given by the 
next equations: 
 

],0[~,' Σ+= NvvFY ttttt θ  (1) 

],0[~,1 tttttt WNG ωωθθ += −  (2) 
 
We use multivariate models because we want to incorpo-
rate and forecast several variables simultaneously. Again 
note that the fact that the parameters tθ  change both de-
terministically (through t) and stochastically (through the 
variance tW ), and thus make the model dynamic. Also 
standard ARIMA (Auto-Regressive Integrated Moving 
Average) models are a special and restrictive case of the 
above model, when you set FFt = , GGt =  and WWt =  
(all these three components are constant over time). This is 
restrictive since all these components are likely to change 
over time because  e.g. (1) changes over time and there are 
other external sources of variation (such as extra subjec-
tive information about a variable). Moreover, equation (2) 
is not observable. This means that we never are going to 
see any evolution or trend in a diagram or a graph. This is 
a hidden model that cannot assume tW to be constant over 
time. There is another large problem that we cannot ignore 
in multivariate models. The variance matrix Σ  will not be 
known. Often, in standard time series, it is assumed known 
and they easily jump to another problem. However, in 
practice, this is extremely difficult to set it as a known 
matrix. It is very difficult to propose what variance to use 
to a system where 20 applications are considered and only 
20 or 30 vectors are collected as data.  
 So for all these reasons we need to consider the dynamic 
models. Also, the system could provide forecasting as 
much ahead as we like, proving very accurate according to 
the results. For this purpose we used a Bayesian frame-
work, which virtually means that at time t we will have 

some kind of knowledge, that is a subjective belief, ex-
pressed in terms of a distribution. This is the prior distri-
bution of )|( 1−tt Dθ at time t. In other words, it is what we 
know before tY  becomes available. Once this happens, we 
revise this prior belief, using the likelihood function, to 
find the posterior distribution )|( tt Dθ  or revised, which is 
better and more accurate. Then according to simple calcu-
lations, we find the prior of time t–1 and we calculate the 
posterior at t+1, only when information of the data 

1+tY comes in to the system (e.g. in our case is the real be-
haviour of the user). The model used becomes: 
 
• Autoregressive moving average model. The general 

model introduced by Box and Jenkins (1976) includes 
autoregressive as well as moving average parameters, 
and explicitly includes differencing in the formulation 
of the model. Specifically, the three types of parame-
ters in the model are: the autoregressive parameters 
(p), the number of differencing passes (d), and mov-
ing average parameters (q). In the notation introduced 
by Box and Jenkins, models are summarized as 
ARIMA (p, d and q); so, for example, a model de-
scribed as (0, 1, 2) means that it contains 0 (zero) 
autoregressive (p) parameters and 2 moving average 
(q) parameters which were computed for the series af-
ter it was differenced once. 

• Identification. As mentioned earlier, the input series 
for ARIMA needs to be stationary, that is, it should 
have a constant mean, variance, and autocorrelation 
through time. Therefore, usually the series first needs 
to be differenced until it is stationary (this also often 
requires log transforming the data to stabilize the 
variance). The number of times the series needs to be 
differenced to achieve stationary is reflected in the d 
parameter (see the previous paragraph). In order to 
determine the necessary level of differencing, one 
should examine the plot of the data and autocorrelo-
gram. Significant changes in level (strong upward or 
downward changes) usually require first-order non-
seasonal (lag=1) differencing; strong changes of slope 
usually require second order non-seasonal differenc-
ing. Seasonal patterns require respective seasonal dif-
ferencing (see below). If the estimated autocorrelation 
coefficients decline slowly at longer lags, first-order 
differencing is usually needed. However, one should 
keep in mind that some time series may require little 
or no differencing, and that over differenced series 
produce less stable coefficient estimates. 
At this stage we also need to decide how many auto-
regressive (p) and moving average (q) parameters are 
necessary to yield an effective, but still efficient, 
model of the process (that is with the fewest parame-
ters and greatest number of degrees of freedom among 
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all models that fit the data). In practice, the values of 
the p or q parameters are rarely greater than two (see 
below for more specific recommendations). 

• Estimation and Forecasting. At the next step (esti-
mation), the parameters are estimated (using function 
minimization procedures), so that the sum of squared 
residuals is minimised. The estimates of the parame-
ters are used in the last stage (forecasting) to calculate 
new values of the series (beyond those included in the 
input data set) and confidence intervals for those pre-
dicted values. The estimation process is performed on 
transformed (differenced) data; before the forecasts 
are generated, the series needs to be integrated so that 
the forecasts are expressed in values compatible with 
the input data. This automatic integration feature is 
represented by the letter I in the name of the ARIMA 
methodology. 

 
In addition to the standard autoregressive and moving av-
erage parameters, ARIMA models may also include a con-
stant, as described above. The interpretation of a statisti-
cally significant constant depends on the model that is fit. 
Specifically: 
 

if there are no autoregressive parameters in the 
model, then the expected value of the constant is 
µ  the mean of the series;  
if there are autoregressive parameters in the se-
ries, then the constant represents the intercept.  

 
If the series is differenced, the constant represents the 
mean or intercept of the differenced series; For example, if 
the series is differenced once, and there are no autoregres-
sive parameters in the model, the constant represents the 
mean of the differenced series, and therefore the linear 
trend slope of the un-differenced series. 
 ARIMA models are similar to our model. They use the 
existing data to calculate the parameters of the model. But 
if, for example, some external information is available. For 
example, we may know that it is the x user and although he 
does not have an illegal user profile, it is very probable 
that at a specific point of time he will perform a huge inva-
sion to an important application. ARIMA will try to 
change the parameters to adjust the model, but even in this 
case, it is doubtful how well the model will do in all the 
applications. With our DLM it is not a problem. Simply 
we add to the prior information we have, the external in-
formation. This is named expert intervention, and the re-
vised posterior takes into account the new knowledge. Our 
system is not assumed perfect when the model is fitted, 
and we let information, no matter what its sort, to make us 
learn and improve the system. 
 Now our model is slightly different than the one we use 
for illustration purposes. We find recurrence relationships, 

which are more natural to overall long formulae that 
ARIMA works out. We note that because ARIMA is quite 
complicated, many practitioners end up to a simple, very 
simple subclass of ARIMA model, not even sometimes 
stating the assumptions. This produces results that some-
times do not correspond to the real application. The only 
difficulty with the DLMs is the specification of the initial 
values, such that the algorithm may be put into practice. In 
general this requires to be solved by the experience of the 
individual practitioner. 
 In our case, we have to specify the following: 

00000 *,,,,,, mFnSCm tδβ is the mean of )|( 00 Dθ and 0C  
its variance. The choices made are: 
 
• 00 =m  . This is set when we expect that the prior 

distribution )|( 00 Dθ  (the distribution of the parame-
ter Θ  at time t given 0D - any initial information 
which is explicitly known) will not give any drift to 

1Y . The fact that we expect this to happen, but we are 
not sure, so there is here an uncertainty, which is ex-
pressed by the variance 0C . It is natural and common 
policy to assume IC =0 , the identity matrix. But care 
must be taken when we are very uncertain about our 
choice we MUST increase the diagonal elements of 

tC . Of course, this affects all the following results 
somehow, but the approach is more realistic. In gen-
eral we will have more data vectors than 15, or 20 
(our case), hence initial values will dominate the ac-
tual estimates in a decreasing rate.  

• IC =0 . This is motivated by our belief that 0m  is not 
important to the following values of tY , t=1, ... 0S is 
typically, almost always set to I and it has not got any 
special meaning. The only one we can find is that it is 
chosen such that according to the formula that we 
have to calculate 0, SSt  must lead to acceptable re-
sults (symmetric matrices). The 0n can be set to 0 (a 
case which implies 11 =n , without great loss) or 

10 =n (a case which implies 11 += βn ). The choice of 

0n  is not crucial since there is theorem that states that 

tS  converges to Σ as t goes to infinity and it does not 
depend on 0n . But it must take small values.  

• δ . The δ choice is discussed with details in Ameen 
and Harrison (1982a) where it is shown that it must be 

185.0 << δ  and quite high. Thus we have set it 0.95.  
• β . The β is a discount factor as well. In this docu-

ment we state that it has to be smaller than δ , as, in 
general, tS  is not so much influenced by the data as it 

is tm . Note that δ is in tA and so it influences tm .  
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The components are defined as: 
 

0m :   The mean of the influence of 11 ,YΘ  from 0D , our 
initial info. 

0C :   Dispersion of the above influence. 

0S :   No meaning, and is an auxiliary quantity for tS . 

0n :   No meaning, and is an auxiliary quantity for tn . 
β :   Factor of the influence of the data to the estimate 

tS . 
δ :   Factor of the influence of the data to the estimate 

tm . 

tF :   A basic quantity that expresses the linearity of the 
model and gives different trends to the several val-
ues of tY , both for time series analysis (what has 
happened in the past) and forecasting (what will 
happen in the future).  

 
Finally, we make clear that when we say factor in the 
above explanation we do not mean any percentage or 
whatever. Factor means discount factor, which means that 
the estimates of tm  and tS  are discounted somehow and 
in different rate, since both are influenced by data. 
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Figure 5: Forecasting calculation with intervention 

Intervention 
Intervention is a mechanism for improving the prediction 
accuracy. It is used when there is additional information 
about the future behaviour of the system, and can be added 
to the model prior the prediction. For example if there is 
some users that are keen on using illegal software or there 
are new users that there is not enough information about 
their behaviour, by applying the intervention mechanism, 

we increase the accuracy of the model and can make more 
accurate predictions (Figure 5). 
 In our model we can observe this by looking at Figure  
and Figure . In these we can observe that our model pre-
diction is very close to the actual users behaviour for the 
application number one at the specific time t=19. We 
achieved this accuracy by applying the intervention tech-
nique. We can also observe that the ARIMA model did not 
make any prediction for this particular user behaviour. 

Results and experiments 
The first set of experiments are made in order to test our 
security environment to the extent that it works and to get 
some results from our proposed statistical model and com-
pare it with other statistical models. 
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Figure 6: The Real Observations of the Model 

Our environment is vastly improved with the use of the 
prediction mechanism. Our system is not using the real 
time data that its agents gather only for real time detection. 
Our addition of the prediction model in our environment, 
increases its functionality and its usability to the maxi-
mum. 
 Figure 8 shows one user that logged on to the system 20 
times and had one hour sessions each time. We monitored 
all their moves and all the applications that he used. In our 
prediction model we had only three applications to predict. 
The intervals are from 0 to 1 and they denote an hour. So, 
for example, 0.3 means that the user used this program for 
0.3 of the hour (18 minutes), in this specific hour of the 
system usage. 
 We used our prediction mechanism for the last five ob-
servations. As we can observe from the results, if we com-
pare the graphs in Figure 6, which are the real observa-
tions for the three applications, and the graphs in Figure 7, 
we can see that the two figures are almost identical. We 
cannot say the same if we compare the real readings from 
the results of the ARIMA model. We can see that they are 
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less precise with the actual readings and they fail to pre-
dict the action of the user in application 1 at the time in-
terval nineteen, in comparison with our model that pre-
dicted it with a very close figure. 
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Figure 7: The proposed Model 5 step prediction 

Evaluation 
Our proposed model is a multivariate linear model that is a 
simple and fast adoptive model. It requires far less prepa-
ration than other models like, for example, the neural net 
weights that you have to decide before you build your neu-
ral net model. Our proposed environment reacted as ex-
pected to all the tests that were applied. The monitoring of 
the user behaviour was successful and the overhead on the 
system resources was minimum.  
 There was a 1 to 2% increase on the CPU usage, when 
the user agent was monitoring the user moves, and the 
prediction task only took two seconds to complete with the 
three applications and for a fully operational system with 
20-25 applications, we estimate that it will take no more 
than five seconds. 
 Our proposed environment is collecting information 
about the user every five seconds. The prediction proce-
dure is taking place at the end of each hour of a user’s use 
of the system. If the user log off before one hour com-
pletes, the calculation of the prediction takes place when-
ever the user will finish log on to the system again and 
completes one hour. 
 Another difference of our model is that the statistical 
models that are in use now, work inside acceptable pa-
rameters, only because they make too may assumptions 
about the initial parameters, a factor that we believe makes 
them give results that does not represent actual situations. 

Future Work 
The experiments that are conducted up to now were setup 

to verify that the environment works and to show that our 
statistical proposed model gives better results than the 
models that are widely used up to now. In the next stage, 
we are planning to expand the number our experiments, 
and also the number of the applications that we use, and 
the number of users involved. We also planning to fully 
exercise our model by instructing users to have some ex-
treme behaviour for sort periods and normal behaviour for 
long periods so we want to see if the model detects and 
predicts extreme user behaviour (Figure 8). 
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