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Abstract

Self-adaptation is emerging as an increasingly impor-
tant capability for many applications, particularly those
deployed in dynamically changing environments, such as
ecosystem monitoring and disaster management. One key
challenge posed by Dynamically Adaptive Systems (DASs)
is the need to handle changes to the requirements and cor-
responding behavior of a DAS in response to varying envi-
ronmental conditions. Berry et al. previously identified four
levels of RE that should be performed for a DAS. In this pa-
per, we propose the Levels of RE for Modeling that reify the
original levels to describe RE modeling work done by DAS
developers. Specifically, we identify four types of develop-
ers: the system developer, the adaptation scenario devel-
oper, the adaptation infrastructure developer, and the DAS
research community. Each level corresponds to the work
of a different type of developer to construct goal model(s)
specifying their requirements. We then leverage the Lev-
els of RE for Modeling to propose two complementary pro-
cesses for performing RE for a DAS. We describe our expe-
riences with applying this approach to GridStix, an adap-
tive flood warning system, deployed to monitor the River
Ribble in Yorkshire, England.

1. Introduction

Increasingly, Dynamically Adaptive Systems (DASs) are
addressing complex problems that require a high degree of
assurance [17, 20]. Studies have shown that errors intro-
duced in the requirements are the most costly to fix for tradi-
tional (i.e., non-adaptive) systems [15]. Given the complex-
ity of DASs, the need to apply rigorous requirements engi-
neering (RE) is further heightened. Berry et al. [2] previ-
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ously identified four levels of RE that should be performed
for a DAS. In this paper, we propose a modeling version of
the Levels of RE that reifies the original levels to describe
RE work done by DAS developers to create goal models
specifying their requirements for a DAS. Specifically, we
identify four types of developers: the system developer, the
adaptation scenario developer, the adaptation infrastructure
developer, and the DAS research community. Each level
corresponds to the work of a different type of developer to
construct goal model(s) specifying their requirements. We
then leverage the Levels of RE for Modeling (LoREM) to
propose two complementary processes for performing RE
for a DAS.

To date, several notable goal-oriented approaches have
been proposed for modeling DAS requirements [7, 6, 22,
14, 23]. A DAS has three main types of RE concerns: what
are the conditions to monitor for adaptation, what adap-
tations are needed to achieve a desired new behavior, and
what decision-making procedure should be used to asso-
ciate the monitored conditions to the appropriate adapta-
tions. In general, the current approaches model the con-
cerns of one developer, namely the system developer, and
focus on specifying the conditions to monitor for adapta-
tion, but do not explicitly model the other two RE concerns
(adaptations and decision making). As such, there is a need
for additional approaches to modeling the RE concerns of
all DAS developers.

In this paper, we propose the LoREM as an approach to
modeling the requirements of a DAS using i* goal mod-
els [21]. Our approach reifies each of the original levels to
describe work performed by a specific type of DAS devel-
oper to produce i* goal models that are intended to be inte-
grated with those produced by the other developers. We use
the i* goal models to represent the stakeholder objectives,
non-adaptive system behavior (business logic), adaptive be-
havior, and adaptation mechanism needs of a DAS. Each of
these i* goal models addresses the three RE concerns (con-
ditions to monitor, decision-making procedure, and possible
adaptations) from a specific developer’s perspective.



We leverage the LoREM to propose two complementary
processes for performing RE for a DAS, where each pro-
cess step corresponds to performing the activities described
by one of the levels. Specifically, we offer an application-
driven process that assumes a mature set of adaptation
mechanisms that enable a DAS to dynamically adapt. And
we present a technology-driven process that assumes a less
mature set of adaptation mechanisms, thus constraining the
range of possible adaptive behavior.

We illustrate the technology-driven process and the
LoREM in the context of GridStix, an adaptive flood warn-
ing system, deployed to monitor the River Ribble in York-
shire, England. We demonstrate how the process assists
GridStix developers in understanding how the DAS needs to
adapt in response to changing river conditions. The remain-
der of the paper is organized as follows. Section 2 presents
the original Levels of RE. Section 3 presents the LoREM.
Section 4 offers two process models for specifying the re-
quirements of a DAS. Section 5 describes our case study.
Section 6 discusses related work. Finally, in Section 7, we
present conclusions and discuss future work.

2. Levels of RE for a DAS
In this section, we introduce the Levels of RE. For clar-

ity, a DAS is assumed to be a collection of steady-state pro-
grams, called steady-state systems one of which is execut-
ing at a given point in time. We consider an adaptation to
be the dynamic transition from executing one steady-state
system, the source system to running another steady-state
system, the target system. A DAS is supported by an adap-
tation infrastructure comprising a set of mechanisms that
enable adaptation to occur. The adaptation infrastructure
must include three key types of mechanisms. First, a mon-
itoring mechanism is hardware or software that is responsi-
ble for detecting adaptation conditions at run time. Second,
a decision-making mechanism is software that is responsi-
ble for selecting a target system to adapt to based on in-
put from the monitoring mechanisms at run time. Third,
an adaptation mechanism is software or hardware that exe-
cutes adaptive steps at run time, where an adaptive step is an
adaptive action, e.g., adding or swapping a component. The
adaptation infrastructure may have been developed as a sin-
gle, comprehensive, and integrated collection of elements
that support the three types of mechanisms. Alternatively,
it may have been constructed from a collection of disparate
mechanisms from different sources, thus requiring “glue”
code to make the mechanisms compatible.

The four Levels of RE done for a DAS specified by Berry
et al.[2] are as follows:

Level 1 is the traditional RE work done for a system.
Specifically, it deals with the application domain of a DAS and
identifies all possible steady-state systems that can be executed
by the DAS after adaptation.
Level 2 is the RE work done by the DAS itself at run time
to detect the need to adapt and to select the appropriate target
system to adopt.

Level 3 is the RE work done to select and configure the
DAS adaptation infrastructure for a specific DAS application
(e.g., what kinds of monitoring options exist to support a
given monitoring need?). A given adaptation mechanism may
be used for multiple adaptation needs within a given DAS,
and there may be many different adaptation mechanisms from
which to choose.
Level 4 is the RE research into adaptation to identify the
adaptation infrastructure needs. For example, what type of
monitoring support (e.g., software sensors, hardware sensors)
is needed? What is the granularity of the monitoring data
types? What type of monitoring (e.g., centralized, distributed
real-time) needs to be performed?

3. Levels of RE for Modeling a DAS
The LoREM reify the levels in four key ways: First,

Level 2 describes the work performed by a developer. In
the original Levels of RE, Level 2 referred to the RE work
done by a DAS at run time. Feedback from DAS devel-
opers indicated that while this is true for idealistic (and fu-
turistic) DASs, it is not realizable with current technology.
Second, we identify four types of developers, where each
level corresponds to the work of a different developer to
construct goal model(s) describing their requirements for a
DAS. Third, each level describes the modeling work per-
formed by the specific developer, models constructed, and
how to integrate the models constructed at the other levels.
We identified the tasks of each developer by refining the
work description in the original levels to describe modeling
activities present in the model-driven development (MDD)
of a DAS. Fourth, to provide context for the LoREM and
guidance for integrating the RE work into an overall devel-
opment process for a DAS, each level is annotated with the
MDD phase(s) in which its activities occurs.

The levels are not ordered according to levels of abstrac-
tion, or order for performing RE tasks, but instead, accord-
ing to the level of “meta-ness” [2]. Level 2 artifacts describe
how Level 1 artifacts are to be composed; Level 3 identi-
fies the set of adaptation mechanisms to be used by Level 2;
and Level 4 models the collection of adaptation mechanisms
available for selection in Level 3, for a specific DAS. Thus,
the LoREM do not have a one-to-one mapping to develop-
ment phases. Moreover, any given level may only describe
a portion of the work done during any development phase.
Other MDD artifacts for non-adaptive system elements may
be integrated with the LoREM artifacts.

Briefly, we overview the phases of MDD of a DAS (de-
picted in Figure 1) prior to describing how the work per-
formed for the LoREM produces several of these artifacts.
Figure 1 depicts the phases of MDD of a DAS and the ar-
tifacts created at each phase. At the Goal phase, the func-
tional goals (Goal) and non-functional, or soft, goals (Soft-
goal1 and Softgoal2) of the DAS are identified. These are
represented as roundtangles and clouds, respectively. At the



Requirements phase, the domains (Di and Dj), i.e., environ-
mental conditions, of the DAS are identified and the require-
ments for realizing the goals in each domain are captured
in a requirements model (e.g., Ri and Rj). The require-
ments models are represented as parallelograms. The ef-
fect of these requirements models on the softgoals are cap-
tured as dotted arrows from the requirements models to the
soft goals labeled with help/hurt. Additionally, adaptations
among these requirements models are captured as solid line
arrows between the requirements models. At the Design
phase, design models (e.g., Mi, Mj , Mi,j) are constructed,
where Mi,j is a design model capturing the behavior of the
system during adaptation. At the Implementation phase,
code is created. The circles in the Implementation phase rep-
resent adaptation infrastructure mechanisms. At the Mech-
anism Selection phase, adaptation infrastructure for a spe-
cific DAS is selected. RE is used to identify what specific
adaptation mechanisms are needed to realize the adapta-
tions among requirement models. Lastly, at the Develop-
ment of Adaptation Infrastructure Mechanism phase, adap-
tation infrastructure mechanisms, e.g., monitors, decision-
makers, and adaptation mechanisms, are created. These are
depicted as circles. RE activities in this development phase
need to identify the general adaptation needs for different
domains. The LoREM describe work performed for the
Goal, Requirements, Mechanism Selection, and Develop-
ment of Adaptation Infrastructure Mechanisms phases. Next
we elaborate each of the levels.

3.1. Level 1 RE
Developer: System developer
Development Phase: Goal and Requirements phases
Tasks: In the Goal phase, the system developer first iden-
tifies the essential goals and softgoals (e.g., performance,
reliability) of the DAS. Second, the system developer iden-
tifies the goals and softgoals of the DAS adaptation infras-
tructure. These goals and softgoals are captured in a goal
model, which we refer to as the objectives model.

In the Requirements phase, the system developer first
works closely with a domain expert to identify the unique
domains in which the DAS will operate. Second, based on
the domains, the goals, and the softgoals of the DAS, the
system developer identifies a set of steady-state systems,
such that each steady-state system is suitable for at least
one domain and satisfies the goals of the DAS. For each
steady-state system, the system developer creates a require-
ments model (e.g., Ri) by describing specific requirements
that the steady-state system should satisfy to achieve the pri-
mary goals and softgoals of the DAS. These requirements
include local properties, which are the local requirements
of a steady-state system in a specific domain. We refer to
these models as steady-state system behavior models or be-
havior models for brevity.
Models: The system developer produces an objectives
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Figure 1. MDD Phases

model and a behavior model for each steady-state system.
These requirements models can be refined into design mod-
els during the Design phase, from which code can be gener-
ated.

3.2. Level 2 RE
Developer: Adaptation scenario developer
Development Phase: Requirements phase
Tasks: I is the RE work done to specify possible DAS
adaptations by identifying source system, target system, and
adaptation infrastructure requirements for supporting adap-
tation from a source system to a target system (e.g., what
has to be monitored, what subset of target systems from
Level 1 RE are to be used in specifying adaptation scenar-
ios). In the original Levels of RE described by Berry et al.,
Level 2 referred to the RE work done by a DAS at run time.
Feedback from DAS developers indicated that while this is
true for idealistic (and futuristic) DASs, it is not realizable
with current technology. Thus, for this paper, we modified
Level 2 to describe the work of a developer.

n the Requirements phase, the adaptation scenario devel-
oper is responsible for creating a set of adaptation scenarios
for the DAS, where an adaptation scenario is an acceptable
adaptation transition at run time between the source system
and the target. These adaptation scenarios should enable
the DAS to continually meet its goals and softgoals (iden-



tified as part of Level 1 RE) despite a continually chang-
ing environment. Then for each adaptation scenario, the
adaptation scenario developer creates an adaptation model.
An adaptation model specifies requirements of the mon-
itoring mechanism, decision-making mechanism, and the
adaptation mechanism necessary to accomplish this adap-
tation. These requirements include specific conditions that
should be monitored and a high-level description of what
functional or non-functional behavior should change during
adaptation. This description can be created by the adapta-
tion scenario developer by comparing the behavior of the
source and target systems.
Models: The adaptation scenario developer constructs an
adaptation model for each possible adaptation scenario. For
each adaptation model, both the source and target systems
must have previously been specified as a part of Level 1 RE.
These adaptation scenario models can be refined into design
models for adaptation during the Design phase.

3.3. Level 3 RE

Developer: Adaptation infrastructure developer
Development Phase: Mechanism Selection phase
Tasks: The adaptation infrastructure developer performs
RE work to identify what adaptation infrastructure capa-
bilities are needed to support the adaptation scenarios de-
veloped for Level 2 and the adaptation infrastructure goals
identified at Level 1. Specifically, the adaptation infrastruc-
ture developer is responsible for identifying: What types
of monitoring, decision-making, and adaptation support is
needed? What mechanisms satisfy the goals and softgoals
of the adaptation infrastructure of the adaptive infrastruc-
ture (e.g., maintainability, reliability) specified at Level
1? The adaptation infrastructure developer then identi-
fies monitoring mechanisms, decision making mechanisms,
and adaptation mechanisms that meet the identified criteria.
These selections are documented in an adaptation infras-
tructure model. The model specifies the goals and softgoals
of the adaptation infrastructure and the mechanisms that sat-
isfy the goals and satisfice the softgoals. This model will
later serve as documentation for why specific mechanisms
were selected to support the DAS.
Models: The adaptation infrastructure developer constructs
an adaptation infrastructure model for the DAS.

3.4. Level 4 RE

Developer: DAS Research Community
Development Phase: Development of Adaptation Infras-
tructure Mechanisms phase
Tasks: The DAS Research Community performs RE
work to determine the requirements for the three major
types of adaptation infrastructure elements, i.e., monitoring,
decision-making, and adaptation mechanisms.
Models: A model depicting the various types of adapta-
tion infrastructure elements and the requirements they re-

spectively satisfy is created. Because Level 4 RE is not
performed by the developers for a specific DAS, it is as-
sumed to have occurred prior to the development of a spe-
cific DAS [10, 13, 16, 18] and thus is not included in our
RE process models.

4. RE Process Models for a DAS

The order in which the LoREM activities are performed
depends upon the maturity of the supporting adaptation in-
frastructure. To that end, we offer two complementary pro-
cesses for creating models of the requirements of a DAS,
where the steps for both processes draw from the activi-
ties in the LoREM. An application-driven process, which is
primarily top-down, assumes a rich set of adaptation infras-
tructure components. A technology-driven process, which
is primarily bottom-up, assumes a more sparse set of adap-
tation infrastructure components. In the following, we de-
scribe each process in greater detail.

4.1. Application-Driven RE Process

In the application-driven process, the RE activities drawn
from the LoREM are ordered: Level 1, Level 2, and then
Level 3. Essentially, the application-driven process model
represents the ideal RE process in which the system func-
tionality is determined at Level 1, the adaptation scenarios
are determined at Level 2, and then the adaptation infras-
tructure is selected and configured to support the desired
system functionality and adaptation scenarios. This process
model relies upon a mature set of adaptation infrastructure
components that meet the requirements of a wide variety of
adaptation needs and behavior. As such, the adaptation sce-
nario developer can focus solely on achieving the appropri-
ate functional (possibly adaptive) behavior, without being
constrained by adaptation technology.

4.2. Technology-Driven RE Process

In the technology-driven process model, the RE activi-
ties drawn from the LoREM are ordered: Level 1, Level 3,
and then Level 2. This process model represents the current
approach of many DAS developers where system function-
ality is determined at Level 1, an adaptation infrastructure
is selected at Level 3, and then the adaptation scenarios are
designed at Level 2, where the adaptation infrastructure sig-
nificantly influences the possible range of adaptation sce-
narios. One reason for this strategy is that DASs are a rela-
tively new technology with limited adaptation infrastructure
support. Thus, many developers use this process to avoid
modeling an adaptation scenario that cannot be supported
by existing adaptation technology. Another reason for us-
ing this approach is if a particular adaptation infrastructure
is mandated by the customer. Furthermore, often adaptation
mechanisms and infrastructure are domain specific.



4.3. Discussion

Using either process model, this general approach to
modeling the requirements for a DAS offers three key ben-
efits. First, it identifies the key developers and partitions
each developer’s concerns and requirements into a separate
Level of RE. This separation assists the developers in gain-
ing a better understanding of the role they play in the con-
text of the development of a specific DAS and also the de-
pendencies that exist among their tasks, requirements, and
models. Second, this approach produces models that can be
used to guide the design of a DAS that takes into consider-
ation a more complete view of the requirements, including
softgoals, adaptation infrastructure, and the three key con-
cerns of all adaptive systems (monitoring, decision-making,
and adaptation). Third, this approach provides more flexi-
bility in defining process models for performing RE for a
DAS. As with most process models used for software engi-
neering, these process models offer an idealistic approach.
In reality, it is more likely that hybrid versions of the pro-
cess models are used. Specifically, we expect there to be
iterations between Level 2 and Level 3 where adaptation
scenarios are tightly tied to the adaptation infrastructure.

5. Case study: A flood warning system

Many existing flood warning systems use on-site wire-
less sensor networks (WSNs) to collect data. Typically,
such sensor networks can only record and transmit sensor
data. The data is transmitted off-site to be processed by
computationally-intensive predictive models. Flood warn-
ing systems are often located in remote areas, where only
low bandwidth cellular network technologies are available.

The emerging availability of powerful embedded hard-
ware and heterogeneous wireless networking technologies
is enabling a new generation of flood warning systems.
Although constrained by size and power supply, modern
sensor nodes have sufficient CPU power and memory to
perform useful computations and can communicate using
short-range but high-bandwidth wireless technologies such
as IEEE 802.11b. These characteristics enable a sensor
network to act as a lightweight grid enabling the on-site
execution of point prediction models. A node performing
point prediction requires sensor data from at least one up-
stream node, combined with local data. Thus, a node de-
pends on upstream nodes while simultaneously sharing its
data with down-stream nodes. Point prediction models are
sufficiently lightweight to be executed on a single node.

Grid-based computing is also enabling the exploitation
of off-the-shelf hardware. For example, inexpensive dig-
ital cameras may be used instead of expensive ultrasound
sensors for measuring river flow. Ultrasound sensors gen-
erate small volumes of data that can be continuously trans-
mitted off-site for processing. They have to be mounted
under the water, making maintenance challenging. In con-

trast, high-resolution digicams can be mounted on bridge
parapets and can be used to detect the movement of tracer
particles in the water. Digicams generate large volumes
of data that are expensive to transmit off-site and process-
ing the data is computationally expensive for a resource-
constrained node. Therefore, the rate at which data can be
sampled and processed is limited. Fortunately, digicams’
easily decomposable datasets lend themselves to distributed
processing among the nodes of the sensor network.

A sensor network with local computational power may
enable a flood warning system to adapt dynamically in re-
sponse to changing environmental conditions, e.g., CPU
clock speeds can be varied, network topologies can change,
and nodes can adapt to switch between wireless commu-
nication technologies as the requirements for energy con-
servation, real-time computation, and fault-tolerance vary
according to environmental conditions.

A prototype flood warning system called GridStix [12]
has recently been designed and deployed on the flood plain
of the River Ribble in Yorkshire, England. GridStix was
used as a preliminary case study to test our hypothesis that
the separation of concerns provided by the Levels of RE was
useful for modeling the requirements for a DAS.

5.1. GridStix
Developing and deploying GridStix was a collabora-

tion between computer and environmental scientists. The
computer scientists had previously developed the GridKit
middleware technology [10, 11]. Hence, GridStix was
developed to use GridKit as its adaptation infrastructure.
Thus, the RE performed for GridStix is an example of the
technology-driven process.

The models constructed by performing the LoREM ac-
tivities were specified with the i* notation [21]. The i*
framework was selected because it describes the dependen-
cies among actors to accomplish goals, accomplish tasks,
and produce resources, and thus is well-suited for address-
ing the concerns of the four DAS types of developers. The
RE performed for GridStix used two types of i* models:
strategic dependency models that describe dependencies
among actors and strategic rationale models that describe
the actors’ internal rationale for how dependencies are met
and why dependencies are created. In each, an actor is de-
picted as a circle, and its boundary is depicted as a dotted
line. All elements within the circle are under the responsi-
bility of the actor. An agent is an instance of an actor and is
depicted as a circle with a horizontal bar across the top.

A role is a persona that an actor can adopt and is depicted
as a circle with a curved bar across the bottom. A goal is
an objective of an actor and is depicted as a roundtangle. A
softgoal, depicted as a cloud, is a non-functional goal whose
satisfaction cannot be fully evaluated. A task, depicted as a
hexagon, is an activity performed by an actor. A resource,
depicted as a rectangle, is a physical or informational entity.



We use six types of i* relationships: First, a dependency
relationship (depicted as an arc with the letter D pointing
toward the dependee) indicates an element depends upon
another element. Second, a task decomposition relationship
(depicted as an arc that is crossed) indicates the task is de-
composed into its constituent parts. Third, a means-end re-
lationship (depicted as an arc with a solid arrowhead) indi-
cates that a task satisfies a specific goal. Fourth, a contribu-
tion relationship (depicted as an arc with the word helps or
hurts) connects an element to a softgoal and indicates if the
element helps or hurts the realization of the softgoal. Fifth,
an actor-agent relationship (depicted by arrow-headed arcs
with the label ISA) indicates that an actor is an agent. Sixth,
an actor-role relationship (depicted by arrow-headed arcs
with the label PLAYS) indicates that an actor plays a role. A
legend is included in Figure 2.

5.2. GridStix Level 1
In Level 1, the system developer performed RE to first

identify and model the objectives of GridStix and then iden-
tify and model the possible steady-state systems. Figure 2
depicts the GridStix objectives model as an i* strategic de-
pendency model. For GridStix, the Environment Agency
(the UK organization charged with managing the environ-
ment) depended on the Flood warning system (the business
logic of GridStix) to satisfy the goal Predict flooding and
three associated softgoals: (1) Prediction accuracy to avoid
warning failures and false alarms; (2) Energy efficiency be-
cause the deployed sensors had to depend on limited power
supplies, such as batteries or solar panels; and (3) Fault tol-
erance because the sensors’ remote location made it dif-
ficult to gain access for maintenance. This inaccessibility
was particularly applicable during flood events when sen-
sors were at most risk, thus requiring the system to tolerate
sensor failures.

The Flood warning system depended on the Adapta-
tion infrastructure to provide Monitoring, Decision-making
and Adaptation mechanisms. Each mechanism was mod-
eled as a role responsible for satisfying an associated goal.
For example, the Monitoring mechanism depended on the
availability of Depth and Flow rate data (i.e., resources) to
achieve its goal, which was to Monitor River. Additionally,
the Flood warning system depended on the Adaptation in-
frastructure to have a Small footprint, since the sensors were
resource-constrained, and to provide Evolvability, since the
flood models for the river and the developers’ understand-
ing of the conditions under which GridStix needed to adapt
were expected to improve over time.

Flood warning is a highly specialized and complex do-
main, thus the GridStix system developer worked with a hy-
drologist domain expert to identify discrete domains of the
river. For the River Ribble three domains were identified:
Normal, Flow increase, and Flood. A different steady-state
system was associated with each domain: S1: Normal, S2:

Figure 2. Level 1: GridStix objectives model

Flow increase, and S3: Flood. For S1, the river flow rate
and water depth were within ranges that indicate that flood-
ing was not imminent. Under these conditions, the system
needed to consume minimal energy, consistent with the rou-
tine sampling of flow and depth data needed to monitor the
state of the quiescent river. For S2, the river flow rate had
increased beyond a threshold value, indicating that a sig-
nificant and potentially damaging increase in water depth
was about to occur. For this domain, frequent data sam-
pling was needed so that further changes in river state could
be quickly detected to enable precise behavior predictions.
For S3, the water depth had risen above a threshold value
in which sensor failure was probable. The system needed
to operate in a way that was fault-tolerant and, as with S2,
there was a need for frequent and precise data collection
to accurately monitor the dangerous river state and predict
how the river state would develop. These three steady-state
systems were modeled in the objectives model as agents of
the Flood warning system.

Next, the system developer constructed a behavior model



for each of the three steady-state systems. The models that
were developed for S1, S2 and S3 are depicted in Figures 3,
4, and 5, respectively. In each, the steady-state system was
depicted as an agent that addresses the goal and softgoals of
the Flood warning system: Predict flooding, Fault-tolerance,
Energy efficiency and Prediction accuracy.

Figure 3. Level 1: Behavior Model S1: Normal

For example, for steady-state system S1 (Figure 3), the
goal Predict flooding was achieved by the task Provide
point prediction, which was decomposed into tasks Measure
depth, Calculate flow rate, and Communicate data. Measure
depth produced data modeled as the resource Depth, while
Calculate flow rate produced Flow rate data. The Depth
and Flow rate data represented GridStix’ local properties
and were referenced by the subsequently developed Level
2 models.

For S1, when the river was quiescent, Energy efficiency
was judged to have a higher priority than Prediction accu-
racy and Fault tolerance. Thus, the Calculate flow rate was
satisfied using digicam image processing to be performed
by a single host node (Use Single-node digicam image flow
calculation), which provided less accurate predictions than
using multi-node image processing, but was more energy
efficient. Similarly, because there was little risk of sensor
failure, the relatively efficient, but less fault-tolerant Short-
est Path network topology (Provide SP topology) was se-
lected to Communicate Data.

Target systems S2 and S3 satisfied goal Predict flooding
using tasks that differ in their contributions to the softgoals
Fault-tolerance, Energy efficiency, and Prediction accuracy.
In S2 (Figure 4), an increase in flow rate was taken to poten-
tially presage an increase in depth, so Prediction accuracy
was strengthened at the expense of Energy efficiency by ap-
plying Use Multi-node digicam image flow calculation. In S3
(Figure 5), the water depth had increased to the point where

Figure 4. Level 1: Behavior Model: S2: Flow
increase

sensors were threatened by submersion or debris, so Fault
tolerance was helped to the detriment of Energy efficiency
by using a Fewest-Hop spanning tree (Provide FH topology)
for data communication.

Figure 5. Level 1: Behavior Model: S3: Flood

5.3. GridStix Level 3

The next step in the technology-driven process was for
the adaptation infrastructure developer to perform RE to
identify adaptation infrastructure mechanisms that satisfy
the goals specified by Level 1 and model them in an adap-
tation infrastructure model (Figure 6). For GridStix, Grid-
Kit was selected as the Adaptation infrastructure. GridKit,
is based on the OpenCOM [3] component framework that
uses a set of built-in reflective meta-models. GridKit is thus
able to reason about its architecture and reconfigure itself



by component substitution at run time. Adaptive behav-
ior in GridKit is policy-driven and defined by sets of rules.
In concert with GridKit’s context engine, the rules define
how GridKit satisfies a requirement in a given environmen-
tal context, and also how GridKit adapts to changed envi-
ronmental context (domains).

At Level 1, the system developer identified four goals
for the adaptation infrastructure the objectives model (Fig-
ure 2): Enable adaptation and its subgoals, Monitor river,
Respond to change in river state, and Effect adaptation.
Specifically, these goals were specified as the responsibil-
ities of the three roles (Monitoring mechanism, Decision-
making mechanism, and Adaptation mechanism) played by
the Adaptation infrastructure. These roles were effectively
conflated into the single Adaptation infrastructure actor at
Level 3 for convenience. In addition to satisfying the func-
tional goals, the Adaptation infrastructure also had to con-
tribute to softgoals Small footprint and Evolvability. GridKit
satisfies the goals Monitor river, Respond to change in river
state and Effect adaptation by tasks Use context engine,
Use policy rules and Use component substitution, respec-
tively. In addition, the softgoals Small footprint and Evolv-
ability were helped by the use of component substitution and
policy rules, respectively.

Figure 6. Level 3: Adaptation Infrastructure
Model

5.4. GridStix Level 2
Lastly, the adaptation scenario developer identified and

modeled adaptation scenarios that specify transitions be-
tween steady-state systems as the river state changes from
one domain to another. Figure 7 depicts the adaptation sce-
nario for adapting from S1 to S2 as the river state transi-
tions between the domains Normal and High flow. In addi-
tion to specifying the source and target systems, each adap-

tation scenario must address three concerns that determine
when and how to adapt. These are: what data to moni-
tor; what changes in the monitored data trigger the adap-
tion; and how the adaptation is effected. Each of these
three concerns was conceptualized as the responsibility of
a role of the adaptation infrastructure: Monitoring mecha-
nism, Decision-making mechanism and Adaptation mecha-
nism, respectively. As such, the goals of these roles are also
modeled at Level 1 in the objectives model and at Level 3 in
the adaptation infrastructure model (Figure 2 and Figure 6,
respectively).

Briefly, we discuss the satisfaction of the goals by their
respective roles. For GridStix, the goal of Monitoring mech-
anism was to Monitor river. This goal was decomposed
into two tasks concerned with evaluating the Flow rate
and Depth, which were modeled as local properties in the
Level 1 behavior models. The results of these evaluations
were used by the Decision-making mechanism to achieve
its goal: Respond to changes in river state. Specifically, the
Decision-making mechanism depended upon S1, the source
system, and the evaluations to determine when GridStix
needed to adapt from S1 to S2. This adaptation was spec-
ified to occur on a significant increase in river flow but be-
fore any significant depth increase. The Adaptation mech-
anism had to satisfy the goal Effect adaptation by perform-
ing the task Replace single-node digicam image processing
with distributed digicam image processing, which defined, at
a high-level, the difference between the S1 and S2 behavior
models.

For GridStix, the specification of the behavior of the
Monitoring mechanism and Decision-making mechanism
were not dependent on knowledge of the underlying Adap-
tation infrastructure selected as part of Level 3. However,
the specification of the behavior of the Adaptation mecha-
nism was assisted by knowledge of the capabilities of the
GridKit middleware, i.e., knowledge of the component sub-
stitution mechanism that enables switching between local
and distributed processing.

5.5. Discussion
Due to space constraints, only a subset of the i* mod-

els for GridStix have been depicted. For example, we have
not depicted tactics to enable submerged sensors to continue
transmitting data. However, we have described the principal
goals, softgoals, and tasks that were used to drive the spec-
ification of GridStix and elaborated how they were used to
derive lower-level requirements and selection of an adapta-
tion infrastructure.

GridStix’s developers needed to understand the charac-
teristics of the problem domain in order to first specify the
requirements and then derive a system that satisfied these
requirements. The complexity of the problem and the de-
velopers’ lack of familiarity with the problem domain ne-
cessitated the explicit separation of normal river conditions



Figure 7. Level 2: S1 to S2 Adaptation Model

from adverse situations, such as flooding. The GridStix
case study provided evidence that the separation of con-
cerns imposed by [2] and the process model and goal-
based modeling constructs of LoREM do provide a use-
ful means to model the requirements of a DAS. The abil-
ity to reason about the non-functional goal trade-offs was
particularly helpful to the GridStix developers because, in
GridStix, these trade-offs defined the target systems and the
adaptation scenarios. However, since we collaborated with
the GridStix designers to apply LoREM we have not yet
validated its unsupervised usability by other practitioners.

6. Related Work

While numerous techniques have emerged to support
DAS development, we limit our discussion here to goal-
oriented approaches to modeling DAS requirements. In
general, these approaches [7, 6, 22, 14, 23] address Level
1 of the LoREM. Specifically, Fickas, Feather, et al. [7,
6, 4] model DAS steady-state system behaviors using the
KAOS specification language [5] and leverage these mod-
els to generate run time monitoring mechanisms. Yu et
al. [22, 14, 23] model DAS steady-state system behavior us-
ing a requirements goal model, a hybrid goal-oriented mod-
eling technique using concepts and notations from KAOS
and i* [21]. Additionally, they provide a process for an-
notating these specifications in order to infer design infor-
mation. All of these approaches differ from our approach
in that they do not offer process models and focus only on
specifying the steady-state systems at Level 1 RE, but do
not specify the adaptation scenarios (at Level 2 RE) or the
adaptation infrastructure (at Level 3 RE).

7. Conclusions

In this paper, we propose the LoREM, where each level
describes the RE activities of a different DAS developer
(i.e., the system developer, the adaptation scenario devel-
oper, the adaptation infrastructure developer, and the DAS
research community) to construct i* goal model(s) of their
requirements. We leverage the LoREM to propose two pro-
cesses for performing RE for a DAS, where each process
step corresponds to the activities performed for one level.
The order of the levels is dependent upon the maturity of
the adaptation infrastructure. Thus, the application-driven
process assumes a mature set of adaptation mechanisms;
whereas, the technology-driven process assumes a less ma-
ture set of adaptation mechanisms, which constrains the
range of possible adaptive behavior.

We illustrated the technology-driven process in the con-
text of the GridStix case study, an adaptive flood warning
system. There were three key benefits to this approach.
First, the LoREM separated the concerns of the different
types of DAS developers into different levels. This separa-
tion assisted the developers in more thoroughly understand-
ing their role in the context of GridStix development and
also the dependencies that exist among their tasks, require-
ments, and models. Second, the i* goal models produced
by performing LoREM activities could be integrated into
the model-driven development of GridStix. Specifically, the
behavior models and adaptation scenario models could be
refined to construct design models. Third, specifying the re-
quirements of the GridStix business logic at Levels 1 and 2
and the requirements of the GridStix adaptation infrastruc-
ture, GridKit, at Level 3 supported model reuse. Specif-
ically, the GridStix developers could reuse the objectives,
behavior, and adaptation scenario models in conjunction
with a new adaptation infrastructure model that describes
a different adaptation infrastructure selection, such as Dy-
namicTAO [13], UIC [16], or RAPIDware [18].

There are several possible directions for future work.
First, we are interested in addressing some current limita-
tions of our approach. More research is needed to eval-
uate if DASs could perform RE at runtime, as proposed
in [2], thus alleviating the need to construct adaptation sce-
nario models. Currently, each target system and adapta-
tion model must be constructed by hand. There is a need
for new techniques to help system developers identify and
generate models of candidate target systems that handle the
known, potentially adverse conditions and are sufficiently
resilient and robust to handle variations of the adverse con-
ditions. Recent work at Michigan State University is ex-
ploring how biologically-inspired techniques can be used
to generate models for target systems more resilient than
human-generated behavioral models [9]. Additionally, we
are interested in performing additional studies that compare
our approach to other requirement specification techniques.



Second, we are exploring the connection between the goal
models developed by applying one of the LoREM process
models and the design models [19]. The approach offers the
potential to achieve strong traceability through the different
models, thus helping ensure that the resultant behavior is
consistent with the requirements. Third, there is a nascent
research community [1, 8] that is exploring the potential
for models to drive automatic system reconfiguration at run
time. Our work, and the opportunities it illustrates for map-
ping from system goals to run time adaptation mechanisms,
serves as an early demonstration that run time model-driven
engineering is feasible. Our vision is to make requirements
the drivers of these run-time models.
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