
1

An Intelligent Agent Security Intrusion System
J. PIKOULAS, W.BUCHANAN, Napier University University, Edinburgh, UK.
M.MANNION, Glasgow Caledonian University, Glasgow, UK.
K.TRIANTAFYLLOPOULOS, Warick University, Warick, UK.

ABSTRACT
Network security has now become one of the most important aspects in computer systems and the Internet.
Apart from strong encryption, there is no definite method of truly securing network, thus they must be pro-
tected at different levels of the OSI model. At the physical layer they can be protected by lock-and-key, and
at the data link they can be protected within VLANS (Virtual LANs). With the network and transport layers,
networks can be secured by firewalls, which monitor source and destination network addresses, and source
and destination ports, respectively. At the session level user names and passwords can be used. Unfortu-
nately all these methods can be prone to methods which can overcome the protection used. This can be over-
come by software which tries to detect the malicious moves of users, and try to inform the system adminis-
trators when this happen. Unfortunately there are too many factors involved in these systems. An important
one is the human operator itself. Many security monitoring systems are also too complicated to run and
maintain, and they generate big report lists that take weeks or months to be analysed. This paper expands the
research previously undertaken on a misuse system based on intelligent agent software technology.
 The system monitors user actions in real-time and take appropriate actions if necessary. Along with this
our system used short-term prediction to predict the user behaviour and advise the system administrator ac-
cordingly, before the actual actions take place. This paper presents new results which are based on an in-
creased number of users.

1 Introduction
At present computer security is a major worry for organiza-
tions, and this will continue as long as there is information,
which can be stolen or damaged. The laws, which related to
this type of crime are still being developed, and will take
some time to implement. Many individuals think that the
main problem relating to security is caused by external users
(often known as hackers), but Carter and Catz [1] have shown
that the primary threat come from individuals inside and or-
ganisation. Hence more emphasis should be placed on inter-
nal control mechanisms, such as audit log analysis.

In many cases, people that call themselves hackers [4] cre-
ate security breaches. In the early days of computer hacking,
these hackers did it for self-projection and not to improve
their finances. Nowadays, there is a great deal of gain to be
made from breaching system security, and these individuals
tend to be:

1. Professional programmers and IT specialists. These

individuals typically have extensive knowledge of the
protocols and hardware that are used by organisations,
work in teams, and have some inside knowledge of the
organisational systems.

2. Government agents. These are typically ex-military
using advanced information warfare methods (such as
CIA software agents [3]).

However, no security measure guarantees a risk free envi-
ronment, but increased security normally makes a system less
easy-to-use. Many businesses must give access to parts of
their system and make it easy to use, thus increasing potential
exposure. Proper security controls require planning and care-
ful implementation. Forestalling potential security breaches

requires careful monitoring and management, and it is critical
that these controls deter real problems. Unfortunately threats
change as fast as both technology and business, thus adapta-
tion and improvisation are key features of a security system.

No hardware or software element can ever be immune
from security weaknesses. Many organisations will typically
rely on a networking operating system for system security.
To provide a measure of how secure a system is the US Gov-
ernment defines certain security levels: D, C1, C2, B1, B2,
B3 and A1, which are published in the Trusted Computer
Security Evaluation Criteria books (each of which has a dif-
ferent coloured cover to define their function). These include:

1. Orange book. Describes system security.
2. Red book. Interpretation of the Orange book in a net-

work context.
3. Blue book. Application of Orange book to systems not

covered in the original book.

Three techniques for illegal behaviour detection are com-
monly used in computer network security programs [5]: sta-
tistical anomaly detection, rule based detection, and hybrid
detection, an amalgam of statistical anomaly detection and
rule based detection. In most cases, the implementation of
these techniques has been achieved by installing the security
enhancement software on a centralized server. When this
software crashes or is breeched, the complete network is at
risk.

An alternative solution is to use agents to disperse network
security management around the network. If the intrusion
detection system is real time, it can detect the intrusion after
the action, but never before. To address this problem we in-
troduced a real time monitoring environment base on intelli-
gent agent technology. For this we have constructed a soft-
ware environment, that monitors the user behaviour and acts

2

accordingly. We found that the real time monitoring had
some limitations. The basic limitation to our initial system
was that the system could detect a system anomaly, when the
anomaly itself where started. That sometimes is not accept-
able. So we started to research in ways to predict the actions
of the user before they actually happen. For this a model was
created with a new statistical model, which predicts the user
future behaviour, or the system recourses. This statistical
model is based on Bayesian statistics, and performs predic-
tion on the same system resources that our agents are moni-
toring in real time.

The statistical model based on Bayesian multivariate re-
gression proposed by Pikoulas and Triantafyllopoulos [8]
takes user data behaviour and generates a predicted profile,
so our intrusion system has sufficient information to foresee
the future user actions.

2 Illegal Behaviour Detection Methods

2.1 Statistical Anomaly Detection

Statistical anomaly detection systems analyse audit-log data
to detect abnormal behaviour. A profile of expected online
behaviour for a normal user is predefined and derived from
how an organisation expects a user to behave and from a sys-
tem administrator’s experience of the way a user is expected
to use system resources. Typically, the audit logs are ana-
lysed and processed for statistical patterns of events for typi-
cal operations for which to determine usage patterns. These
patterns are compared to the user’s profile. With this, the
administrator sets the expected user profile that is based on a
model of how a user is expected to behave. The audit log is
then analysed to look for statistical patterns of events to es-
tablish a typical operating pattern for a user; these are then
compared with the user’s profile.

The Safeguard project [6] adapted the NIDES statistical
anomaly-detection subsystem to profile the behaviour of in-
dividual applications. Statistical measures were used to de-
termine the proper usage of an application, and what
differentiates this from inappropriate usage. A statistical
score was assigned to the operation of applications and
represented the degree to which current behaviour of the
application corresponds to its established operational pattern.
This system demonstrated the ability of statistical profiling
tools and clearly differentiated the scope of execution among
general-purpose applications. It showed that statistical
analysis could be effective in analysing activities other than
individual users, such as the system monitoring applications
rather than users. The system warns administrators that there has been a pos-
sible intrusion when a profile is different to a usage pattern.
A major drawback with statistical anomaly detection is that
this technique cannot predict extreme changes in user behav-
iours.

2.2 Rule Based Detection

Rule-based detection systems use a set of rules that define
typical illegal user behaviour. These rules are formed by ana-
lyzing previous different patterns of attack, and analyses the
audit-log data of a particular user and comparing the user’s
pattern with the rules. The drawback of this system is that the
basic rules are predefined by system administrators, and can-

not detect any new attack techniques. If a user exhibits
behaviour that is not prescribed by the existing rules, the user
can harm the system without being detected. The IDES sys-
tem [7] is security enhancement software that stores knowl-
edge about a system’s known vulnerabilities, its security
policies and information on previous intrusions. The informa-
tion it uses to determine the network state is limited to the
data packet header. As it does not examine the contents of the
data packet, it may miss critical information about the nature
of the data that goes throughout the network. It also scales
very poorly where many machines are on a high-speed net-
work.

Kumar and Spafford’s model [9] uses pattern matching, as
attacks can be classified as patterns, which match against
occurrences (status of the system at that moment) in the sys-
tem. These patterns can encode dependencies between system
conditions and temporal conditions. Crosbie and Spafford’s
use autonomous agents [10], which are trained to detect
anomalous activity in network system traffic. A drawback of
this approach is that the system requires considerable training
by a human operator before it becomes effective.

2.3 Hybrid Detection

Hybrid detection systems are a combination of statistical
anomaly detection and rule-based detection systems. These,
typically, use rules to detect known methods of intrusion and
statistical based methods to detect new methods of intrusion.

CMDS (Computer Misuse Detection System) [11] is a se-
curity- monitoring package that provides a method to watch
for intrusions. It detects and thwarts attempted logins, file
modifications, Trojan horse installation, changes in adminis-
trative configurations and many other signs of intrusion. In
addition, it constantly monitors for difficult detection prob-
lems like socially engineered passwords, trusted user file
browsing and data theft that might indicate industrial espio-
nage. CMDS supports a wide variety of operating systems
and application programs. The drawback of this system is
that it uses statistical analysis to make additional rules for the
system. This is a drawback, as it can only detect attack pat-
terns that have been used in the past and being identified as
attack patterns, or predefined by the system operators. It also
generates long reports and graphs of the system performance
that requires to be interpreted by a security expert.

3 Forecasting methods
There are many forecasting methods for short to intermediate
term analysis-forecasting [12] including multiple regression
analysis, non-linear regression, trend analysis and
decomposition analysis.

3.1 Bayes and empirical Bayes methods

Bayes and empirical Bayes (EB) [14] methods combine in-
formation from similar components of information and pro-
duce efficient inferences for both individual components and
shared model characteristics. Many complex applied investi-
gations are ideal settings for this type of synthesis. Recent
advances in computing and the consequent ability to evaluate
complex models have increased the popularity and applicabil-
ity of Bayesian methods. Bayes and EB methods can be im-
plemented using modern Markov chain Monte Carlo

3

(MCMC) computational methods. Properly structured Bayes
and EB procedures typically have good frequentist and
Bayesian performance, both in theory and in practice. This in
turn motivates their use in advanced high-dimensional model
settings (for example in longitudinal data or spatial-temporal
mapping models), where a Bayesian model implemented via
MCMC often provides the only feasible approach that
incorporates all relevant model features.

4 Bayesian Intrusion Detection System
The proposed system is a hybrid intrusion detection system
and was first described in Pikoulas, et al [15]. The system
uses a hybrid detection technique. Invalid behaviour is de-
termined by comparing a user’s current behaviour with their
typical behaviour and by comparing their current behaviour
with a set of general rules governing valid behaviour formed
by systems administrators. Typical behaviour is contained in
a user historical profile. Prediction is computed using a
Bayesian multivariate statistical model. The novelty of the
approach is that the system uses a distributed architecture
using intelligent software agent technology.

A user agent resides in a user workstation, and there is a
core agent that resides on the system server. Each user agent
has a variety of functions. When a user logs onto a work-
station, the user agent retrieves the user login name and con-
tacts the core agent. The user end agent gets the users profile
from the core agent. After the user end agent retrieves the
specified user profile starts to monitor the user behaviour.

The user profile file contains data describing the predicted
specified user behaviour which the system administrators can
create using the generic profiles of a group of users and add-
ing rules drawn from individual behaviour patterns. Hence a
user profile contains rules that describe the legal past behav-
iour of the user and the statistical predictions from these
rules, up to the last time that the used logged on to the sys-
tem. User behaviour is a collection of data from system vari-
ables including:

1. Information about software applications that have been

used during a login session.
2. The path that these applications are running from.
3. The directory in which the user is currently working in.

The user agent monitors user behaviour until the user logs
off. Ten seconds has been found to be a satisfactory interval
because it gives an accurate description of user behaviour
without compromising the performance of the system. Moni-
toring user behaviour is achieved using a C++ DLL within
the user end agent. The DLL is called through a thread, which
is set to run with the lowest priority, so the effect in the per-
formance of the system will be at minimum. After the user
end agent takes the user behaviour snapshot, it compares it
with the historical profile (acquired from the core agent at the
beginning of the user session). If any behaviour differences
are found, it generates warning alerts to the user and also
sends an alert signal to the core agent in order to inform the
system administrators. If the system administrator accepts
this change in the user behaviour, it is added to the user pro-
file as a permitted rule, so the next time that the user tries to
perform the same operation, no alerts will be generated. The

rule is added instantly and not from the next time that the
user is logged in to the system. When a user logs off, the user
end agent sends a message to the core agent that this user is
going to log off so it will update its user profile file with the
prediction data, and store the new prediction data that gener-
ated for further process.

These data are then taken from our prediction model and
processed, and stored to the system as prediction rules. These
prediction rules are loaded from the user end agent, every
time that the user logs to the system, so that the user end
agent will be able to take appropriate actions if needed. We
used a Bayesian multivariate statistical model because our
problem is a linear multivariate problem and it is faster and
more accurate to use a linear model than a non-linear model
like neural networks [16].

5 Implementation
We built intelligent agent security enhancement software
system, in which a core software agent resides on one server
in a Windows NT network system and user end software
agents reside in each user workstation. The software for each
type of agent was written in SUN Java JDK Version 1.2 on a
Microsoft Windows NT Version 4 environment running over
a 10/100 Mbps network. There was one server and 10 clients.
Figure 1 shows a core agent communicating with many user
agents. A communication thread is a unique process that the
core agent creates to transmit data to the user end agent in
response to message transmitted from the user end agent.
Unique processes enable the core agent to communicate with
each user agent effectively and efficiently thereby enabling a
fast response to network monitoring. Once the core agent has
responded to a user agent, the process is killed. Figure 1
shows that a user agent implemented as four components:

1. A sensor. The sensor monitors the various software ap-

plications (for example, a word processor, a spreadsheet)
that are currently being run by the user on that work-
station. When a user logs in the sensor polls the user’s
activity every ten seconds and records the user’s identi-
fier and each application’s name and process identifier.
(The frequency of the sensor can be modified from the
system administrator.)

2. A transmitter. After the first polling by the sensor, the
transmitter sends this information to the core agent. The
core agent then responds by sending a user historical
profile. With an audit-log file for a period of one month,
we observed that the size of an average user profile was
between 400KB and 600KB, with a download time of
between three and five seconds.

3. A profile reader. The profile-reader reads the user’s
historical profile.

4. A comparator. The comparator compares the user’s
historical profile with the information read by the sensor.
If the current behaviour profile does not fall within the
accepted behaviour pattern defined by the user historical
profile, the comparator provides the transmitter with the
following information that is then sent to the core agent:
user identifier, invalid behaviour type and corresponding
invalid behaviour type data. For example, if the invalid
behaviour type were an unauthorised directory access

4

then the invalid behaviour type data would be the name
of the directory attempting to be accessed. When invalid
behaviour occurs, several courses of action are available,
such as:

1. Warning message to the system administrator or end

user.
2. Kill the specific application that has caused invalid

behaviour.
3. Prevent the end user from running any further appli-

cations. In Case 1, the user agent informs the core
agent and the core agent informs the systems admin-
istrator. The user agent terminates when a user logs
off. Cases 2 and 3 can be achieved locally at the cli-
ent workstation.

Profile
reader

Predictor

Sensor

Communication
thread

GUI

Transmitter

Comparator

Communication
thread

Core
connection

engine

Communication
thread

Communication
thread

Communication
threadGUI

Profile
reader

Predictor

Sensor

Communication
thread

GUI

Transmitter

Comparator

Communication
thread

Core
connection

engine

Communication
thread

Communication
thread

Communication
threadGUI

Figure 1 Agent Environment Topology

6 Experiments and Results
In our previous experiments, there was only one user with a
limited observation of 10 times. This time the experiments
are more generic. A previous paper [15] illustrated that the
model worked. This has now been expanded to three users
and with 100 observations. With this the prediction model
makes 50 observations and adapt to the user behaviour, and
then apply the prediction model to the next 50 observations.

In the results, a graph is constructed of the last 50 real ob-
servation values and the predictions, and in the y-axis plots
time. Users used the typical applications, such as MS Word,
MS Excel, MS Outlook, MS Internet Explorer and Borland
C++. The users were free to use other applications and sys-
tem recourses if they wanted to, but our system only moni-
tored the above applications. There were no restrictions on
when they use it, or how much time.

For these experiments, it is assumed that only the first ap-
plication was legal to be used by all the users, and the rest
were available to the system but restricted from the users.

As with previous experiments the time period of one hour
is used to make the prediction. Thus, observation values for
prediction are taken every one-hour, but real time monitoring
system was still getting observations in real time.

We can observe the results of our experiments from the
three graphs that follow. The first two graphs show the results
without any sort of intervention. It can also be seen that our
model is capturing all the different anomalies, with some-
times, luck of capturing the length of the high peaks of the
real data graphs. Let’s see first what the graphs represent. As
we mentioned before we measured some user behaviour over
a period of time. That is, when the user uses a specific system

resource like using an application or using a system resource.
That is what the graphs represent. In the ‘x’ axis we have the
number of observations represented with a purple dotted line.
This is the number of how many times we monitored the user
to see what exactly he or she was doing in the monitored
computer environment. And in the ‘y’ axis of the graphs we
have the amount of time that the user is using the particular
monitored recourse, for this observation, and it is represented
with a dashed dark blue line. The value that the ‘y’ axis can
take are between zero and one, since we explained that in this
set of our experiments we are monitoring the users every one
hour in order to see what they are using. This observation is
different than the one that the agent is doing for the real time
monitoring of the remote system. This timing of the user be-
haviour is every five seconds.

The graphs show prediction results that are taken from our
agent environment. In Figure 2 and Figure 3 we can see that
our model is able to follow the real user behaviour. In the
graphs the dotted purple line is the real user behaviour and in
dashed dark blue is our prediction. In Figure 2 we can see
that even if our prediction (line in dashed dark blue) is not
exactly matching the real user behaviour, our system could
predict the spikes of the user behaviour, up to an extent. Ex-
amining Figure 2 we can see that the length of the spike is not
very important to predict as to when it is going to occur. That
is what proving that our model works. Although our predic-
tion is accurate, as we evaluated Figure 2 above, we have
introduced the notion of the intervention that we apply in our
last result figure (Figure 4). The purpose of introducing inter-
vention if we require more accuracy and more information on
our prediction, like if we want to know exactly not only when
it is going to occur, but even how long is going to take.

We can observe that the two trends are following each
other. That means that our model is very accurately predict-
ing future user behaviour.

In all of our examples we can see that our model is able to
detect the deviations in the user behaviour, with maximum
effects in the case of the use of intervention (see Figure 4).

In other words, the results of the experiments show that
our model works. We can see that be following the two re-
sults lines on Figure 4. By how close they are, we can deter-
mine how good our model followed the real values, which are
the real behaviour that the user followed. This is very impor-
tant for our prediction system; because it can not only protect
vital resources of the computer system, but also provide accu-
rate help to the user, by knowing or predicting correct what
are the next steps that the user will take.

7 Conclusions and Future Work
As we can observe from the graphs of the experiments, that
our model applied on the observations of application five,
with intervention, is very close to the actual user observa-
tions. We can observe the similarities of our results with the
actual data. After applying our intervention mechanism, our
prediction values are getting very close to the actual user be-
haviour (Figure 4). Short-term prediction is very difficult and
there is large extend in research, trying to perfect it, espe-
cially financial institutions, weather prediction stations, stock
exchange organizations, the army. Most prediction tech-
niques are very inaccurate in short-term prediction or too

5

slow or complicated to be used. Our proposed model can
produce accurate results with a minimum amount of observa-
tions.
 In future work are planning to perform more extensive ex-
periments that will involve more users and larger number of
applications. Our aim is to demonstrate that the model works
in most cases, and also to refine the model.
 There are aspects of the model that needs further research;
especially in the way that intervention is applied, as this is
not very practical. Also the values that are use to populate the
values that are used in the intervention model are generic
values that do not have the best results for all observed val-
ues.

Time

 (Number of Observations)

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

Figure 2 Application one Prediction and real values

Time

 (Number of Observations)

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

Figure 3 Application two Prediction and real values

Time

 (Number of Observations)

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 4 Application five Prediction and real values (with inter-

vention)

8 References
[1] Carter and Catz, Computer Crime: an emerging challenge for

law enforcement, FBI Law Enforcement Bulleting, pp 1-8, De-
cember 1996.

[2] Scotty Strunk, Intrusion Detection FAQ, SANS Institute Re-
sources, December 2, 1999.

[3] Sunday Times, CIA Spies On Europe, August 4, 1996, London,
UK.

[4] Roger Blake, Hackers in The Mist, Northwestern University,
December 2, 1994.

[5] Chris Herringshaw, Detecting Attacks on Networks, IEEE
Computer Magazine, pp 16–17, Dec. 1997.

[6] Debra Anderson, Detecting Unusual Program Behavior Using
the NIDES Statistical Component, IDS Report SRI Project
2596, Contract Number 910097C (Trusted Information Sys-
tems) under F30602-91-C-0067 (Rome Labs), 1995.

[7] T. Lunt, H. Javitz, A. Valdes, et al. A Real-Time Intrusion De-
tection Expert System (IDES), SRI Project 6784, Feb. 1992.
SRI International Technical Report.

[8] J Pikoulas and K Triantafyllopoulos, Bayesian Multivariate
Regression for Predicting User Behaviour in a Software Agent
Computer Security System”, 20th International Symposium on
Forecasting, Lisbon, Portugal, June 21, 2000.

[9] Sandeep Kumar and Gene Spafford, A Pattern Matching model
for Misuse Intrusion Detection, Proceedings of the 17th Na-
tional Computer Security Conference, Oct. 1994.

[10] Mark Crosbie and Gene Spafford, Active Defence of a Com-
puter System using Autonomous Agents, COAST Group, Dept.
of Computer Science, Prudue University, Technical Report
(95-008),2–3, Feb 1995.

[11] The Computer Misuse Detection System, http://www.cmds.net/,
1998.

[12] Professor Hossein Arsham, Statistical Data Analysis: Prove it
with Data, University of Baltimore, http://ubmail.ubalt.edu
/~harsham/statdata/opre330.htm

[13] The Bayesian Institute, Bayes Thomas,
http://www.bayesian.org/bayesian/bayes.html, 7/5/2000.

[14] Carlin B. and T. Louis, Bayes and Empirical Bayes Methods
for Data Analysis, Chapman and Hall, 1996.

[15] Pikoulas J, Mannion M and Buchanan W, Software Agents and
Computer Network Security, the 7th IEEE International Con-
ference on the Engineering of Computer Based Systems, pp

6

211 – 217, Apr. 2000.
[16] Georges A. Darbellay and Marek Slama, Forecasting the sort

term demand for electricity. Do neural networks stand a better
chance?, International Journal of Forecasting, pp. 71-83, 2000.

[17] National Bureau of Standards, NBS FIPS PUB 46, Data En-
cryption Standard, National Bureau of Standards, U.S. De-
partment of Commerce, Jan. 1977.

[18] M.J. Wiener, Efficient DES Key Search, TR-244, School of
Computer Science, Carleton University, May 1994.

[19] M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E.
Thompson, and M. Weiner, Minimal Key Lengths for Symmet-
ric Ciphers to Provide Adequate Commercial Security, Jan 7
1996.

[20] National Institute of Standards and Technology, Announcing
Development of a Federal Information Standard for Advanced
Encryption Standard, Federal Register, v. 62, n. 1,2 Jan 1997,

pp. 93-94.
[21] National Institute of Standards and Technology, Announcing

Request for Candidate Algorithm Nominations for the Ad-
vanced Encryption Standard (AES), Federal Register, Vol. 62,
No. 117, Sep. 1997.

[22] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner,
Chris Hal Niels Ferguson, Two fish: A 128-Bit Block Cipher,
June 1998.

