Agile Development Methodology for Embedded Systems: A Platform-Based
Design Approach

Lucas Cordeiro'?, Raimundo Barreto!, Rafael Barcelos®, Meuse Oliveira?,
Vicente Lucena’, and Paulo Maciel?

!Departamento de Ciéncia da Computagio - Universidade Federal do Amazonas (UFAM), Brazil
rbarreto @dcc.ufam.edu.br and vicente @ufam.edu.br

2Centro de Informdtica - Universidade Federal do Pernambuco (UFPE), Brazil
{mnoj, prmm} @cin.ufpe.br

3BenQ Mobile Phones - Research and Development Center, Brazil
{lucas.cordeiro, rafael.barcelos} @benq.com

Abstract

This paper describes an agile development methodol-
ogy which combines agile principles with organizational
patterns and adapts them to build embedded real-time
systems focusing on the system’s constraints. The hard-
ware/software partitioning and platform-based design are
used in the proposed methodology to support the embed-
ded system designer meet the system’s constraints in an it-
erative and incremental way and to reduce substantially the
design time and cost of the product. To discuss the strengths
and weakness of this methodology, a case study involving a
pulse oximeter is also presented.

1 Introduction

The micro-controllers becoming cheaper, smaller and
more reliable make it economically attractive to be used
as computer systems in several appliances. Approximately
3 billion of micro-controllers (xC) are sold each year and
smaller ;C (4-,8-, and 16-bit) are dominating the market
and adding value to products [6]. The embedded computer
systems are used in a wide range of system from machine
condition monitoring to airbag control systems. As the sys-
tem complexity increases, its development lifecycle is also
affected. Because of that, system development methodolo-
gies must be applied in order to manage the team size, to
manage the product requirement (scope) and to meet the
project’s constraints (time-to-market and costs).

Nevertheless, many development methodologies that are
used to produce software that runs on the personal com-

puters (PC’s) are not appropriate for developing embedded
real-time systems. This kind of system contains very differ-
ent characteristics such as dedicated hardware and software,
and constraints that are not commum to PC’s based systems
(e.g. energy consumption, execution time, memory foot-
print). Moreover, many embedded systems engineers do not
have good software engineering skills. They have hardware
development skills and often use programming languages
to solve the problems at hand in an empirical way [5]. An-
other important point is that some classes of embedded real-
time systems may put lives or business-critical functions at
risk (mission criticality). Therefore, these systems should
be treated differently from the case where the only cost of
failure is the project’s investment.

Based on this context, we propose a development
methodology based on the agile principles such as adap-
tive planning, flexibility, iterative and incremental approach
in order to make easier the development of embedded real-
time systems. To achieve that, this methodology is com-
posed by best practices from Software Engineering and
Agile methods (Scrum and XP) which aim at minimiz-
ing the main problems present on the embedded software
development context (i.e. requirement volatility and risk
management), and by others practices that are needed to
achieve embedded real-time systems (i.e. platform-based
design [13]). On this paper, this methodology and its com-
ponents (roles, process and tools) are described.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the related works. Section 3 overviews
the agile methods and patterns that were integrated into the
proposed methodology. Section 4 describes the proposed
agile methodology and section 5 shows the application of



the proposed methodology in the development of the pulse
oximeter. Finally, section 6 summarizes this paper and iden-
tifies the next steps from this research.

2 Related Works

Embedded software development teams usually do not
make use of development methodologies or any other more
complex software engineering concept [5]. There are dif-
ferent reasons that explain this fact, but the main one is the
developers’ lack of maturity related to software engineer-
ing practices. Nevertheless, we identified in the literature
through a bibliographical review, three different develop-
ment methodologies that allowed us to evaluate the state of
the art in this context and to support us during the definition
of our proposed approach.

One of the results from this review is a paper that de-
scribes the experience of applying Agile approaches to the
development of firmware for the Intel Itanium processor
family [5]. In this paper, Greene identified the agile prac-
tices that his team successfully applied, but he did not take
into account the hardware related development, one of the
main parts of this kind of development. Greene only men-
tioned that another Intel team was applying agile concepts
and they were having good results. Even so, the comments
retrieved from this paper regarding the application of agile
concepts were very useful during the definition of our ap-
proach since it supports the benefits of using agile concepts
in contexts beyond object oriented software development.

The second one is the methodology proposed by
Gajski [4] which aims to develop embedded systems by
formally describing the system’s functionalities in an exe-
cutable language rather than a natural language. The ex-
ecutable specification is refined through the system-design
tasks of allocation, partition, and refinement. Estimators are
also used in order to explore design alternatives. Since the
system components are defined formally then components
are implemented by just compiling the component’s func-
tional description into machine code. This methodology has
already been applied to several embedded systems projects
and has influenced our proposed methodology. However,
this methodology assumes that all requirements are cap-
tured before applying the partitioning algorithms.

Finally, Manhart and Schneider [8] related a successful
industrial experience when partially adopting agile methods
in the production of software for embedded systems. Indeed
they made slight modifications in a well established soft-
ware development process for the automotive branch adopt-
ing some agile elements in order to adequate their process
to new needs as flexibility and high speed software produc-
tion. As pointed out in the paper many other application ar-
eas may benefit from their experiments, nevertheless the au-
thors did not presented any measurement results that could

prove their expectations.

The difference of the proposed methodology compared
with other methodologies can be described as follows: (i)
our methodology aims to tradeoff flexibility and perfor-
mance by adopting highly programmable platforms, (ii)
hardware/software estimation and partitioning techniques
are used in order to explore design alternatives and meet
the system’s constraints, (iii) by making use of the iterative
and incremental approach, the product development can be
broken in a sequence of iterations and implemented in an
incremental way, (iv) as the system functionalities increases
iteration by iteration then the proposed methodology offers
clearly an iterative process where the designer can validate
the partition of a system specification produced by algo-
rithms, (v) and last but not least, the proposed methodol-
ogy adopts an adaptive planning which makes it possible to
embraces changes even late in the development process.

3 A Brief Look at the Agile Methods and Pat-
terns

In this section, a brief look at the agile principles, meth-
ods, and patterns that were used in the proposed methodol-
ogy is presented. It identifies the main product development
and management practices of the XP and Scrum methods
respectively.

3.1 Extreme Programming

The most recognizable agile method is eXtreme Pro-
gramming (XP) which is very communication-oriented and
team-oriented [1]. XP is composed of 12 core practices and
some of its main characteristics that were integrated into
the proposed methodology include: Refactoring practice (i)
which is the process of changing a software system in such
a way that it does not alter the external behavior of the code
and at the same time improves its internal structure.

In the Continuous Integration practice (ii), the code is
compiled and tested in an automated process every time it
is checked-in. Test-driven development practice (iii) means
that the unit tests are written by the developers before cod-
ing. These unit tests are automated tests that test the func-
tionality of pieces of the code. In the Coding Standard prac-
tice (iv), everyone involved in the project needs to follow the
same code style. It specifies a consistent format for source
code, within the chosen programming language.

XP promotes an evolutionary approach to design the sys-
tem by using the first three practices described above. The
main benefit of this approach is that the system grows in an
incremental way and it aims to reduce project’s risk and un-
certainty too early (risk management). Section 4 describes
how these XP practices were adapted into the proposed
methodology.



3.2 Scrum

Scrum is a simple and straightforward approach to man-
age the software development process based on the assump-
tion that environmental (i.e. people) and technical (i.e.
technologies) variables are likely to change during the pro-
cess [12]. Scrum is composed of 14 practices and some
of its main characteristics that were integrated into the pro-
posed methodology include: Sprint practice (i) is the iter-
ation organized in 30-calendar-day. The Sprint Planning
practice (ii) consists of two meetings.

In the first meeting, the product backlog which contains a
list of features, use cases, enhancements, and defects of the
system is refined and re-prioritized by the product owner,
stakeholders and goals for the next iteration are chosen.
In the second meeting, the Scrum team figures out how to
achieve the requests and creates the sprint backlog that con-
tains detailed tasks to be accomplished in the current iter-
ation. In the Sprint Review practice (iii), the Scrum team
presents the results obtained at the end of each iteration by
showing the working software for the product owner, cus-
tomers and other stakeholders. In the Daily Scrum practice
(iv), daily meetings are held at the same place and time with
special questions to be answered by the Scrum team.

Scrum employs the empirical process control model, i.e.
the practices aim to inspects the condition of activities and
empirically determines what to do next in order to pro-
duce the expected outcomes (product). The productivity
and quality strongly depend on both skills and motivation of
the people involved in the process. Section 4 shows how the
Scrum practices were adapted into the proposed methodol-

ogy.

3.3 Patterns for Agile Software Develop-
ment

The agile patterns described by [3] can be combined with
XP and Scrum agile methods with the purpose of structur-
ing the software development process of the organizations.
These patterns are split into four different pattern languages
as follows: The project management pattern language pro-
vides a set of patterns that help the organization manage
the product development, clarify the product requirements,
coordinate project’s activities, generate system’s build, and
keep the team focus on the project’s primary goals.

The piecemeal growth pattern language provides a set
of patterns that help the organization define the high-level
management and amount of team members per project, en-
sure and maintain customer satisfaction, communicate the
system requirements, and ensure a common vision for all
people involved in the product development team. The or-
ganizational style pattern language provides a set of pat-
terns that help the organization eliminate project’s overhead

and latency, ensure that the organization structure is com-
patible with the product architecture, organize work to de-
velop products by geographically distributed teams, and en-
sure that the market needs will be met.

The people and code pattern language provides a set of
patterns that help the organization define and keep the ar-
chitecture style of the product, ensure that the architect is
materially involved in implementation, and assign feature
development to people in nontrivial projects. The software
configuration management pattern language is not part of
the organizational patterns but they were integrated into
the proposed methodology. These patterns were defined
by [2] and they offer patterns that help the development
team define mechanisms for managing different versions of
the work products, develop code in parallel with other de-
velopers and join up with the current state of development
line, and identify what versions of code make up a particular
component.

4 Proposed Agile Development Methodology

The proposed methodology aims to define roles and re-
sponsibilities and provide processes, lifecycle, practices and
tools to be applied in embedded real-time system projects.
It contains three different processes groups that should
be used during the system development: system platform,
product development and management.

The system platform processes group aims to instantiate
the platform for a given product. It means that the system
designer must choose the system components that will be
part of the architecture and API platforms from a platform
library. After that, the system designer has still the pos-
sibility to customize the architecture and API platforms in
order to meet the application constraints. The customiza-
tion process is carried out by programming the designer-
configurable processors and runtime-reconfigurable logic
integrated into the platform. The customization process is
carried out by successive refinements in an iterative and in-
cremental way into the proposed methodology.

The product development processes group offers prac-
tices to develop the application’s components and integrat-
ing them into the platform. The functionalities which make
up the product are partitioned into either hardware or soft-
ware elements of the platform. The partitioning algorithms
used to carry out this task take into account the energy con-
sumption, execution time, and memory size of the applica-
tion’s components. The mechanical design is also part of
this processes group, but it is out of the scope of this paper.
The partitioning technique is also applied in an iterative and
incremental way.

The product scope, time, quality, and costs parameters
are monitored and controlled by the product management
processes group. These parameters also influence the sys-



tem platform and product development processes groups.
When the project starts with an infeasible project plan
which needs corrective actions to be carried out then this
processes group aims to get the project back on the track
and ensure that the project’s parameters are met. The prod-
uct management processes group consists of the practices
promoted by the Scrum agile method as well as the agile
patterns described in Section 3. The next subsections are
concerned with describing the processes groups, roles and
responsibilities, and the processes lifecycle of the proposed
methodology.

4.1 System Platform Processes Group

The system platform processes group is composed of
the following processes: product requirements, system plat-
form, product line, and system optimization. The product
requirements process aims to obtain the system’s require-
ments (functional and non-functional) that are relevant to
determine the system platform in which the product will be
built. The platform instance process helps the development
team define the system platform by making use of a set of
design tools and benchmarks.

After defining the system platform, the product line pro-
cess helps the development team setup the repository in
which the system platform components will be available to
the product development. This process also allows the de-
velopment team to implement and integrate system’s func-
tionalities into the system and release new product versions
into the market. After implementing and integrating the
system’s functionalities into the product development line,
the system optimization process provides activities to ensure
that system’s variables such as execution time, energy con-
sumption, program size and data memory size satisfy the
application constraints.

4.2 Product
Group

Development Processes

The product development processes group is composed
of the following processes: functionality implementation,
task integration, system refactoring, and system optimiza-
tion. The functionality implementation process ensures that
test cases are created for every product’s functionality. This
process helps increase the product quality and reduce the
creation of complex functions. The task integration process
provides means to integrate new implemented functionali-
ties into the development line of the product without forcing
the other team members to work around it.

The system refactoring process helps the development
team identifies opportunity to improve the code and chang-
ing it without altering its external behavior. After refactor-
ing the code, the system optimization process allows the de-

velopment team to optimize small part of the code by mak-
ing use of profiler tools that monitor the program and tells
where, for instance, it is consuming time, energy, and mem-
ory space. This process guarantees that software metrics
meets the system constraints.

4.3 Product
Group

Management Processes

The product management processes group is composed
of the following processes: product requirements, project
management, bug tracking, sprint requirements, product
line, and implementation priority. The product require-
ments process (that also belongs to the system platform
processes group) aims to obtain the system’s requirements
(functional and non-functional) that must be part of the
product. The project management process allows the de-
velopment team to implement the system’s requirements by
managing the product and sprint backlog, coordinating ac-
tivities, generating system’s build, and tracking the prod-
uct’s bug.

The bug tracking process allows the product leader to
manage the lifecycle of the project’s issues (bug, task, and
enhancement) and provide the needed information about
the product quality through the release notes for the end
user. The sprint requirements process allows the develop-
ment team to analyze, evaluate, and estimate the system’s
functionalities before starting a new project’s sprint. This
information is included into the sprint backlog which will
help the development team partition the system function-
alities into either hardware or software before starting the
sprint.

The product line process guarantees that the system
functionalities implemented during the sprint will be inte-
grated into the product development line. This process also
helps the development team to release new product versions
into the market. The implementation priority process helps
the product leader manage any kind of interruptions that
may impact the project’s goals. This process guarantees that
the project’s tasks are 100 percent completed after initiated.

4.4 Roles and Responsibilities

The proposed methodology involves four different roles
and the responsibility of each role is described as follows:

Platform Owner: Platform owner is the person who
is officially responsible for the products that derive from
a given platform. This person is responsible for defining
quality, schedule and costs targets of the product. He/she
must also create and prioritize the product backlog, choose
the goals for the sprints, and review the product with the
stakeholders.



Product Leader: Product leader is responsible for the
implementation, integration and test of the product ensur-
ing that quality, schedule, and cost targets defined by the
platform owner are met. He/she is also responsible for me-
diating between management and development team as well
as listening to progress and removes block points.

Feature Leader: Feature leader is responsible for man-
aging, controlling and coordinating subsystem projects,
pre-integration projects, external suppliers that contribute
to a defined set of features. The feature leader also tracks
the progress and status of the feature development (deliv-
erables, integration and test status, defects, and change re-
quests) and reports the status to the product leader.

Development Team: The development team which may
consist of programmers, architects, and testers are responsi-
ble for working on the product development. They have the
authority to make any decisions, do whatever is necessary
to do (according to the project’s guidelines), and ask for any
block points to be removed.

If the product to be developed is small, i.e. it is com-
posed of few components and does not require other de-
velopment teams to implement the product’s functionali-
ties then one product leader and the development team are
enough for the product development. On the other hand,
if the product is composed by several components and re-
quires other development teams to implement the product’s
functionalities then the Feature Leader role must be in-
volved in the processes. In this context, one product leader
requires feature leaders to manage, control and coordinate
components’ projects. Therefore, for medium and larger
projects, one product leader and several feature leaders and
development teams may be involved in the processes.

4.5 Processes Lifecycle

The proposed agile methodology consists of five phases:
Exploration, Planning, Development, Release, and Mainte-
nance. In the Exploration phase, the customers provide re-
quirements for the first product release. These requirements
are included into the product backlog by the platform owner.
After that, the platform owner and product leader estimate
the requirements with no item larger than 3 person-days of
effort. In this phase, the development team identifies the
application constraints and estimates the system’s metrics
based on the product backlog items. With this information
at hand, the development team is able to define the system
platform that will be used to develop the product in the next
phases.

In the Planning phase, the platform owner and customers
identify more requirements and prioritize the product back-
log. After that, the development team spends one day to
estimate the sprint backlog items and decompose them into
tasks. The tasks that make up the sprint backlog must take

from 1 to 16 hours to be completed. Explanatory design and
prototypes may also be developed at this phase in order to
help clarify the system’s requirements.

In the development phase, the team members implement
new functionalities and enhance the system based on the
items of the sprint backlog. The daily meetings are held
at the same time and place with the purpose of monitoring
and adapting the activities to produce the desired outcomes.
At the end of the each iteration, unit and functional tests
are executed in a continuous integration build. System opti-
mization also takes place during this phase. The last sprint
provides the product to be deployed in the operational envi-
ronment.

In the Release phase, the product is installed and put
into practical use. During this phase, it usually involves the
identification of errors and enhancement in the system ser-
vices. Therefore, the platform owner and customers decide
if these changes will be included in the current or subse-
quent release. This phase aims to deliver the product and
the needed documentation to the customer. The Mainte-
nance phase may also require more sprints in order to im-
plement new features, enhancement and bug fixes raised in
the release phase.

5 Applying the Proposed Methodology

This section is concerned with describing the applica-
tion of the proposed methodology in the development of
the pulse oximeter equipment. We chose the pulse oximeter
as a case study because it was already developed in another
work by our research group using an ad hoc development
methodology [10]. Therefore, we describe the pulse oxime-
ter in this section only as an example of the application of
the proposed methodology in the domain of embedded sys-
tems. Generally speaking, the pulse oximeter is responsible
for measuring the oxygen saturation in the blood system us-
ing a non-invasive method. The architecture of this equip-
ment is shown in Figure 1.

SPECTROPHOTOMETRIC CONVERSOR
|
SENSOR DEMULTIPLEX

PRE-AMPLIFIER

<—| LED DRIVER
MICRO-CONTROLLER J
UNIT

™ DIGITALUANALOG

- INTERFACE DEMODULATOR
T | ATENUATOR
oot Signa VATO SELECTOR
SELECTOR SIGNAL/TEST
CONTROL
> S—

DC Signal FILTER

AC Signal INTERFACE

PROGRAMMABLI ::'
AMPLIFIER FILTER

Figure 1. Pulse Oxiemeter Architecture.



The micro-controller controls the synchronization and
amplitude of the led driver, which dispatches non-
simultaneous stream pulses to the infrared and red leds.
Both leds generate, respectively, infrared and red radiation
pulses that cross the finger of a patient. After crossing the
finger, a photo-diode catches the radiations level. A se-
quence of operations occurs until data reaches the micro-
controller. Lastly, the micro-controller performs the calcu-
lation related to oxygen saturation level based on data re-
ceived, and shows the result on a display. The final product
contains about 5000 lines of C code. Due to timing and
energy constraints, the sensor signals excitation and con-
ditioning were implemented using hardware components
while the control algorithm and the signal conversion sys-
tem were implemented in software by the micro-controller.

The main system’s characteristics are depicted as fol-
lows: (i) the level of the oxygen saturation and cardiac fre-
quency must be shown every second, (ii) The user must be
able to change the alarm configuration, (iii) the user inter-
face of the pulse oximeter equipment must have a keyboard
and a graphical display, (iv) the design of the system should
be highly optimized for life-cycle cost and effectiveness, (v)
the amount of software defects should be as low as possible,
and (vi) the power dissipation of the final system should be
about 2,35 Watts.

If we develop this product using the proposed methodol-
ogy then there would be about three people involved, two
developers and one product leader. The product would take
approximately four sprints of three weeks to be developed,
tested and delivered (rough estimation). The next subsec-
tions describe only the processes of the proposed methodol-
ogy that focus on achieving the aims of the pulse oximeter
equipment.

5.1 Process for Managing the Product Re-
quirements

This process would help us identify the market needs for
the pulse oximeter product line and manage the product re-
quirements. At the beginning of the project, we could ar-
range a brainstorming meeting in order to capture high-level
requirements of the product. After that, we could create an
initial product backlog with the purpose of capturing more
requirements and creating a first product prototype. The
first project iteration would allow us to answer questions
such as whether the technology needed for the system ex-
ists, how difficult it would be, and whether the engineers
would have enough experience using that technology.

We could put much emphasis on delivering the system’s
functionalities (i), (ii), and (iii) in the beginning of the
sprints. Delivering these functionalities with highest busi-
ness value (the business value could range from 1 lowest
to 5 highest), could help our customer (e.g., a representa-

tive of a hospital) and the product leader get feedback on
functionality earlier and allow them to spot any misunder-
standing more quickly. At the end of each iteration, the
product leader and customer could verify if the product was
still feasible or not. If the project was not feasible then it
could have been canceled just after the end of the iteration
(risk management).

If we develop a new product in which the requirements
cannot be expected to be fully available earlier in the devel-
opment then this process would help us identify more re-
quirements and update the product backlog as the project
evolves. We could start the project with a set of func-
tional and non-functional requirements. After running some
project’s sprint, our understanding about the product would
increase and we could identify the requirements that were
not captured at the beginning of the project.

5.2 Process for Managing the Project

This process would help us refine and prioritize the prod-
uct backlog that contains the system’s functionalities. In the
sprint planning, the product leader and our customer could
choose the goals of the next sprint based on the highest busi-
ness value and risks of the product backlog items. After
that, we could have a meeting to consider how to achieve
the sprint’s goals and to create the sprint backlog. The sprint
backlog should contain only tasks in the 4-16 hour range.

During the system development, the sprint backlog could
be updated on a daily basis as the activities were being ac-
complished. The product leader could hold daily meetings
at the same place and time with the team members with the
purpose of monitoring and controlling the complexity of the
tasks. These daily meetings would provide a great feed-
back to the product leader and create the habit of sharing
the knowledge. After starting the sprint, we could imple-
ment first the functional requirements and then focus on the
non-functional requirements of the system. This approach
would help us obtain better optimization results because we
would be trying to optimize the global system instead of
only parts of the system which sometimes could not lead to
the global optimization.

During this phase, system’s builds could also be gener-
ated on a daily basis which could help our customer clarify
the requirements and asses the risks earlier in the develop-
ment process. At the end of the sprint, the product leader
and development team could show the results of the work
to the customers. This meeting aims to present the product
increment, technology and business situation. These arti-
facts would help the product leader and customers decide
the goals of the next sprint. In addition, after each sprint re-
view there would be a retrospective meeting which has the
purpose of collecting the best practices used in the sprint
and identifying what could be improved for the next sprint.



5.3 Process for Instantiating the Platform

This process would help us estimate the pulse oximeter
metrics in order to define the system platform. To obtain the
execution time and energy consumption metrics, we could
specify the system’s functionalities in the Unified Modeling
Language (UML) by creating the class, collaboration and
sequence diagrams. UML 2.0 profile could also be used
to specify the system functionalities [7], but at the time we
wrote this paper there was no tool available to convert the
UML 2.0 diagrams into a programming language. The main
benefits of the UML 2.0 is that it uses special stereotypes
and design rules for modeling the behavior of the applica-
tion and platform components and it also enables their pa-
rameterization.

The CASE (Computer Aided Software Engineering)
tools like Together and Rational Rose could be used for
the entry of the system model. After specifying the sys-
tem model in UML using these tools, the code could be
generated automatically in the language selected by the sys-
tem designer (e.g., SystemC, Java, and C/C++). Nguyen et.
al. [9] provides a tool that enables the system designer to
specify the system model in UML and automatically con-
vert it into SystemC code [9]. After generating the code in
the selected language, hardware/software estimation tools
could be used to estimate the execution time and energy
consumption. We could use the estimation tool developed
by our research group that is capable of estimating the ex-
ecution time and energy consumption based on Assembly
code [11].

Therefore, after estimating the system’s metrics, we
could provide this information to our hardware/software
partitioning tool that is being developed as an Eclipse plug-
in by our research group. This tool looks for the best parti-
tioning that meets the design constraints. Since most design
decisions are driven by constraints then we should incorpo-
rate the application constraints into our objective function
so that partitions that met constraints would be considered
better than those that did not meet. Finally, after instanti-
ating the platform based on the application constraints then
we could start developing the product.

5.4 Process for Implementing New Sys-
tems Functionalities

This process would help us implement the system’s tasks
of the pulse oximeter in a systematic way. According to the
business value of the system’s functionalities defined in the
process for managing product requirements, we could start
implementing the tasks responsible for measuring the oxy-
gen saturation level in the patient’s blood. In order to im-
plement this functionality, we should first write the unit test
for this functionality and thereafter we should successfully

compile the unit test before really writing the functionality’s
code. If there would be compilation problems then the unit
test for this functionality should be fixed.

After successfully compiling the unit test, we could start
coding the functionality by following product’s coding stan-
dard defined at the beginning of the project. The function-
ality’s code would be considered completely implemented
only after the team member successfully runs the unit test
that was created for the functionality. Therefore, it would
ensure that the functionality would be in compliance with
its specification and the calculation of the oxygen saturation
level in the patient’s blood would be correctly performed. If
there would be some need for splitting this functionality into
different tasks then there would be the need for creating the
unit tests for each code piece of the functionality.

5.5 Process for Refactoring the Code

After implementing the system’s functionalities, we
could identify in further sprints opportunities to improve an
existing code. For instance, we could identify during the
pulse oximeter project that the level of the oxygen satura-
tion and cardiac frequency functionalities have some tasks
in common. Both functionalities need to collect data from
the sensor and identify the maximum and minimum signal
pulse. Therefore, the application of this process would lead
to elimination of duplicated code, reduction of the amount
of system’s functions, and improve the system performance.

But before improving the code for those tasks in com-
mon, we should first create branches in the system reposi-
tory for not breaking an existing working code. After that,
we should verify if there is some need for updating the unit
test of the functionality. If there is no need to update the
unit tests then we could start improving the code without
altering its external behavior. After refactoring the code, we
could run the unit test in order to verify if the changes are
working correctly. If there is no compilation problem and
the unit test dos not fail then we could integrate our changes
into the product development line.

After integrating the code, the regression tests could be
run in order to check if there is no compilation and semantic
problems. If there is no problem then the refactoring would
be completed. Another important point when applying the
refactoring process is that system functions might also be
moved from one system component to another, i.e., the sys-
tem designers might decide to move a function from soft-
ware running on one of the processors to a hardware block.
For instance, the signal conditioning of the pulse oximeter
could be moved from software component to a full-custom
logic, an application-specific integrated circuit (ASIC), or
reconfigurable logic component. This process would also
lead to improve the system performance.



5.6 Process for Optimizing the System

This process would help us identify system’s variable
that could be optimized in order to meet the system’s con-
straint. To optimize the system’s variables, we should first
establish the metrics and ensure that the refactoring process
has already been applied. After that, we could run our pro-
filer tool [11] to monitor the program and tell where it would
be consuming time and energy. In this way, we could be
able to find small parts of the program where these system’s
variables could be optimized. Thereafter, we could optimize
the variables under attention by hand. As in refactoring, we
could also carry out the changes in small steps. After each
step, we should compile, test and run the profiler tool again.
If the variable has not been optimized then we should re-
turn the changes in the version control system and continue
the optimization process until the variables could satisfy the
constraints.

6 Conclusion

This paper described an agile development methodology
and its application in the development of the pulse oxime-
ter. In order to create the methodology, we chose two agile
methods XP and Scrum as well as organizational patterns
named in this paper as agile patterns. Scrum is explicitly
intended for the purpose of managing agile software devel-
opment projects. On the other hand, XP is a collection of
well-known development practices. The agile patterns pro-
vide means to structure the software development process
of organizations.

When XP, Scrum and agile patterns are combined they
cover many areas of the system development life-cycle.
However, the combination of Scrum, XP and agile pat-
terns does not mean that they can directly be used to de-
velop embedded systems. Slightly changes were needed to:
(i) adopt processes and tools to optimize the product’s de-
sign rather than take paths that lead to designs that have no
chance of satisfying the constraints, (ii) support software
and hardware development through a comprehensive flow
from specification to implementation, (iii) instantiate the
system platform based on the application constraints rather
than overdesign a platform instance for a given product, and
(iv) use system platform to conduct various design space ex-
ploration analyses for performance.

To illustrate the use of the processes and tools of the pro-
posed methodology, we described how it could be applied
to develop the pulse oximeter equipment. In this case study,
we used UML notation to specify the application function-
alities and convert them into programming languages to ap-
ply the estimation and partitioning tools. For further steps,
we are researching models that can carry enough informa-
tion about the ultimate physical implementation at a high

abstraction level and planning experimental studies where
the methodology will be observed. After that, our goal is to
introduce the proposed methodology step-by-step into the
industry by using traditional measurement framework.

7 Acknowledgements

This work is partially supported by Brazilian Council of
Research CNPq under grant number 55.3164/2005-8.

References

[1] K. Beck and C. Andres. Extreme Programming Explained -
Embrace Change. Second Edition, Addison-Wesley, 1999.

[2] S. Berczuk and B. Appleton. Software Configuration Man-
agement Patterns. First Edition, Addison-Wesley, 2002.

[3] J. O. Coplien and D. Schmidt. Organizational Patterns of
Agile Software Development. First Edition, Prentice Hall,
2004.

[4] D. Gajski, F. Vahid, and S. Narayan. A system-design
methodology: Executable-specification refinement. Eu-
ropean Conference on Design Automation, Paris, France,
1994.

[5] B. Greene. Agile methods applied to embedded software
development. Proceeding of the Agile Development Confer-
ence (ADC’04)., 2004.

[6] P. Koopman. Embedded system design issues (the rest of
the story). Proceedings of the International Conference on
Computer Design (ICCD96), pages 310-317, 1996.

[7]1 P. Kukkala, J. Riihimki, M. Hnnikinen, T. Hmlinen, and
K. Kronlf. Uml 2.0 profile for embedded system design.
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE’05)., 2005.

[8] P. Manhart and K. Schneider. Breaking the ice for agile de-
velopment of embedded software: An industry experience
report. Proceedings of the 26th International Conference on
Software Engineering (ICSE04), page 3647, 2004.

[9] K. Nguyen, Z. Sun, , and P. Thiagarajan. Model-driven soc
design via executable uml to systemc. Proceedings of the
25th IEEFE International Symposium on Real-Time Systems,
Page(s) 459-468, pages 459-468, 2004.

[10] M. Oliveira. Desenvolvimento de Um Prototipo para a Me-
dida Ndo Invasiva da Saturagdo Arterial de Oxigénio em
Humanos - Oximetro de Pulso. Master thesis, Center for
Informatics at Federal University of Pernambuco, 2002.

[11] M. J. Oliveira, S. Neto, P. Maciel, R. Lima, A. Ribeiro,
R. Barreto, E. Tavares, and F. Braga. Analyzing software
performance and energy consumption of embedded systems
by probabilistic modeling: An approach based on coloured
petri nets. ICATPN 2006, LNCS 4024, pp. 261281, 2006.,
page 261281, 2006.

[12] K. Schwaber and M. Beedle. Agile Software Development
with Scrum. First Edition, Series in Agile Software Devel-
opment, Prentice Hall, 2002.

[13] A. S. Vicentelli and G. Martin. Platform-based design and
software design methodology for embedded systems. IEEE
Design and Test of Computers, 18(6):23-33, 2001.



