

Toward Introducing Notification Technology into Distributed Project Teams

Jamie L. Smith, Shawn A. Bohner, and D. Scott McCrickard
Center for Human-Computer Interaction and Department of Computer Science

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0106 USA
jls05@vt.edu, sbohner@vt.edu, mccricks@cs.vt.edu

Abstract
Software development can be thought of as the evolution
of abstract requirements into a concrete software system.
The evolution, achieved through a successive series of
elaborations and refinements, is inherently a complex
process. The complexity is not merely in the product --- the
complexity of managing the evolution of the product
throughout the life of a project is proportional to the size
and complexity of the product. Managing software project
teams is a complex task complicated by the distribution of
project teams. Distributed collaboration requires
adequate support for team coordination and risk
management. Human-computer interaction (HCI)
combines technical concerns with human psychological
concerns. Similarly, software project managers confront
complexities in both of these dimensions. In this paper, we
report on a collaborative design environment called
LINK-UP being developed to guide the design process
and facilitate reuse. We examine some web-based project
management tools in terms of their support for
collaborative design and virtual team processes. We
present a notification system approach to making the
design record a natural by-product of the design process
and a lever for knowledge reuse. Knowledge from past
projects could then be used to automatically notify project
teams of potential problems and suggest possible
solutions.

1. Introduction

Researchers define complexity by citing the ‘‘phase

transitions’’ that occur in the physical world between
highly ordered and highly disordered systems [9]. For
example, water possesses complex physical properties
that lie on a spectrum between the highly ordered state of
ice crystals and the highly disordered movements of
steam molecules.

Corning states that complexity often implies the
following attributes [9]:

1. a complex phenomenon consists of many
parts,

2. many relationships/interactions exist among
the parts; and

3. the parts produce combined effects (synergies)
that are often novel, unexpected, even
surprising.

This fluidity analogically describes the modern

software project --- the intangible, malleable product,
produced by teams of diversely skilled people distributed
across time and space, dealing with many uncertainties.
Responding to complexity problems like this often
requires effective mental models combined with
automation that seeks to relieve the participant from
repetitive details and bring into focus the relevant
decisions that must be made [5].

Complexity and integration issues frequently dominate
modern computing. As the size and complexity of
software-intensive systems continues to increase, it
becomes difficult for one individual to achieve a full
understanding of all aspects of a system design. The
knowledge and expertise necessary for successful design
is typically distributed among a group of individuals who
must share their knowledge, coordinate their efforts, and
resolve conflicting perspectives to solve a given problem.
Consequently, individuals rely on effective teamwork,
sound management, and adequate tool support in the
design of complex, interactive systems.

Software development teams are plagued by
management problems that result in missed deadlines,
budget overruns, and canceled projects, and effective
management remains an open problem as development
teams struggle to keep pace with changing technology.
Today, successful organizations are those capable of
adapting to the ever-changing trends of global
competition and responding quickly and effectively to
evolving customer needs [17].

Globalization has further complicated the issue of
project management by popularizing the use of
organizationally and geographically distributed teams.
Unlike traditional teams that share a physical workspace,
distributed teams have the added difficulty of
collaborating across the boundaries of space and time.

Expected to compete with traditional teams in terms of
quality and efficiency, distributed teams rely heavily on
information technology to support many of the
communicative and collaborative processes that
traditional teams take for granted [17].

1.1. Toward a Solution

Effective collaboration requires team coordination and
risk management. Coordination involves establishing
team cohesion, maintaining awareness about the activities
and perspectives of everyone on the team, and managing
dependencies among project-related activities. Risk
management involves identifying and prioritizing
potential problems and monitoring, mitigating, and
controlling those risks throughout the life of the project.
To accomplish these goals, the members of a team must
maintain a shared understanding of all project-related
knowledge, which should include knowledge about the
past (what happened in previous projects), the present
(what is happening in the current project), and the future
(what could go wrong as the project progresses) [12].

All members of a well-coordinated team not only share
the same knowledge, but also know that they share the
same knowledge [15]. Consequently, these teams spend
less time discussing process-related issues of how goals
should be accomplished and more time discussing
product-related issues of what goals should be
accomplished [11]. Existing collaborative systems support
activity awareness to varying degrees through the use of
notification systems, which display information in the
users’ periphery without unwanted interruptions to their
primary tasks [14]. Notification systems typically support
awareness by signaling isolated events, such as the arrival
of an email. However, notification systems are also useful
in monitoring the evolution of long-term collaborative
activities. Notification systems can provide a plethora of
awareness data to the members of a distributed team
without distracting them from their primary tasks;
however, most collaborative systems do not take full
advantage of these benefits.

Collaborative systems also overlook the importance of
risk management. To effectively manage risk, teams must
understand potential problems at the start of the project so
that they can attempt not only to avoid common pitfalls
but also to identify signs that trouble may be mounting.
Teams that do not address project risks often end up over
or under-scoping their projects, developing good solutions
to the wrong problems, and performing large amounts of
rework late in the project timeline [4]. Collaborative
systems could draw on knowledge from past projects to
warn teams of common mistakes; however, existing tools
rarely reuse knowledge or aid teams in explicitly
monitoring risk.
 As system complexity and team distribution continue to
increase, the task of developing tools to support effective

collaboration is becoming more important and more
difficult to accomplish. This paper examines the strengths
and weaknesses of several existing project management
tool technologies and proposes a strategy for improving
these tools by better supporting team coordination and
facilitating risk management through the use of
notification systems and the reuse of process knowledge.

2. Web-Based Team Technology

Techniques for managing distributed teams have not
been fully explored; however, it is generally accepted that
distributed teams cannot be managed using traditional
paradigms [3]. Regardless of the management techniques
applied, distributed teams require adequate tools to
support them in maintaining team coordination and
managing risk. Existing project management tools
typically fall short in one or both of these categories. A
number of web-based research tools have been developed
for use by various project teams. Some of the more recent
tools target student software engineering teams,
demonstrating the relevance of improving project
management for partially, as well as fully, distributed
teams. Student teams, although not always geographically
distributed, rarely share a physical workspace, and thus,
often experience coordination problems similar to those
of fully distributed teams.

SOPPTS [22], for example, is a task-oriented project
management system for student software engineering
teams. At the start of a project, teams produce a list
project tasks and assign subsets of those tasks to each
team member. Team members are then responsible for
updating the system as progress is made on each task.
Consequently, all team members and the project manager
(or the course instructor) can see which tasks have been
completed, whether each task was complete on time, and
if certain tasks, or team members, have fallen behind
schedule.

Public task assignments reduce misunderstanding about
who is responsible for completing which tasks and also
add an element of peer pressure. Team members are
rewarded for completing their assigned tasks on time and
pressured by their teammates when progress is slacking.
The web-based nature of the system facilitates geographic
distribution; however, the system is only beneficial when
used regularly by everyone on the team. The amount of
overhead it adds to a project in terms of consistently
updating progress on individually assigned tasks can
distract team members from other project tasks and
actually hinder progress. Consequently, use of the system
typically diminishes as a project progresses.

JReflex [21] supports project management in student
software engineering teams by monitoring team
collaboration and evolution of the overall project design.
The system integrates project management and
development tools without adding overhead by using

CVS records to monitor changes to shared project files in
object-oriented development projects. Information about
file updates (which files, when, from where, and by
whom) is used to visualize the evolution of the project
design and to make inferences about team collaboration.
As a result, teams can monitor and reflect on their own
processes and make changes accordingly. Course
instructors can also monitor team processes, notice
problems, and provide feedback to the team so that they
can fix problems before it is too late.

The data collected by JReflex is archived in an
experience repository, allowing instructors to reference
past projects to illustrate common pitfalls that students
should avoid and to showcase exceptional projects from
which students can model their work [21]. However, the
potential for reuse is limited. Through reverse
engineering, JReflex creates a design model from existing
code. Although this model identifies design evolution, it
does so only at the OO class level, providing no
indication of changes to user requirements or of the
rationale behind design decisions.

Similar research tools are also applicable beyond the
academic environment. TeamSCOPE [18], for example,
targets a broad range of teams. The system improves
asynchronous coordination within distributed teams by
providing them with a shared file repository, dedicated
message boards for each shared file, and a detailed
activity history. At login, team members are presented
with an overview of awareness data, including recently
posted messages and an activity summary. The message
boards allow team members to discuss issues related to a
particular file and organize those discussions both by
topic and by time. The activity summary lists the most
recent activities in reverse chronological order and allows
team members to filter activities based on the type of
event (e.g. posted messages and file or calendar updates)
or the context of the event (e.g. activities related to files in
a specific folder). As a result, users can monitor their
teammates’ recent relevant activities (i.e. those activities
that relate to their own current tasks) without being
inundated with information about all recent project
activities.

Although general system features expand
TeamSCOPE’s application to a broad range of teams,
they also limit the tool’s usefulness for teams within any
specific domain. The system can monitor changes to any
shared document; however, no real insight can be gained
with respect to how those changes affect the project as a
whole. Furthermore, the organization of the activity
history into a list of recent events hinders a team’s ability
to see the project as a whole and allows team members to
get lost in the details of current tasks.

TeamSpace [13] provides a shared workspace for
document and task management and supports the
synchronization and documentation of team meetings.
Information presented during a meeting is organized into

a timeline and archived for future reference. Key events,
such as a team member arriving, leaving, presenting
important information, or making a decision, are recorded
using descriptive icons. These icons can then be filtered
by type or selected to access further details.

Team meetings are only one type of event that can then
be included on a full project timeline along with deadlines
and other project milestones. Structuring process-related
knowledge according to the common dimension of time
takes advantage of our ability to organize past experiences
into an episodic memory. Based on well-known
processes, such as the phases of a development cycle, or
temporal markers, such as before or after the team
acquired a new manager, team members can reconstruct a
sequence of events. Organizing information into a
timeline aids team members in maintaining an overall
view of the project and retrieving more detailed
information as needed.

Most project management tools have limited support
for collaboration. They merely model the project
activities, sometimes integrate with other tools (e.g., cost
estimation tools), and provide effective project reports for
managers. Those that do provide collaboration support are
largely repositories for project information accessed
across the web. The tools presented here go the next step,
with collaboration/notification being the centerpiece to
improving performance. However, these tools continue to
overlook some vital aspects of project management, such
as risk management. Few existing tools attempt to
explicitly facilitate risk management and, to our
knowledge, none attempt to automate risk awareness
through the use of notification systems and by leveraging
knowledge from previous projects. The concept of
process knowledge reuse has been explored with limited
success. Our approach to improving process knowledge
reuse stems from work in human-computer interaction
(HCI) in the area of design knowledge reuse [7, 8, 20], as
discussed in the next section.

3. Leveraging Knowledge Reuse

It is generally accepted that system developers can

reduce development time and cut costs on a larger scale
by incorporating reuse as early as possible in the
development cycle [10, 20]. Consequently, new problems
do not have to be solved from scratch. Archiving and
reusing knowledge about a design product or a design
process can help to ensure that effective ideas are
remembered and that mistakes are made only once.

3.1. Design Knowledge Reuse

Project planning activities frequently call upon software

engineers’ design abilities to coordinate many resources
for the ultimate goal of a successful project delivery.
Design is a creative task that benefits from considerable

knowledge reuse. The concept of design knowledge reuse
is of particular interest in HCI, which is concerned with
designing interfaces to interactive systems that allow
users to accomplish their goals. A key aim of HCI is to
inject rationale from psychology, sociology, and other
social sciences into the design process so that usability
problems can be detected and diagnosed early.

As system complexity increases, so too does the
complexity of system interfaces. Successful design
increasingly requires a well-constructed, well-trained, and
well-managed team that follows a systematic approach to
applying scientific knowledge to design practice. This
‘‘engineering approach’’ to HCI must complement current
software engineering paradigms yet involve the analysis
of design rationale to ensure that socio-technical systems
are designed with the user in mind [7, 20].

Carroll’s method for claims analysis [7] outlines a
systematic design approach that contributes to these goals.
Claims explicitly state the positive and negative tradeoffs
of a particular design feature. Delivered in informal,
natural language, claims encourage designers and other
system stakeholders to debate design tradeoffs, with the
goal of mitigating the downsides of each claim while
maintaining or strengthening the upsides. In this way, a
set of claims is compiled that exemplifies the rationale
behind a system design [7].

Claims represent reusable design rationale grounded in
theory from the social sciences. Although claims are tied
to a specific context of use, the underlying design
rationale can be reused in subsequent projects. To
facilitate design knowledge reuse, claims must be
abstracted, classified, and stored in a knowledge
repository for future application within a new design
context [19].

3.2. Process Knowledge Reuse

If teams can leverage knowledge from previous projects
to improve their design product, they should also be able
to leverage knowledge from previous projects to improve
their design process. Basili’s Experience Factory [2] was
developed to facilitate process improvement in software
development by structuring, classifying, and storing
packaged experiences from previous projects for reuse.
Experiences include both product and process-related
knowledge and are input into a repository as artifacts,
models, or lessons learned. Experiences are then tailored
to meet the needs of a specific project and supplied on
demand in the form of models, tools, or baselines.

The concept of reusing process-related knowledge is a
natural extension of the reuse paradigm; however, the
packaging of reusable experiences is too coarse. Reusing
an experience is similar to reusing a generic software
process model that has been adapted for a specific project.
In this way, attempting to reuse an experience is like
attempting to reuse an entire claim set. Although this level

of reuse might be possible, it is not a suitable starting
point. Experiences must first be broken down into
structured chunks of process knowledge appropriate for
storage, retrieval, and reuse in a variety of projects across
domains.

One potential strategy for process knowledge reuse is to
decompose projects into a set of risks. All projects have
risks, and many risks occur consistently in projects across
domains. Although the probability, priority, and impact of
a particular risk will vary with each project, the general
risk statement and possible mitigation strategies will be
applicable to many different projects.

Reusing process knowledge in the form of project risks
is only one possible approach to process knowledge reuse.
Additional work is needed to investigate the optimal size
and structure of a risk item and to determine the
feasibility and usefulness of archiving risk-related
knowledge for reuse.

Project management, like HCI, is a complex discipline
in need of a more systematic approach, and the effective
reuse of process knowledge could be an initial step
toward the science of software project management. The
success of these proposed methods of reuse for both
design knowledge and process knowledge relies on the
development of reuse repositories and effective tool
support. Tools are needed first to evaluate the
practicability of these methods and then to facilitate
learning and promote practical acceptance of these
methods in academia and industry. The ongoing
development of such tools is discussed in the next section.

4. Managing Teams in LINK-UP

In support of the science of design, a suite of web based

tools, called LINK-UP [8], is being developed to guide
designers through the process of designing a notification
system. LINK-UP facilitates the use, validation, and
improvement of the claims analysis method by supporting
the construction of a claims analysis record during the
design process. The system connects to a design
knowledge repository, allowing teams to leverage
knowledge from previous design efforts by searching for
reusable claims relevant to their current project.
Throughout the design process, designers also extend this
knowledge repository by updating existing claims and
creating new ones [8].

Two key goals of the LINK-UP system are to promote
practical acceptance of the claims analysis method and to
facilitate learning through applied project work in
undergraduate and graduate HCI courses. However, to
achieve industrial and academic acceptance, LINK-UP
must adequately support collaborative design efforts.
Computer-aided design tools, like LINK-UP, typically
guide the design process and facilitate management of
product-related knowledge; however, few tools support
users in documenting and reflecting on process-related

knowledge [20]. Given the growing complexity of system
design and the increased distribution of project teams,
collaborative design tools must aid teams in maintaining
effective coordination and managing project-related risks.
The addition of a project management tool to LINK-UP
has the potential to support both team coordination and
risk management while extending the reuse paradigm to
include process-related knowledge. The tool should
improve the system’s overall usability for distributed
teams by better supporting collaborative team processes.
Additionally, the tool should encourage the evolution of
project management techniques for distributed teams as
process knowledge is organized, archived, and improved
through reuse.

An effective project management tool should benefit
distributed project teams by supporting team coordination
through the externalization and maintenance of a
collective team memory and by facilitating risk
management through reuse of knowledge from previous
projects.

4.1. Maintaining a Team Memory

With an increase in system complexity comes the need
for effective knowledge management to promote
efficiency and coordination in project teams. Information
technology plays a key role in organizing, storing, and
retrieving large amounts of knowledge and in allowing
organizations to take advantage of the knowledge reuse
paradigm [10]. However, knowledge management is more
than simply storing documents in a searchable repository.
It involves acquiring, sharing, and integrating knowledge
from multiple perspectives into a shared understanding of
a given problem and its intended solution [1].

Distributed cognition [16] stresses that the true power
of human intelligence is captured only through the
interaction of minds. Consequently, team members should
not assume shared understanding of knowledge regarding
design rationale, experience from previous projects, or
task dependencies. To facilitate learning through shared
knowledge and synthesis of competing perspectives,
distributed knowledge must be externalized and recorded,
creating a physical record of the team’s mental efforts in
the form of a collective team memory [1]. A team
memory should contain all knowledge related not only to
the design product, such as design rationale, but also to
the design process, such as team roles, responsibilities,
contributions, and progress. This knowledge can be
collected and maintained through the use of adequate
communication and awareness mechanisms.

Team members need to maintain a ‘‘big picture’’ view
of their project while ensuring that all members of the
team have access to the same project-related knowledge.
They need not only to remember how the design has
evolved throughout the life of a project, but also to notice
and understand recent changes that teammates have made

to the design. With this knowledge, team members should
possess a better understanding of project tasks,
dependencies, and risks as the design progresses and
evolves.

Structuring design rationale in the form of claims
presents the opportunity to improve activity awareness by
providing greater insight into the nature of a design
change. An update to an arbitrary, user-defined document
in a system, such as TeamSCOPE [19], provides little
insight into the scope of the update or the effect it might
have on the project as a whole. While JReflex visualizes
detailed changes at the implementation level, it provides
no insight into the rationale behind those changes.
Visualizing changes within a claim set could help to solve
these problems. An update to a single claim or to a subset
of claims narrows the context of a design change,
providing a better indication of what aspects of the design
are changing and to what extent. Additionally, given the
structure of a claim, changes to a design can be monitored
more meticulously. For example, adding a new upside to
a claim might indicate a minor update, while modifying
the feature text and several design tradeoffs might
indicate a more significant design change.

If a physical team memory is to be beneficial to project
teams, it must be easy to maintain and use. The collection,
organization, and archiving of project-related knowledge
should be a natural by-product of the design process that
adds minimal overhead to the project. Additionally, a
team memory must be organized and presented to the
team in such a way that team members can quickly notice
and understand changes and potential problems and easily
retrieve further details when necessary. The use of
timeline visualization allows team members to organize
all project-related knowledge along the common
dimension of time. As the project evolves over time, the
visualization should reflect those changes, notifying the
team of important updates and maintaining a physical
record of all project activities.

4.2. Facilitating Risk Management

The knowledge contained within a team memory
should not be discarded at the end of a project. Instead, it
should be archived as a physical project record for reuse.
Subsequent design teams can then examine design
processes, discover problems, and consider solutions from
previous projects, acquiring advice from multiple
perspectives before making a decision that is tailored to
their specific project. In this way, the team memory
serves as a case study for a given project, with the
benefits of automatic generation and integration within a
reuse repository.

To reduce project overhead, the process of locating and
comparing similar projects could be automated in LINK-
UP. When a new project is created, the system could
retrieve records from similar past projects, based on

parameters such as the size of the team, the project
timeline, and the type and scope of the system being
designed. Of the similar projects archived for reuse, those
that were completed successfully could be used to create a
template to guide plans for the new project. From this
template and from additional knowledge stored in the past
project records, teams could learn important lessons, such
as what internal deadlines they might want to set for
themselves or as what point in the timeline their design
should begin to stabilize.

If the knowledge contained within project records could
be decomposed into reusable project risks, this process
knowledge could then be used to automatically warn
students of common pitfalls. For example, sizeable
deviation from the average number of claims used in
successful similar projects might indicate a poorly scoped
design. Design changes made late in the project timeline
might indicate late scrap and rework, which often results
in missed deadlines. LINK-UP could alert teams when the
majority of work seems to take place just before a
deadline or when particular team members are not
contributing to the project. Notification of these and other
potential problems should improve risk awareness in
project teams. To facilitate risk management, LINK-UP
should notify teams of potential problems, highlight
records from similar past projects that experienced the
same problems, and continue to monitor the likelihood
and impact of risks throughout the course of the project.

Exposure to multiple successful and unsuccessful past
projects would allow teams to compare processes and
make informed decisions based on the needs of their
specific project. Teams could study concrete examples of
processes that succeeded and processes that failed,
examining reliable methods and common problems that
occurred in projects of similar structure. By viewing
knowledge from past project records at the start of their
project, teams should gain a better initial understanding of
the processes and the risks involved in design work. By
having access to past project records throughout the life
of their project, teams could not only compare progress
and design evolution, but also discover and compare
multiple solutions to problems when they occur. Teams
who are aware of potential problems at the start of the
project, and who monitor changes in the impact and
likelihood of those risks throughout the life of the project,
will be better prepared to manage those risks and
complete their project successfully

5. Management Support Strategy

Effective project management requires a systematic
process and supporting tools that facilitate team
coordination and leverage knowledge from previous
projects to identify potential problems and propose viable
solutions. By maintaining a physical process record
throughout the life of a project and by reusing knowledge

archived from the records of past projects, teams could
simultaneously and automatically reuse process
knowledge and contribute further process knowledge for
reuse. To accomplish these goals, tools to support project
management in distributed teams should adhere to the
following guidelines:

• Coordinate team through activity awareness ---

Aiding distributed teams in the externalization and
maintenance of a collective team memory will help
team members to remain aware of the activities and
perspectives of everyone on their team. A team
memory should include knowledge related to
progress, individual contributions, decision rationale,
and design evolution. The creation and maintenance
of a team memory should be a natural by-product of
the design process, adding minimal overhead to the
project while helping teams to coordinate tasks and
dependencies.

• Organize process knowledge using time-based

visualization techniques --- Organizing the team
memory intuitively will allow teams to monitor,
reflect on, and improve their processes throughout
the course of a project, while visualizing process-
related knowledge according to time takes advantage
of episodic memory. An effective activity timeline
should allow team members to quickly understand
design changes, notice potential problems, and
retrieve more detailed information on demand. The
activity timeline should help team members to
maintain a ‘‘big picture’’ view of the project as it
evolves over time.

• Archive process knowledge as a physical project

record for reuse --- Maintaining the team memory
throughout the life of a project and archiving project
records for reuse will allow future teams to study the
designs of similar projects, model their processes
from those of successful teams, and avoid common
mistakes. Additionally, decomposing project records
into reusable chunks of process knowledge and
classifying that knowledge for storage in a repository
is an important step in improving process knowledge
reuse.

• Facilitate risk management by leveraging

knowledge from previous projects --- Automatically
presenting new teams, at the start of their project,
with records from similar past projects will help team
members to understand project expectations and
risks. Records for both successful and unsuccessful
similar projects should be retrieved based on relevant
project parameters, such as team size and project
domain and scope. Leveraging process knowledge
from similar projects to maintain a visible list of

project risks and alert teams to an increase in the
probability of potential problems will help teams to
become and remain aware of risks throughout the life
of a project.

6. Conclusion

Software project management is increasingly complex.
As systems grow, team size and distribution rise, and the
manifold complexities increasingly overwhelm us, we
must rely more and more on our ability to share
knowledge, coordinate efforts, and synthesize diverse and
conflicting perspectives in the design of software-
intensive systems.

In this paper, we examined what it will take to apply
notification systems to support project management.
Motivated to support project management and expand
process knowledge reuse, we discussed how we could
apply the LINK-UP technology to a number of project
management efforts to evaluate the effects on usability
and performance. As our effort unfolds, we hope to show
that visualizing changes within a claim set can improve
activity awareness and that leveraging knowledge from
past projects can improve risk management. These
improvements, in turn, should have a positive effect on
team performance.

The knowledge gained through team collaboration
should not be forfeited at the end of a project, but instead,
archived for reuse. Reusing knowledge from previous
projects to support risk management is an initial step in
the development of a systematic approach to process
knowledge reuse. By archiving project records and
extracting chunks of knowledge in the form of project
risks, we can begin to investigate the optimal size and
structure of process knowledge to be incorporated into
LINK-UP’s reuse repository.

Supporting project management in LINK-UP is an
important step toward improving project management for
distributed teams and toward extending the reuse
paradigm to include not only project-related knowledge,
but also process-related knowledge. The result could help
to bridge the gap between software engineering and HCI
by contributing to the state-of-the-art in collaborative
teamwork, software project management, and reuse.

7. Acknowledgements

We wish to thank Ali Ndiwalana, Shahtab Wahid, and
Jason Lee for their careful review and constructive
comments on this work.

We also thank the Virginia Tech ASPIRES program, in
part, for funding this research.

8. References

[1] Arias, Ernesto, Eden, Hal, Fischer, Gerhard, Gorman,
Andrew, and Scharff, Eric. ‘‘Transcending the individual human
mind --- creating shared understanding through collaborative
design.’’ ACM Transactions on Computer-Human Interaction
(TOCHI), Vol. 7, No. 1, March 2000, p. 84 - 113.
[2] Basili V. R.: "The Experience Factory: packaging software
experiences." In Proceedings of the NASA Goddard Space
Flight Center's 14th Annual Software Engineering Workshop,
1989.
[3] Beise, Catherine M. ‘‘Employees and impact on work: IT
Project Management and Virtual Teams.’’ In Proceedings of the
2004 SIGMIS conference on Computer personnel research:
Careers, culture, and ethics in a networked environment, April
2004, p. 129-133.
[4] Boehm, Barry, and Port, Daniel. ‘‘Educating Software
Engineering Students to Manage Risk.’’ In Proceedings of the
23rd International Conference on Software Engineering, May
2001, p. 591-600.
[5] Bohner, S., ‘‘Extending Software Change Impact Analysis
into COTS Components,’’ IEEE/NASA Software Engineering
Workshop, December 2002.
[6] Carroll, J. M. ‘‘Making use: a design representation.’’
Communications of the ACM, Vol. 37, No. 12, December 1994,
p. 29-35.
[7] Carroll, J.M. Making use: scenario-based design of human-
computer interactions. The MIT Press, 2000.
[8] Chewar, C. M., Bachetti, Edwin, McCrickard, D, Scott and
Booker, John. "Automating a Design Reuse Facility with
Critical Parameters: Lessons Learned in Developing the
LINKUP System." In Proceedings of the 2004 International
Conference on Computer-Aided Design of User Interfaces,
January 2004.
[9] Corning, P.A., ‘‘Complexity is Just a Word!’’, in
Technological Forecasting and Social Change. 2001, Institute
for the Study of Complex Systems: Palo Alto.
[10] Davenport, Thomas H, and Prusak, Laurence. Working
knowledge: how organizations manage what they know.
Harvard Business School Press, 1998.
[11] Fussell, Susan R., Kraut, Robert E., Lerch, F. Javier,
Scherlis, William L., McNally, Matthew M., and Cadiz,
Jonathan J. ‘‘Coordination, Overload and Team Performance:
Effects of Team Communication Strategies.’’ Proceedings of the
1998 ACM conference on Computer supported cooperative
work, November 1998, p. 275 - 284.
[12] George, B., Bohner, S., and Prieto-Diaz, R., ‘‘Software
Information Leaks: A Complexity Perspective,’’ 9th IEEE
International Conference on Engineering of Complex Computer
Systems, Florence, Italy, April 2004.
[13] Geyer, Werner, Richter, Heather, Fuchs, Ludwin,
Frauenhofer, Tom, Daijavad, Shahrokh, and Poltrock, Steven.
‘‘A Team Collaboration Space Supporting Capture and Access
of Virtual Meetings.’’ In Proceedings of the 2001 International
ACM SIGGROUP Conference on Supporting Group Work,
September 2001, p. 188---196.
[14] McCrickard, D. Scott, Chewar, C. M., Somervell, Jacob P.,
and Ndiwalana, Ali. "A Model for Notification Systems
Evaluation--Assessing User Goals for Multitasking Activity."
ACM Transactions on Computer-Human Interaction (TOCHI),
Vol. 10, No. 4, December 2003, p. 312-338.
[15] Malone, Thomas W., and Crowston, Kevin. ‘‘The
interdisciplinary study of coordination.’’ ACM Computing
Surveys, Vol. 26 No. 1, March 1994, p. 88-119.

[16] Norman, D. A. Things That Make Us Smart: Defending
Human Attributes in the Age of the Machine. Addison-Wesley
Longman Publ. Co., Inc., Reading, MA, 1993.
[17] Powell, Anne, Piccoli, Gabriele, and Ives, Blake. ‘‘Virtual
teams: a review of current literature and directions for future
research.’’ The DATA BASE for Advances in Information
Systems. Vol. 35, No. 1, Winter 2004, p. 6-36.
[18] Steinfield, Charles, Jang, Chyng-Yang, Pfaff, Ben.
‘‘Supporting virtual team collaboration: the TeamSCOPE
system.’’ Proceedings of the international ACM SIGGROUP
conference on Supporting group work, November 1999, p. 81-
90.
[19] Sutcliffe, Alistair. ‘‘On the effective use and reuse of HCI
knowledge.’’ ACM Transactions on Computer-Human
Interaction, Vol. 7, No. 2, June 2000, p. 197-221.

[20] Walz, Diane B., Elam, Joyce J., and Curtis, Bill. ‘‘Inside a
software design team: knowledge acquisition, sharing, and
integration.’’ Communications of the ACM, Vol.36, No.10,
October 1993, p. 63-77.
[21] Wong, Kenny, Blanchet, Warren, Liu, Ying, Schofield,
Curtis, Stroulia, Eleni, and Xing, Zhenchang. ‘‘JReflex: toward
supporting small software project teams.’’ In Proceedings of the
2003 OOPSLA workshop on eclipse technology eXchange,
October 2003, p. 50-54.
[22] Zhang, Jeff, Zage, Dolores, and Zage, Wayne. ‘‘Improving
project planning/tracking for student software engineering
projects through SOPPTS.’’ In Proceedings of the 16th IEEE
Conference on Software Engineering Education and Training,
March 2003, p. 185 --- 19.

