
U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

24
An Extensible ADL for Service-Oriented

Architectures

R. Bashroush and I. Spence

Abstract

While architecture description languages (ADLs) have gained wide acceptance in the research community as a
means of describing system designs, the uptake within the service-oriented architecture (SOA) domain has been slower

thanmight have been expected. A contributory causemay be the perceived lack of flexibility and, as yet, the limited tool

support. This chapter describes ALI, a new ADL that aims to address these deficiencies by providing a rich, extensible

and flexible syntax for describing component and service interface types and the use of patterns and meta-information.

These enhanced capabilities are intended to encourage more widespread ADL usage.

Keywords Architecture description languages � Service-oriented architectures

1. Introduction

In recent years, architecture description languages (ADL) have emerged as potential tools for formally

describing system architectures at a reasonably high level which enables better intellectual control over the

system [1]. ADLs model not only system structure, but also address component behavior specification as

well as communication protocols. While some ADLs provide graphical notations (e.g. boxes and lines),

others also provide textual notations.
Architecture descriptions can also be used as a communication vehicle among the different stake-

holders. With the formality introduced by ADLs to the architecture description, more architectural

analysis of qualities such as consistency, modifiability and performance can be carried out on the system

at an early stage. Although it is not clear yet what aspects of the architecture should be included or excluded

from the architecture description (e.g. behavior, structure, interfaces), it is widely agreed within the ADL

community that software architecture is a set of components (or services) and the connections among them

conforming to a set of constraints.
Although some ADLs have been put to industrial use [2], the majority of ADLs have not scaled up

and remain confined to small-scale case studies. Yet, little adoption of ADLs has been witnessed within the

SOA domain. A number of potential limitations demonstrated by current ADLs were identified in previous

work [3]. Among these limitations are over constraining syntax, single view presentation of the architecture

and lack of tool support. The ALI ADL has been designed to address these limitations. The rationale

behind the ALI notation was discussed in [3]. Among the main concepts driving the ALI notation are

flexible interface description, architectural pattern description, formal syntax for capturing meta-informa-

tion and linking the feature and architecture spaces. ALI built on our experience with the ADLARS [4]

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

R. Bashroush and I. Spence � ECIT, Queen’s University Belfast, Belfast, UK.

G.A. Papadopoulos et al. (eds.), Information Systems Development, DOI 10.1007/b137171_24,

� Springer ScienceþBusiness Media, LLC 2009

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

ADL and adopted many of the solution space provided by ADLARS such as its support for software
product lines.

In this chapter, we introduce the different parts of the ALI notation to show how the goals of [3] are
realized in the language. ALI comprises seven parts:

1. meta types, which provides a notation for capturing meta-information
2. interface types, which provides a notation for creating types of interfaces
3. connector types, where architectural connectors are defined
4. component types, where architectural components are defined
5. pattern templates, where design patterns are defined
6. features, where the system features are catalogued
7. system, where the system architecture is described

In the following sections, the different parts of the ALI notation are discussed. Section 9 concludes
with a discussion.

2. Meta Types

Meta types provide a formal syntax for capturing (meta-)information related to the architecture. A
meta type is defined by the information it contains. The information is captured within fields, where each
field has a data type (text, number, etc.) and a name (tag). Consider the example below for defining a meta
type called MyMetaType1:

meta type MyMetaType1 {
tag creator, description: text;
tag cost, version: number;
tag edited*: date; }

In this example, the keyword ‘‘meta type ’’ is used to start a meta type definition. MyMetaType1 is
the name of the meta type being specified. Each meta type contains a number of tags which can be either
textual, numeral or date (if needed, the tag types could be extended to include enumeration, character, etc.).
In the example above, five tags are defined: two textual, two numeral and one date. The date tag ‘‘edited’’ is
marked with an asterisk ‘‘*’’ to indicate an optional tag.

Once meta types are specified,meta objects conforming to these types can then be created throughout
the architecture. Thesemeta objects are attached to architectural elements (e.g. components, connectors) to
provide a corner for appending additional information related to these elements. Below is an example meta
object that conforms to the meta type given in the example above.

meta: MyMetaType1 {
creator: "John Smith";
cost: 5,000;
version: 1;
edited: 12-02-2006;
description: "A GUI component ... "; }

A meta object could also conform to more than one meta type. It is also possible to create meta
objects that do not conform to any meta type. This enhances the language flexibility. However, little
automated analysis can be done over such informally provided information.

The formal specification ofmeta-information would considerably enhance the development of CASE
tool support that could harness these meta objects and conduct automated analysis on the data (e.g., cost/

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

R. Bashroush and I. Spence

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

benefit analysis, project timing/scheduling, based on what meta-information is available). Other meta-
information might include design decisions, component compatibility, etc., which, when extracted and
formatted using proper CASE tools, allow automated architecture documentation to be achieved on
the fly.

In general, it is expected that the meta types will be created once and used repeatedly within different
systems developed by the same enterprise. A standard set of information required (tags) may be first
identified by the project management team (or any other stakeholder), and then provided to architects to
conform to. This insures that critical information is always provided within an architecture description.
The flexible syntax also allows the architects to augment this information with fields (tags) that they may
need temporarily or internally within the architecture team.

3. Interface Types

Interface types have been introduced to ALI to allow for the usage of multiple interfaces within a
system description. The practice would be to create a set of common interface types needed within an
application domain once (e.g., WSDL, IDL, Invocation), and then use these interfaces in the design of
components and systems.

The interface type definition is divided into two sections:

� Syntax definition, where the syntax of the interface description is specified using a subset of the JavaCC
[5] notation.

� Constraints, where the interface binding (connectivity) constraints are specified. These include
– Should match: Here the terms (identified in the syntax definition section using the JavaCC

notation) that should match between two interfaces to be considered compatible (allowed to
bind) are identified. For example, in a functional interface, for two interfaces to be compatible,
the function names and argument types should match.

– Protocols supported: A list of the protocols that this interface type can support for communication
is provided, e.g., IIOP, HTTP, method invocation.

– Allow multiple bindings: This is a Boolean value that states whether multiple binding is allowed on
this interface. For example, this property is set to true on a server socket interface to allow for
binding multiple client socket interfaces. On the other hand, it is set to false on the client socket
interface.

– Factory: This is a Boolean value that states whether the interface is a factory. A factory interface
means that when a connection request is received on this interface, a new connection dedicated
interface is created to handle that particular request while the main interface continues to listen to
new incoming requests. For example, server socket interfaces in java are factories. On the other
hand, C++ sockets are not. In C++, the factory functionality is to be implemented by the
programmer if needed.

– Persistent: This is a Boolean value which when set to true indicates a persistent interface (the
internal data of the interface component are kept unchanged after the current connection has
ended) and when set to false indicates a transient interface (internal data are reset to initial values
when the current connection is terminated).

Below is an example for defining an interface type functional:

interface type functional {
syntax definition: {
"Provided" ":" "{"
["function" <PROV_FUNCTION_NAME>

"{"
"impLanguage" ":"

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

An Extensible ADL for Service-Oriented Architectures

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

<PROV_LANGUAGE_NAME> ";"

"innvocation" ":"
<PROV_INVOCATION> ";"

"paramterlist" ":"
"("[<PROV_PARAMETER_TYPE> [","
<PROV_PARAMETER_TYPE:]*]? ")" ";"

"return type" ":"
<PROV_RETURN_TYPE> ";"

"}"]* "}"
// Required: etc.

}
constraints: {

should match: {
PROV_INVOCATION_NAME,
PROV_PARAMETER_TYPE

}
protocols supported: { RMI-IIOP, JRMP }
allow multiple bindings: false;
factory: false;
persistent: false;

}
}

For further details about the notation used for specifying the interface syntax, please refer to JavaCC [5].
It is important to emphasize here that the interface type definition is not meant to be read by humans,

but rather created once and then read by CASE tools that would verify the interface descriptions and
bindings made throughout the architecture definition.

4. Connector Types

As in Acme [6] and other ADLs, connectors are considered first-class citizens in ALI.
Below is a simple example of a connector type definition:

connector type SOAP/HTTP {
interfaces {

a, b of type WSDL;
}
layout {

if (supported(FULL_DUPLEX_FEATURE))
connect a and b;

else
connect a to b;

}
}

The connector type definition consists of two parts:

� interfaces: Where the connector interfaces are defined. These resemble the input/output terminals of the
connector. A connector must have at least two interfaces (for input/output) while theoretically there is
no restriction on the maximum number of interfaces allowed. For example, a bus connector would need
to have a number of bi-directional interfaces to serve all components connected to the bus. On the other

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

R. Bashroush and I. Spence

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

hand, a simple connector like the one in the example above has only two interfaces (of type WSDL,
where WSDL is an interface type that should be defined in the interface type section).

� layout: The layout section describes the internal configuration of the connector. It shows how the
connector interfaces are connected internally, that is, how the traffic travels internally from one inter-
face to another. There are two types of configurations allowed between connector interfaces:

– unidirectional connections (to):Which specify that the data/requests received on one interface to be
output on another interface. This is done using the keywords: ‘‘connect’’ and ‘‘to’’. For example,
connect a to b; outputs the data/requests received on the a interface to the b interface.

– bi-directional connection (and): Which specify that the data/requests received on one interface
be output on another interface and vice versa. This is done using the keywords: ‘‘connect’’
and ‘‘and’’. For example, connect a and b; outputs the data/requests received on the a
interface to the b interface and vice versa. The keyword ‘‘all’’ can be used to connect a
connector interface to all other interfaces of the connector using a bi-directional or unidirec-
tional communication as described above. For example, connect a to all makes the input
on interface a available as output on all other interfaces of the connector. In contrast,
connect a and all makes the input on a available on all other interfaces and the input
on all other interfaces available on a. The statement: connect all to all can be used to
create bi-directional connections among all ports (connect all and all is not defined).

As with interface types and meta types, a set of connector types can be defined per domain which can

then be reused across multiple projects within that domain.
In the example given above, the connector definition is linked to the system feature model to allow for

connector customization based on features selected. This is done using the if /else structure and the

keywords ‘‘supported /unsupported.’’ So, in the example above, if the system supports the FULL_-

DUPLEX_FEATURE, interfaces a and b are connected as bi-directional (using ‘‘and’’); otherwise, they
are connected as unidirectional (using ‘‘to’’). This syntax introduces a high level of configurability to the

connector definition which provides better support for defining configurable and product line

architectures.
Meta objects can be attached to connector types by simply defining the meta object (as explained in

Section 2) inside the connector type definition (anywhere between the start and end brackets).

5. Component Types

Component type definition forms a crucial part of the ALI notation. In this section, a very brief

description is given due to space limitation.
The component type definition consists of two sections:

� interfaces: which specifies the different component interfaces. These interfaces are described conforming
to defined interface types (included in the interface type section). A component can have one or more
interfaces of different types.

� subsystem: Where the internal structure (subsystem) of the component is described. The subsystem
section is divided into three sections:

– Components: where the different subcomponents included within the component are defined.
– Connectors: where the different connectors to be used in connecting subcomponents are defined.
– Configuration: where the way in which subcomponents are connected is described. Three methods

can be used to connect components:
a. Using connectors: where a connector mediates the connection between two or more

components.
b. Direct connection: where component interfaces are bound directly without the use of a

connector.

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

An Extensible ADL for Service-Oriented Architectures

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

c. Using patterns: where predefined connection patterns can be used to connect a set of compo-
nents according to a selected architectural pattern. More details on architectural patterns are
given in the next section.

Below is an example of a component type definition:

component type MyComponentType1
{
//a meta object attached to the component type
meta: MyMetaType1 {
description: "this is an example component";
cost: 20,000;

}
interfaces: {
// specifying a functional interface
myInterface1 of type functional {

Provided: {
function myAddFunction

{
impLanguage: "Java";
invocation: "add";
parameterlist: ("int");
return: "void";
} // etc.
}
Required: { }

//no required functions specified
}

if(supported(Provide_WSDL_Interface_Feature))
{

myInterface2 of type WSDL {
// WSDL interface description

}
}
}
sub-system: {

components {
comp1 <custom_feature_set1>: ComponentType1;
if(supported(Some_Feature_A))
comp4 <custom_feature_set4>:

ComponentType3;
else
comp4 <custom_feature_set5>:

ComponentType3;
//etc.

}
connectors {
conn1 <custom_feature_set1>: ConnectorType1;
// etc.
}

configuration {

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

R. Bashroush and I. Spence

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

//1 - connecting components using connectors
connect comp1.interface1 with conn1.a;
connect comp2.interface1 with conn1.b;

//2 - connecting components without connectors
bind comp3.interface1 with comp1.interface2;

//3 - connecting components using patterns
if(supported(Some_Feature_B)){

Client_Server(ServerComponent1.interface1,
[ClientComponent1.interface1,

ClientComponent2.interface1,
ClientComponent3.interface2]

);
} } }

In the example above, we begin the component description using the keyword ‘component type’
followed by the component type name, MyComponent1 in this example.

The first section of the component definition contains a meta object which conforms to meta type
MyMetaType1.

The second section is the component interfaces section where two interfaces are defined:
myInterface1

of type functional (an interface type that was defined as an example in Section 3) and myInterface2 of
typeWSDL that only exists if the feature Provide _WSDL _Interface _Feature is supported by the system.

We could define as many interfaces as we wish, where we could link the existence of interfaces to the
support /unsupport of system features. We could also attach meta objects to interfaces simply by
defining themwithin the scope of the interface definition (somewhere between the two curly brackets of the
interface definition).

It is recommended that interface definitions conform to defined interface types as per the example
above (functional and WSDL types). However, to allow for maximum flexibility, it is possible to define
interfaces that do not conform to any predefined interface type, in which case, no analysis or automated
tool support can be enabled over that interface definition or any connection made over it (similar to the
concept of creating arbitrary meta objects that do not adhere to any meta type definition). This is done by
dropping the interface type name that follows the interface name in the interface definition. For example,
one could define a port-like interface without having an interface type readily available:

myPortInterface3 :
{
input in1, in2, in3;
output out1, out2, out3;
}

However, it will not be possible to verify whether the connection between this interface and any other
interface within the system is valid or not (as the interface syntax and constraints are not formally defined).
This could be practical at early design stages when the exact interface type specification is not clear. When
the interface type matures enough throughout the design process, an interface type is defined for this type
of interface, and then the interface type name is appended to the interface definition above to allow for
verification, and perhaps automated analysis with the aid of appropriate CASE tool support.

The third section in the component definition is the description of the sub-system. In the example
above, three components are defined in the components section, each customized with a different feature
set. Also, a component of type ComponentType3 is defined; however, its customization is dependent on
the existence of the feature Some _Feature _A.

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

An Extensible ADL for Service-Oriented Architectures

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Similarly, a number of connectors are defined in the connectors section within the subsystem

description.
The configuration section shows how the components and connectors defined in the subsystem

section are configured (connected). As explained earlier, there are three ways in which components can

be connected and these are demonstrated in this example.

6. Pattern Templates

The ALI notation allows for the definition and usage of architectural patterns. This is done using

pattern templates. Pattern templates are first defined and then used throughout the architecture with a

simple call to the pattern template needed. Pattern templates take as an argument the interfaces to be

connected according to the pattern template definition.
Pattern templates are defined in similar way to the definition of functions (methods) in programming

languages. A pattern template definition contains

� Pattern name: a unique pattern name.
� Arguments: the set of interfaces to be connected. Single interface and/or arrays of interfaces can be

passed as arguments. In the case of arrays of interfaces as arguments, the minimum and maximum
number of interfaces passed can be specified.

� Definition: the specification of how the interfaces are to be connected (the pattern). The syntax used for
defining patterns is very simple and provides support for

– connecting interfaces: using the same syntax used in the connections section of the connector type
definition (discussed in Section 4).

– defining loops: to allow for connecting arrays of interfaces. The syntax used here is the same syntax
used in C for creating for loops. Note here that the arrays of interfaces start at index 1 and not at 0
(like in C).

Below is an example that defines a Client /Server pattern:

pattern templates:
{

Client_Server(server : InterfaceType1,
clients [1..N] : IntefaceType1) {

for(i = 1 ; i <= N ; i++)
connect clients[i] and server;

} }

In this example, the Client _Server pattern takes as an argument one interface called server of

type InterfaceType1, and an array of interfaces called clients (with [1..N] meaning a minimum of

one client interface) of type InterfaceType1. The pattern is defined as for all N clients, create a bi-

directional connection with the server interface (refer to Section 4 for more details on the use of the

keywords: ‘‘connect ’’, ‘‘and ’’, and ‘‘to ’’ for connecting interfaces).
An example of how to invoke the Client /Server pattern template to connect a number of

component interfaces was given within the example in Section 5.

7. Features

The feature description section provides a catalogue of the features used within the system. The

feature definition consists of

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

R. Bashroush and I. Spence

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

� Alternative names: In many cases, different groups within the development process refer to the same
feature using different names. This part of the feature definition keeps track of the different names (if
any) that are used to reference the same feature (within the different design and development groups
involved in the project).

� Feature parameters: A feature can carry a number of parameters (textual, numerical, etc.). For example,
if the feature is ‘‘Manual Gearbox’’, the parameter would be the ‘‘number of gears’’ available (a
numerical value).

Below is an example of how features are defined in ALI:

features {
featureA {

alternative names: {
Developer.X, Evaluator.F112

}
parameters: {

(windowTitle: text),
(windowWidth,windowHeight: number)

}
}
// etc.

}

In the exampleabove,featureAwasdefined showing that it is referred toas ‘‘X’’ by thedevelopment team
andas ‘‘F112’’bytheevaluationteam.Thefeatureencompassesthreeparameters:onetextualandtwonumerical.

The features defined in this section are usually extracted from the feature model of the system. This is
carried out at a prior stage of embarking on the architecture design. CASE tools could be used to read
feature models and populate this section (work on this aspect is ongoing in our group). This is an important
part of the notation as it makes ALI independent of any particular feature modeling technique.

8. System

Finally, the system section is where the overall product (or product line) architecture is specified. The
syntax used in this section is the same as the syntax used in the subsystem section (described in component
types, Section 5) with the major difference that the system section is not contained within any component
definition but rather provides the description of the overall system architecture (rather than a subsystem of
a component). As a result, the keyword ‘‘external’’ can be used in the system description section to
reference interfaces of external systems (when needed) providing a means of capturing the system interac-
tion with its environment (operating system, other systems, etc.).

Below is an example of the overall structure of the system section showing how the external
keyword could be used to reference external interfaces (parts similar to the example given in Section 5 are
replaced with ‘‘. . . ’’ due to space limitation):

system {
components { ... }
connectors { ...}
configuration { ...

bind comp1.interface with external.windowHandleAPI;
}

}

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

An Extensible ADL for Service-Oriented Architectures

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

9. Discussion

Potential limitations within existing ADLs which could be discouraging their use within the SOA

domain and restricting their application to small-scale case studies were discussed in [3]. Restrictive syntax/

structure, lack of tool support and single view presentation are among the limitations identified. In this

chapter we have presented the different parts of the ALI notation which were designed to address the

identified limitations. ALI built on our experience with ADLARS [4] and introduced a blend between

flexibility and formalism. While flexibility gives freedom for the architect during the design process,

formalism allows for architecture analysis and potential automation using proper CASE tool support

(e.g. on-the-fly architecture documentation, code generation).
Among the new concepts in ALI, the notation provides no predefined interface types. Instead, ALI

introduces a sublanguage that gives users the flexibility to define their own interface types. Also, the

notation focuses on capturing architectural meta-information and introduces formal syntax (meta types

and meta objects) for this purpose.
Continuing the theme of flexibility, ALI permits the user significant scope for defining architectural

patterns. In essence, patterns may be defined and instantiated in similar fashion to function calls in

programming languages.
Among the successful concepts adopted from ADLARS, ALI supports the relationship between

components, connectors, patterns etc. in an architecture description and features in the feature model using

first-order logic. This direct link between the architectural structure and the feature model [7] allows the

capture of complex relationships that might arise between the two spaces in real-life systems.
The textual notation described in this chapter serves as a central knowledgebase for the architecture

description. CASE tools may then be used to extract the necessary information from this knowledgebase to

be presented as different views of the architecture. The centralized approach would help alleviate multiple

architectural views mismatch when the different views are maintained separately [8].
As for future work, two items top the list for the work on the ALI project. The first is to develop a

CASE toolset for the notation. The toolset will benefit from the experience gained with designing the

ADLARSDevelopment Studio [9, 10]. And the second is to explore the potential for providing round-trip to

code. The ability to go from architecture to code and back seems to be attracting more interest and

momentum in industry (e.g. the work on model-driven architecture, MDA[11]).

References

1. P. Clements, R. Kazman, and M. Klein, Evaluating Software Architecture: Methods and Case Studies: SEI series in software

engineering. Addison-Wesley, 2002.

2. R. v. Ommering, F. v. d. Linden, J. Kramer, and J. Magee, ‘‘The Koala Component Model for Consumer Electronics Software.’’

IEEE Computer, pp. 78–85, March 2000.

3. R. Bashroush, I. Spence, P. Kilpatrick, and T. Brown, ‘‘TowardsMore Flexible Architecture Description Languages for Industrial

Applications.’’ V. Gruhn and F. Oquendo (Eds.). EWSA 2006, Lecture Notes in Computer Science. Vol. (4344), pp. 212–219,

September 2006.

4. R. Bashroush, T. J. Brown, I. Spence, and P. Kilpatrick, ‘‘ADLARS: An Architecture Description Language for Software Product

Lines.’’ In proceedings of the 29th Annual IEEE/NASA Software Engineering Workshop, Greenbelt, Maryland, USA, April 2005.

pp. 163–173.

5. ‘‘The Java Compiler Compiler [tm] (JavaCC [tm]) – The Java Parser Generator.,’’ https://javacc.dev.java.net/.

6. D. Garlan, R. Monroe, and D. Wile, ‘‘Acme: Architectural Description of Component-Based Systems.’’ In Foundations of

Component-Based Systems, G. T. Leavens and M. Sitaraman (Eds.) Cambridge University Press, 2000, pp. 47–68.

7. T. Brown, R. Gawley, R. Bashroush, I. Spence, P. Kilpatrick, and C. Gillan, ‘‘Weaving Behavior into Feature Models for

Embedded System Families.’’ In proceedings of the 10th International Software Product Line Conference SPLC 2006, Baltimore,

Maryland, USA, August 2006. pp. 52–64.

8. J. Muskens, R. Bril, and M. Chaudron, ‘‘Generalizing Consistency Checking Between Software Views.’’ In Proceedings of the 5th

International Working Conference on Software Architecture, WICSA-05, Pittsburgh, PA, November 2005. pp. 169–180.

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

R. Bashroush and I. Spence

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

9. R. Bashroush, I. Spence, P. Kilpatrick, and T. J. Brown, ‘‘Deriving Product Architectures from anADLARSDescribedReference

Architecture using Leopard.’’ ACM SIGSOFT Foundations of Software Engineering FSE-12, October 2004.

10. R. Bashroush, I. Spence, P. Kilpatrick, and T. J. Brown, ‘‘Towards an Automated Evaluation Process for Software Architectures.’’

In Proceedings of the IASTED International Conference on Software Engineering SE 2004, Innsbruck, Austria, February 2004.

pp. 54–58.

11. OMG, ‘‘Model Driven Architecture,’’ http://www.omg.org/mda/

SPB-124731 24 June 4, 2009 Time: 5:49 Proof 1

An Extensible ADL for Service-Oriented Architectures

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

	An Extensible ADL for Service-Oriented Architectures
	1. Introduction
	2. Meta Types
	3. Interface Types
	4. Connector Types
	5. Component Types
	6. Pattern Templates
	7. Features
	8. System
	9. Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

