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Abstract—One of the key challenges in modern real-time
embedded systems is safe composition of different software
components. Formal verification techniques provide the means
for design-time analysis of these systems. This paper introduces
an approach based on timed automata for analysis of such
component-based real-time embedded systems. The goal of our
research is to provide a method for treating the schedulability
problem of such systems on multi-core platforms. Since the
components are developed, analyzed and tested independent
of each other, the impact of one component on the others
does not depend on its internal structure. Therefore, we reduce
the problem of proving the schedulability of the composed
system to proving the schedulability of each component on the
resource partition allocated to it based on the interface of the
component. The proposed verification method is demonstrated
on a H.264 decoder case study.
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I. INTRODUCTION

Nowadays, real-time embedded software development is
focusing more and more on how to build flexible and exten-
sible systems. Component-based software systems achieve
this objective by gluing individually designed software com-
ponents, each component with its own timing requirements.
The compositional design of real-time systems can be done
using hierarchical scheduling and schedulability analysis
of the composed system can be addressed based on com-
ponent interfaces that abstract the timing requirements of
each component. Furthermore, the rapid developments in
multiprocessor technology determined a growing interest in
multiprocessor scheduling theories and, consequently also in
multiprocessor hierarchical scheduling theories [1], [2].

In this context, providing formal guarantees on the
schedulability of such component-based systems running on
multi-core platforms becomes even more important as these
components consist of interacting tasks and each component
can have a different scheduling strategy. In this paper we
address the formal verification of schedulability of real-
time multi-core component-based systems assuming that the
components consist of preemptable periodic tasks. These
tasks can be independent or there may exist various prece-
dence constraints between them, represented as task graphs.
Stopwatch automata [3] have been proposed for modeling
of preemptive tasks, but reachability of composition of these

automata is undecidable [4]. Moreover, it has been shown
that many preemptive multiprocessor scheduling algorithms
for periodic tasks suffer of scheduling anomalies when there
is a change in their execution time [5]. Therefore, an accurate
analysis of systems using these algorithms must consider
variable task execution times. This poses another problem
to our formal verification of schedulability since it was
proved [6] that the schedulability problem on task graphs
is undecidable if the following conditions are both met: (1)
the scheduling strategy is preemptive and, (2) tasks have
variable execution times ranging over a continuous interval.

We propose a formal method for checking the schedu-
lability of real-time component-based applications running
on multi-core platforms. Our method uses the timed au-
tomata [7] formalism, for which the reachability problem
is decidable. Our timed automata model is actually the
model of a level in a multi-core scheduling hierarchy. The
proposed method uses a discrete time formalism but is
also able to capture continuous task execution times by
approximating the stopwatch automata model. We show
this is true by proving that the formal language accepted
by the timed automata model is included in the language
accepted by the stopwatch automata and we evaluate the
approximation errors. Also, we show how our model can be
applied iteratively to check the entire scheduling hierarchy.

Related work. Formal verification of component-based
systems is addressed by several frameworks for various
purposes. The Save Integrated Development Environment
(SAVE-IDE) [8] offers support not only for design of
component based systems, but also allows specification of
the behavior of each component using timed automata.
Using UPPAAL [9] and timed automata models, it is possi-
ble to check if the components satisfy their specification.
However, the verification features of the IDE do not al-
low specification of component-level scheduling strategies
based only on component interfaces. Ke et. al. [10] also
propose a methodology for formal verification of the timing
and reactive behavior of component-based systems. Unlike
the work presented in this paper, their approach assumes
that tasks associated to a component execute on a single
processor and each task is modeled by a separate timed
automaton. In our case, the timed automata network which
models a component uses a different approach in which a



single automaton is used for all tasks of the component and
thus better performance can be achieved. An approach to
modeling real-time systems resembling ours is taken in the
TIMES tool [11] but until now the tool only offers support
for analyzing uniprocessor systems.

Multi-processor schedulability analysis using model-
checking has been investigated in [12]. The models in [12]
allow restricted and full migration of task instances. Their
work, like the one described in this paper also uses a discrete
time formalism, but tasks are assumed to be independent
and every task is modeled separately. Task schedulability is
checked in decreasing order of task priority which implies
that for a task set with N tasks, model checking has to be
performed N times in order to determine the schedulability
of the entire set. With this approach a maximal number of
N + 1 clocks are necessary for a task set of size N . Unlike
this model checking solution, our proposal requires just a
single run of the model checking for the entire task set using
a single clock.

Madl et al. [13] introduce model checking for schedu-
lability analysis of preemptive event-driven asynchronous
distributed real-time systems with execution intervals. The
analysis method proposed here starts from the same essential
idea as the work in [13] but there are several significant dif-
ferences. First, we assume a hierarchical scheduling model
which means that the execution of tasks is constrained by
the availability of the temporal partitions. Second, unlike
the work in [13] which assumes tasks are partitioned be-
tween processors, task migration is allowed in our model.
Last, instead of modeling just the tasks of an application
individually, we model a whole scheduling level.

II. PRELIMINARIES ON TIMED AUTOMATA

In this section we give basic descriptions and definitions
related to the timed automata used in our work.

Formal syntax. Assume a finite set of real-valued clocks
C and B(C) the set of constraints on the clocks in C. The
clock constraints (guards) are conjunctions of expressions of
the form x ./ N and x − y ./ N where x, y ∈ C, N ∈ N
and ./∈ {<,≤,=,≥, >}. A timed automaton over the set
of clocks C is a tuple 〈L, l0,Σ, C, I, E〉 where
• L is a set of finite locations,
• l0 is the initial location,
• Σ is a set of actions,
• C is the set of clock variables,
• I : L→ B(C) associates invariants to locations,
• E ⊆ L × B(C)× Σ × 2C × L is the set of transitions,

where transition 〈l, g, a, r, l′〉 from location l to location
l′, labeled with action a is executed only if guard g is
true and resets clocks in r ⊆ C.

All timed automata models presented in this paper are
based on the UPPAAL [9] model of timed automata which
is extended with constructs such as constants, integers,
committed and urgent constraints on locations, networks of

timed automata and events transmitted between automata.
An urgent location is similar to a location with all incoming
transitions resetting a clock x and having associated an
invariant x ≤ 0 (i.e. time cannot pass while the automaton
is in an urgent location).

Semantics. For a timed automaton we can define a clock
valuation function v : C → R+ assigning positive real values
to clocks in C. A state s in the timed automaton is a pair
(l, v) where l ∈ L and v is a clock valuation. The automaton
can stay in state s as long as the invariant associated to l
is true or can execute transitions outgoing from l when the
guard of these transitions is true. Therefore, two types of
transitions can be defined:
• delay transitions: (l, v)

d−→ (l, v′) where v′(x) = v(x)+
d,∀x ∈ C and v′ preserves the invariant of location l,

• action transitions: (l, v)
a−→ (l′, v′) if there exists a

transition 〈l, g, a, r, l′〉 ∈ E and guard g is true for clock
valuation v and v′ is obtained from v by resetting all
clocks in r ⊆ C and leaving all others unchanged.

Networks of timed automata. A network of n timed
automata Ai = 〈Li, l

0
i ,Σ, C, Ii, Ei〉, 1 ≤ i ≤ n over a

common set of clocks and actions is a parallel composition
of Ai, describing a timed automaton obtained from its
component automata. Semantically, the network of timed
automata requires joint execution of delay transitions and
synchronization over complementary action transitions.

For networks of timed automata, UPPAAL introduces the
concept of committed locations. A committed location is
more restrictive than an urgent location, as a state containing
a committed location cannot delay and the next transition of
the system must involve an outgoing edge from one of the
committed locations in the state.

III. SYSTEM MODEL

A. Real-Time Components and Component Contracts

In this paper we assume that real-time software appli-
cations consist of independent components. Further, each
component consists of a set of independent multi-threaded
tasks (MTTs), where each MTT is made up of periodic tasks
with execution costs defined as continuous intervals but with
a common period and deadline. The tasks in an MTT may
run in parallel and it is also possible to define precedence
constraints between them. The execution patterns of all tasks
of a component are modeled using a timed automaton as it
is described in the next sections.

Definition 1 (Component). A component C consists of a
finite set MT of n MTTs where:
• a MTT Θi ∈ MT , with 1 ≤ i ≤ n, is a tuple Θi =

(Ti, pi, di, ri), where Ti is the set of ti tasks in the MTT,
pi represents the inter-arrival time between different
instances of the same MTT, di is the deadline by which
all tasks in Ti should finish and ri represents the time
of the first release of Θi,



• each task τj ∈ Ti, 1 ≤ j ≤ ti, is characterized by a
tuple (bcetj , wcetj , prioj) where bcetj and wcetj are
integer values that specify the limits of the continuous
execution interval of task τj and prioj is the priority
of the task.

All numeric parameters in Definition 1 are considered inte-
ger numbers.

The tasks belonging to each component are scheduled
separately using a component-specific preemptive schedul-
ing policy. Therefore, when building an application based
on such components one must ensure that the tasks of each
component are schedulable independent of the execution of
any other component in the application.

One of the solutions for ensuring temporal isolation of
components running on uni-processor or multi-processor
real-time systems is provided by hierarchical scheduling
schemes based on execution time servers [14]. In hierar-
chical scheduling each application has its own scheduler
and can use the scheduling policy that best suits its needs.
Based on such a hierarchical scheduling scheme, Harbour
has introduced the concept of service contracts [15]. In Har-
bour’s model, every application or application component
may have a set of service contracts describing its minimum
resource requirement. Similarly, we define service contracts
to capture the resource requirements of our components.
Next, each service contract is mapped to a set of execution
time servers which mark the limits of the resources allocated
by the application to the child component. An execution time
server in a multi-core system, as considered in this paper, is
characterized by a tuple (Q,P ) meaning that the component
will receive Q units of execution every P units of time.
Additionally, we consider a third parameter o representing
the time when the server is first released. It is assumed there
is a finite set of servers S containing the servers for all
components of an application.

In terms of the timed automata formalism we define a
component contract as follows:

Definition 2 (Component contract). A component contract
CC providing a set of ns execution servers SC ⊆ S is a
timed automaton ACc over the set of actions ΣCC such that:
• ACc specifies the activation pattern of servers σi =

(Qi, Pi, oi) ∈ SC , 1 ≤ i ≤ ns,
• ΣCC = {active, inactive}, where action active signals

to the component scheduler that a server σi ∈ SC has
just become active (i.e. the processor is now available
to be used by the component), while inactive signals
deactivation of the server.

We consider that parameters Qi, Pi and oi have integer
values.

The component also has associated a scheduler which
will schedule for execution the tasks of the MTTs in a
component according to a preemptive scheduling policy. We

consider that a global scheduling policy is used and, as such,
a task can run on any processing unit. As a consequence,
task migration may occur whenever a task is preempted or
suspended. The scheduler of the component is modeled by
a timed automaton with the following characteristics:
• has a queue holding the tasks ready for execution,
• implements a preemptive scheduling policy represent-

ing a sorting function for the task queue,
• maintains a map between active execution servers and

tasks using the servers, and
• has an Error location which is reached when a task

misses its deadline.
A component consisting of n MTTs could have been mod-

eled also using a timed automaton for each of the tasks of the
MTTs, each automaton with its own clock. Since the state
space of timed automata models grows exponentially with
the number of clocks in the model, we decided to build a
single timed automaton which models the execution patterns
of all n MTTs and reduce the number of clocks to one as it
will be shown in the following subsection. Moreover, each
task could have been modeled using stopwatch automata but
the reachability analysis of composed stopwatch automata is
undecidable [4]. The same observation applies for modeling
the component as a single stopwatch automaton and conse-
quently, we propose an approximation of a stopwatch model
using timed automata with discrete clocks to keep track of
the execution time of each task.

B. Timed Automata Model for Real-Time Components

In the timed automata formalism a component of a real-
time application is the network of timed automata obtained
through parallel composition of the automaton which models
the execution pattern of the MTTs of the component, the
component scheduler automaton and the timed automaton
modeling the activation and deactivation patterns of the ex-
ecution time servers (i.e. theACc automaton in Definition 2).
In what follows we will use the names Task Generator (TGT)
to denote the timed automaton which models the MTTs’
execution and Server Generator (SG) for the one modeling
the servers. Apart from these, the network also includes a
Timer automaton which uses a single continuous clock t and
each time this clock ticks the automaton sends a tick signal
to the TGT and the SG automata.

Before explaining in more detail the timed automata
model we introduce some notations. For each MTT Θi we
use a variable R(i) to hold the time of the next release
of Θi. In order to determine the actual execution time of
each task τj , we use a variable E(j) to keep track of the
time task τj has executed since its last release. Basically,
E(j) acts like a discrete clock which can be suspended
and resumed. Also, for each task τj a variable status(j)
indicates its current status and is initialized to idle meaning
that a task instance has not been released yet. The value
status(j) = ready is used to denote that a task instance of
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Finish

IncTime
fo_len>=0

Idle Start

ready!

t:task_id_t
tasks[t].status==CAN_STOP &&
tasks[t].e<=tasks[t].wcet &&
!wait_go

task_finished=t,
handle_finished_task(t,FINISHED),
task_enabled=0

overrun!

idling?
is_idle=!is_idle

idling?
is_idle=!is_idle

idling?
is_idle=!is_idle

preempt?

go?
go_task(task_activated),
task_activated=EMPTY

must_release==true
get_task_ready()

!must_release
task_enabled=1,
in_middle=false

finished_len==0 &&
task_overrun==false &&
!wait_go &&
must_release
get_task_ready()

preempt?

go?
go_task(task_activated),
task_activated=EMPTY

go?
go_task(task_activated),
task_activated=EMPTYfinished_len==0 &&

task_overrun==false &&
task_next_release>0 &&
!must_release &&
!wait_go
task_enabled=1

task_overrun==true
task_finished=get_finished_task(OVERRUN)

finish!

finished_len>0 &&
task_overrun==false

task_finished=get_finished_task(FINISHED),
finished_len--

!wait_go
tick?
inc_exec_time(),
task_enabled=0

initialize()

(a) The Task Generator timed automaton.

Control
server_next_release>=0 &&
server_next_finish>=0

Start

tick?
update_times()

server_next_finish==0
server_finished=get_server_finish(),
deactivate_server(server_finished)

inactive!

active!

server_next_release==0
server_ready=get_server_ready(),
activate_server(server_ready)

initialize()

(b) The Server Generator timed automaton.
Figure 1. Task and Server generators.

τj is ready for execution (i.e. it has just been released or was
preempted). If τj is waiting for one of its predecessor tasks
to finish then status(j) = waiting. If an instance of task
τj is running then status(j) = running. A task τj which
has executed for bcetj time units but for less than wcetj
units will have status(j) = can stop. To denote that an
instance of task τj has finished or has missed its deadline
we use status(j) = finished and status(j) = overrun,
respectively. The discrete clock E(j) keeps track of the
overall time for which status(j) = running.

The TGT automaton presented in Figure 1(a) uses a vari-
able task next release to remember the time until one of
its MTTs must be released and a variable task next finish
to keep the earliest time when one of the currently run-
ning tasks should finish. At start-up, task next release
is initialized to min(R(i)), i = 1, 2, .., n and the au-
tomaton goes to the Ready location. From this location,
if task next release = 0 and there is at least one
task τj with status(j) = idle (i.e. TGT must release a
task), the automaton executes the transition with the guard
must release = true and in function get ready task()
elects the task τj , j = 1, 2, .., ti, for which status(j) = idle,
updates task next release (only if this is the first task
τj in the MTT that is released in the current period) and
task next finish, sets a shared variable task ready to
(i − 1) · n + j (a global identifier of task τj of the MTT
Θj) and then sends the ready signal to the scheduler
automaton which will read the task ready variable and
will add task τj to its queue. The process is repeated until
task next release becomes greater than 0 and there are
no idle tasks for any MTT that has just been released. At
this point the automaton goes to the Idle location where it
waits for a tick signal from the Timer automaton. On each
release of the MTT Θi, R(i) is postponed with pi.

The SG automaton presented in Figure 1(b) works in
a similar way with the distinction that generated active

servers are continuous (not preemptable). For each server
σk, 1 ≤ k ≤ ns, there is a discrete clock RE(k) analogous
to E(j) and a variable RR(k) is used to keep the time
until the next activation of σk. Two additional variables,
server next release and server next finish hold the
time until the earliest start time of a server σk and the earliest
finish time, respectively. When server next release = 0
a processing unit becomes available for the component (i.e.
some σk starts) and the SG takes the transition guarded with
server next release = 0. In function get sever ready()
SG determines the server σk which became active, updates
server next release and server next finish and sets a
shared variable server ready to k. Afterwards, the active
signal is sent to the scheduler of the component to announce
the activation of server σk. Also, for the server that just
started, RR(k) is set to Pk. When σk finishes and the
processing unit is no longer available, the automaton takes
the transition guarded with server next finish = 0 and,
similar to the previous scenario, sets the shared variable
server finished = k and sends the inactive signal to the
scheduler.

On every tick of the timer, TGT leaves the Idle lo-
cation and goes to the IncTime location. During this
transition, in function inc exec time(), the current ex-
ecution time E(j) of all tasks τj running (with sta-
tus set to running or can stop) at that time are
increased with a value MIN representing the min-
imum between task next release, task next finish,
server next release and server next finish. If, as a
result of this update, there are tasks for which E(j)
reached bcetj then we set status(j) = can stop and if
E(j) = wcetj then the task has finished its execution,
status(j) becomes finished and a variable finished len
counting the finished tasks is incremented. At the same time,
we identify any task τj that missed its deadline and set
status(j) = overrun. Also, as time passes the time R(i)



of the next release of each MTT Θi is decreased with MIN
and the values task next release and task next finish
are updated. When the SG receives the tick signal from the
Timer, in function update times(), it increases the current
activation length RE(k) of all active servers σk with MIN
and decreases RR(k) of all servers with the same value.
Also the values of the variables server next release and
server next finish are updated.

If some R(i) reaches 0 then a new instance of the MTT
is released (TGT sends the ready signal to the scheduler
as explained before). When the scheduler (see Figure 2)
receives notification of a new task being released, it checks
if a server on which to schedule the task is available and,
if so, sends the go signal to the TGT automaton and sets
the entry in its server-task map accordingly. If the priority
of the newly released task is higher than the priority of
one of the running tasks and no active servers are idle, the
scheduler will preempt the lower priority task and will give
the server to the higher priority task. If no server is available
or the server is deactivated while a task is running on it,
the task is either scheduled on another server (if its priority
allows it) or is queued. On every tick the TGT automaton
searches for all tasks τj that finished their execution or
that missed their deadline and sends finish or overrun
signals to the scheduler. If the server used by a finished
task is still active and there are ready tasks waiting in
the scheduler’s queue, a new task is started and the go
signal is sent to TGT. Moreover, when an active server
σk finishes, the scheduler will attempt to reschedule the
task that was using the server associated with it on some
other free server available to the component. If no active
server is free, then the lowest priority running task may be
preempted. Between all automata, data (e.g. task identifier or
resource identifier) is transmitted using shared variables. A
more detailed description of the scheduler timed automaton
can also be found in [16].

In order to be able to capture task execution intervals in
continuous time, when the TGT automaton is in the Idle
location, if there is at least one task τj with status(j) =
can stop, the automaton may decide non-deterministically
to finish the task. A remark that must be made is that
whenever there is at least one task with status can stop the
value of MIN is set to 1. This implies that at the next tick
signal, the discrete clocks presented above are increased with
a single time unit. If a task τj finishes at some fraction of the
time unit, another task τl that was previously preempted or
is ready to be released may take the place of τj . However,
because in this case we cannot keep track in the discrete
clock E(l) of the time task τl is executing until the first
tick after it has been started/restarted, the value in E(l)
is only an approximation of the real execution time of τl.
Although, this approach represents just an approximation
model of the real system, we will show in the next section
that the model preserves the properties of the system and

any component that is deemed schedulable with our model
is indeed schedulable.

It is important to notice that once each component of an
application is proved to be schedulable, by using reachability
analysis on our model we can also check the schedulability
of the entire application as follows. Each execution time
server σk is basically a periodic task with hard deadlines
and fixed execution requirement Qk. Therefore it can be
considered as an MTT consisting of a single task with bcet =
wcet and the whole application can be seen as just another
component with its own scheduler and whose MTTs are the
execution servers corresponding to the service contracts of
its components. If we consider that the application also has
a service contract mapped to another set of execution server
we can again check the proposed model by changing only
the parameters of the MTTs and of the execution servers to
reflect the new scheduling level represented by the parent
application.

IV. ANALYSIS OF THE TIMED AUTOMATA MODEL
APPROXIMATION

A. Stopwatch Automata as a Model for Real-Time Compo-
nents

Stopwatch automata [3] can be defined as timed automata
for which clocks can be stopped and later resumed with
the same value. These clocks are called stopwatches and
provide a simple way for modeling preemptive real-time
tasks. Syntactically, a stopwatch automaton SWA is a tuple
〈L, l0,Σ, C, I, E,A〉 where L, l0,Σ, C, I, E have the same
meaning as for timed automata (see Section II) and A :
L×C → {0, 1} is a function that defines the rates of clocks
ci ∈ C in locations as differential functions v̇(ci) = ki where
ki ∈ {0, 1}.

From a semantical point of view, the element that dis-
tinguishes the SWA from the timed automaton is the clock
valuation function v : C → R+ assigning positive real values
to clocks in C. In a SWA the value of a clock variable
during a delay transition (l, v)

d−→ (l, v′) is updated to
v′(ci) = v(ci) +A(l, ci) · d,∀ci ∈ C.

In our case, since the tasks belonging to the MTTs of
a component are scheduled using a preemptive scheduling
policy we could have chosen to model the component using
the stopwatch automaton in Figure 3. The execution time of
each task in each MTT is represented as a stopwatch clock
ecj , ∀j ∈ {1, 2, ..., n · ti} with 1 ≤ i ≤ n. With each MTT
we associate a clock dci, ∀i ∈ {1, 2, .., n} which will keep
track of the MTT’s deadline.

In the stopwatch version of our components we only
need to replace the TGT automaton with a Task Generator
stopwatch automaton (TGS). The TGS presented in Figure 3
still uses the variable task next release to remember
the time until one of its MTTs must be released but it
is not necessary to keep the variable task next finish.
When the system starts, task next release is initialized to
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Figure 2. Timed automaton model for the scheduler of the component.

min(R(i)), i = 1, 2, .., n and the automaton goes to the
Ready location. From this location, it can either go the Idle
location if there are no tasks ready for release or, if there is
at least one task τj with status(j) = idle, the automaton
executes the transition with the guard must release = true
and, in function get ready task() elects the task τj , j =
1, 2, .., ti, which is idle, updates task next release, puts
the task global identifier (i−1) ·n+ j in the shared variable
task ready and sends the ready signal to the scheduler
automaton. The scheduler will read the task ready variable
and will add task τj to its queue. On each release of the
MTT Θi, R(i) is postponed with pi. After all tasks that are
ready to start are released the stopwatch automaton goes to
the Idle location where it waits for a tick signal from the
Timer automaton or for a running task τj to finish. Another
event which may take the automaton out of the Idle location
is a missed deadline of any MTT. The rates of the clocks
ecj and dci are specified in the guard of the Idle location:
dc′i = 1 for all MTTs which contain at least one task that
is not finished yet, otherwise dc′i = 0 and ec′j = 1 for all
tasks that have status(j) = running but ec′j = 0 for the
other tasks.

In the stopwatch automaton the execution time of each
task τj is measured by stopwatch ecj started at the release
of the task, when the automaton sends the ready signal to
the scheduler automaton while the variable task ready = j,
until the task finishes and the finish signal is sent with
variable task finished = j. ecj does not include the
time while the task was preempted. Therefore, for any task
τj belonging to the multi-threaded task Θi the following
constraints should be true such that we can say that τj has
not missed its deadline:

0 ≤ ecj ≤ wcetj , 0 ≤ ecj ≤ dci, 0 ≤ bcetj ≤ wcetj (1)

Definition 3. A multi-threaded task Θi = (Ti, pi, di, ri) is
schedulable iff all its tasks τj = (bcetj , wcetj , prioj) ∈ Ti

finish execution before the deadline of Θi: dci ≤ di when
ecj = wcetj , ∀j ∈ {1, 2, ..., ti}.

Definition 4. A component is schedulable iff all its multi-
threaded tasks are schedulable.

The set of actions of the TGS is Σ =
{ready,go,preempt,finish,overrun,idling,tick}. The
idling signal is sent by the scheduler automaton when
it goes in or out of the Idle location. TGS stays in the
Idle location as long as either there is no server active
or there are no ready tasks to be scheduled or both of
these conditions are true. The go and preempt signals are
controlled also by the scheduler. The stopwatch automaton
will send ready for every new release of a task instance
and finish at its end.

A timed word over the alphabet Σ is a pair (ρ, θ) where
ρ = ρ1, ρ2, .. is an infinite sequence of events in Σ and
θ = θ1, θ2, .. is a timed sequence denoting the timestamps
of the events in ρ. A timed language over Σ is a set of
timed words over Σ. The timed language L(S) accepted by
the stopwatch automaton is the union of the timed languages
Lj(S) where the words in each language Lj(S) refer to valid
event sequences generated during the execution of task τj .
We consider that L(S) =

⋃
1≤i≤n

⋃
1≤j≤ti Lj(S) because

the semantics of task related events in Σ are established only
in correspondence with a shared variable indicating the task
to which the event refers. The untimed words in all Lj(S),
and consequently in L(S), are described by the following
regular expression:

ES = (ready, go, (preempt, go)∗, finish) (2)

In our case the timestamps of all events
{ready,go,preempt,finish} acceptable by the stopwatch
automaton have to be less than the deadline of the MTT
containing the task for which the event appeared (i.e.
the task is indicated in a shared variable). This implies



Ready
Overrun

Finish

IncTime

Idle

forall(i:task_id_t) (ec[i]’== (tasks[i].status==RUNNING)&&
dc[tasks[i].mtt]’==(tasks[i].status!=FINISHED &&
tasks[i].status!=OVERRUN &&
tasks[i].status==IDLE) &&
dc[tasks[i].mtt]<=mtts[tasks[i].mtt].deadline &&
ec[i]<=tasks[i].wcet)Start

!rel_mtt

rel_mtt
dc[tasks[task_ready].mtt]=0,
rel_mtt=false

e:task_id_t
ec[e]<tasks[e].bcet &&
dc[tasks[e].mtt]>mtts[tasks[e].mtt].deadline &&
!wait_go
task_finished=e,
handle_finished_task(e,OVERRUN),
task_enabled=0

e:task_id_t
tasks[e].status==RUNNING &&
ec[e]>=tasks[e].bcet &&
ec[e]<=tasks[e].wcet &&
dc[tasks[e].mtt]<=mtts[tasks[e].mtt].deadline &&
!wait_go
task_finished=e,
handle_finished_task(e,FINISHED),
task_enabled=0

overrun!

idling?
is_idle=!idle

idling?
is_idle=!is_idle

idling?
is_idle=!is_idle

preempt?

go?
go_task(task_activated),
task_activated=EMPTY

must_release
get_task_ready(),
ec[task_ready]=0

!must_release
task_enabled=1

!wait_go &&
must_release

get_task_ready(),
ec[task_ready]=0

preempt?

ready!

go?
go_task(task_activated),
task_activated=EMPTY

go?
go_task(task_activated),
task_activated=EMPTY

task_next_release>0 &&
!must_release &&
!wait_go

task_enabled=1

finish!

!wait_go
tick?
inc_exec_time(),
task_enabled=0

initialize()

Figure 3. Stopwatch automata model of a real-time component.

that the time a task τj in Θi spends in the ready state,
denoted from now as Treadyj

, must be lower or equal than
di − wcetj − Twaitj , where Twaitj is the time the task has
to wait for its predecessors to finish.

Problem formulation. The TGS is not an initialized
stopwatch automaton and consequently reachability is un-
decidable for it [17]. Moreover, it has been demonstrated
in [6] that the schedulability analysis problem for multi-
processor systems is undecidable if (1) the tasks are sched-
uled using a preemptive scheduling strategy, and (2) the
tasks have execution times ranging over a continuous time
interval. Next, we show that the timed automata model for
component-based applications proposed by us and described
in Section III provides a decidable method for verification of
real-time component-based applications which approximates
the stopwatch automata model with discrete clocks but at
the same time is able to capture continuous execution time
intervals.

B. Approximation of Components using Timed Automata
In this section we show what are the approximation errors

implied by the proposed method for schedulability analysis
of real-time component-based applications. We also prove
that any component declared schedulable by our method it
would also be declared schedulable by the stopwatch model.
We do this by showing that the language L(T ) of TGT is
also accepted by TGS.

The alphabet of the TGT is similar to the one of the
stopwatch automaton. The tick and idling events in Σ are
not directly related to the execution of the task and only
help in modeling the discrete time. These two signals are
kept in TGS since the activation time of the servers is
still measured with discrete clocks (i.e. we see them as
non-preemptable tasks with integer parameters). Keeping
the discrete clocks also in TGS, instead of replacing them
with real clocks, has no influence on the accuracy of the

model and on the schedulability analysis. Therefore, in what
follows we will refer mostly to the task-related events in Σ:
ready, go, preempt, finish (overrun means the system is
not schedulable and, as we analyze the conditions under
which the system is schedulable, we assume this event does
not appear).

For the proposed discrete time model we have chosen to
consider a time unit equal to 1. The approximation errors in
our model arise from the following situations:
(1) a task τj starts its execution at some subdivision of the

time unit and
(2) a task τj resumes its execution (after it has been pre-

empted) at some subdivision of the time unit.
Since we cannot measure the time from the start/restart point
of τj until the beginning of the next time unit, the subunit
of execution time will not be reflected by E(j).

A task τj can be preempted either when a higher priority
task τl becomes ready for execution or the server used by
task τj is deactivated and there is no other active and free
server. Activation and deactivation of servers is observed by
TGT only through task preemptions and resumptions. As
for all MTTs the release time is an integer value, a higher
priority task τl can be released for execution while τj is
executing only at discrete moments. If τl does not depend
on any task it means that, in this case, τl can preempt τj only
at discrete moments of time and the clocks E(j) and E(l)
will behave just like the clocks ecj and ecl. If τl depends
on some task τk and τk finishes at some time between two
consecutive discrete moments then this makes it possible
for τl to preempt τj . In the later case, the clocks E(j) and
E(l) will not be increased at next discrete time point. If
task τj resumes is execution during the same fraction of
time in which it was preempted, clock E(j) will still not
be increased as in this case τj’s role is similar to that of τl
in the previous case. This implies that no matter how many



times the task is preempted between two successive discrete
time points, in the computation of E(j) this will have the
same effect as a single preemption. Since all tasks of an
MTT Θi have the same deadline di and are released at the
same time then for all tasks in Θi at most mj preemptions
may influence the value of the discrete clock E(∗) without
a deadline miss occurring, where

1 ≤ mj ≤ di − Twaitj ,mj ∈ N (3)

The alphabet of TGT is the alphabet of the TGS, namely
Σ = {ready,go,preempt,finish,overrun,idling,tick}.
Just like for the stopwatch automaton, in this case also
we are interested only in the events in Σ related to task
execution. Therefore, for each task τj , the timed automata
has to accept timed words following the syntax of the
untimed regular expression:

ET = (ready, go, (preempt, go)∗, finish) (4)

We see that ET = ES .
In what follows we use vswj to denote the valuation of

the stopwatch clock ecj in TGS and vt for the valuation of
the continuous clock in TGT, where vt ∈ [0, 1]. We also
consider a valuation vj = E(j) + vt for each task τj . This
helps in measuring the approximation error of the proposed
model. Note that vj is an approximation of vswj . As at most
mj preemptions of a task τj can influence the value of E(j)
it results that vswj

− vj ≤ mj . Also, we use vdci to denote
the valuation of the clock dci in TGS and we consider the
valuation vΘi

= pi−R(i)+vt which measures the time since
the release of the MTT Θi. The valuation vΘi

will grow
with the same slope as the valuation vdci and consequently
vΘi = vdci at any time between the release of Θi and its
finish.

In order to establish the relationship between TGT and
TGS, we must compare the timed words that follow the
syntax of ET . We assume the timestamps of these words
analyzed in relation to the valuations vΘi

for TGT and vdci
for TGS, respectively, are the same.

Theorem 1. For any timed word that follows the syntax of
ET and simulates the execution trace of a task τj on both
TGT and TGS automata, vswj

−mj ≤ vj ≤ vswj
holds from

the release of the task until its ending, ∀j ∈ {1, 2, ..., ti} and
∀i ∈ {1, 2, ..., n}.

Proof: Both TGS and TGT receive events related to a
specific task in the same order and with the same timestamps
(related to vΘi

and vdci , respectively). Whenever the TGS
receives a go signal it sets the status of the task to running
and when it receives the preempt signal the status of the task
is set to ready. The behavior of the TGS upon receiving the
go and preempt events is the same.

When the status of the task is running, vswj
grows with

slope 1 and stays constant when the task has status ready.

The valuation vj also stays constant while the task is in the
ready state and grows with slope 1 when the task is running
due to the vt component. If the task is preempted only at
discrete time points (e.g. when the server that the task was
using finished its available execution units) then at the end of
the task vj = vswj

. However, if a task preemption happens
between two successive distinct time points, the valuation
vt is not added to vj , whereas vswj will contain also this
fraction of time unit, and therefore vj ≤ vswj

. Since the vj
can decrease for at most mj times, each time with at most
1 time unit, it follows that vswj

−mj ≤ vj .
The inequality in Theorem 1 shows that during the simu-

lation of the same word on both the TGT and TGS automata,
it will take at least the same amount of time for vj to reach
a specific value as it will take to vswj .

Next we analyze possible timestamps of the finish event.
As this event is related to the guards in the automata that
contain the best case execution time bcetj of a task τj and
its worst case execution time wcetj we will determine what
is the relation between the actual best execution time tbcetj
and the actual worst execution time twcetj of τj and the
valuations vj = bcetj and vj = wcetj . Note that vj does not
include those fractions of time units that we cannot measure
in the TGT.

Theorem 2. For any timed word that follows the syntax of
ET and simulates the execution trace of a task τj on TGT,
if vj = bcetj then tbcetj ≤ bcetj , ∀j ∈ {1, 2, ..., ti} and
∀i ∈ {1, 2, ..., n}.

Proof: If task τj is not preempted during its execution
or is preempted only at discrete time points then tbcetj =
bcetj . If the task is preempted between two consecutive
discrete time points then the valuation vj when the task will
resume its execution will not contain the subunit of time that
it had executed before it was preempted and only an integer
number of time units. In contrast, tbcetj will contain those
time fractions and, therefore it will reach bcetj faster than
vj which means that tbcetj < bcetj .

Theorem 3. For any timed word that follows the syntax of
ET and simulates the execution trace of a task τj on TGT,
if vj = wcetj then wcetj ≤ twcetj , ∀j ∈ {1, 2, ..., ti} and
∀i ∈ {1, 2, ..., n}.

Proof: If task τj is not preempted during its execution
or is preempted only at discrete time points then twcetj =
wcetj . If the task is preempted between two consecutive
discrete time points then the valuation vj when the task will
resume its execution will not contain the subunit of time
that it had executed between before it was preempted and
only an integer number of time units. In contrast, twcet will
contain those time fractions and, therefore by the time vj
will reach wcetj twcetj will be greater than wcetj .

From theorems 2 and 3 it follows that, if a task finishes
its execution before its deadline in TGT it will always meet



its deadline in TGS which means that if the task is proven
schedulable in TGT then it will also be schedulable in TGS.

For a task τj belonging to a MTT Θi to be schedulable it
is also required for it to finish before its deadline. If Treadyj

is the time for which the task has the ready status then we
say that the task is schedulable if the following condition is
satisfied:

Treadyj
+mj ≤ di − wcetj − Twaitj (5)

The condition 5 says that task τj can be preempted for at
most di −wcet− Twaitj −mj before its deadline. The mj

term appears due to the imprecision of the model.
Next we prove that TGS accepts the timed language over

Σ that TGT accepts. Specifically we prove that L(T ) ⊆
L(S) by checking the intersection L(T )

⋂
L(S) = ∅. We

have already shown that the syntax of the timed language
L(S) =

⋃
1≤i≤n

⋃
1≤j≤ti Lj(S), where Lj(S) is the lan-

guage with words referring to valid event sequences gener-
ated during the execution of task τj . By analogy, L(T ) =⋃

1≤i≤n
⋃

1≤j≤ti Lj(T ). Therefore, if Lj(T ) ⊆ Lj(S),
∀1 ≤ j ≤ ti and ∀1 ≤ i ≤ n then also L(T ) ⊆ L(S).
With this objective we prove that Lj(T )

⋂
Lj(S) = ∅,

∀1 ≤ j ≤ ti and ∀1 ≤ i ≤ n. For a task τj to be
schedulable all words in Lj(T ) must satisfy condition 5.
Similarly, all words in Lj(S) must satisfy the condition
Treadyj

≤ di − wcetj − Tsw waitj , where Tsw waitj is the
task waiting time in TGS and Tsw waitj ≤ Twaitj . Then the
condition Lj(T )

⋂
Lj(S) = ∅ becomes (Treadyj

+ mj ≤
di−wcetj−Twaitj and Treadyj

> di−wcetj−Tsw waitj ).
As from condition 3 we know that mj ≥ 1 and Treadyj

cannot be at the same time higher than a value α and smaller
than a value β with α > β, it follows Lj(T )

⋂
Lj(S) = ∅ is

true for any task τj and, therefore L(T )
⋂
L(S) = ∅ holds.

V. THE H.264 DECODER: A CASE STUDY

Using the proposed method for schedulability analysis,
in this section we present a series of experiments in which
we apply the proposed schedulability method to analyze the
multimedia H.264 decoder [18]. We model the decoder as
a component consisting of several MTTs. The tasks in each
MTT and the precedence constraints between them are estab-
lished from the workflow of the decoder as follows. During
decoding each video frame is divided into slices and each
slice is further split in blocks called macro-blocks (MB). The
decoding process can be applied to several slices in parallel
and consists of a well-defined set of steps. We define a MTT
for each slice in a frame and each slice processing step is
mapped to a task of the MTT. In the first stage of the process,
numerical values are recovered from the binary codes of the
compressed video (Entropy Decoding). Since a part of the
data in the encoded video was computed through prediction,
in the next stage (Dequantization and Inverse Transform
DQIT) the differences between the predicted data and the
real data are recovered. Next, in the motion compensation

(or Inter-prediction) or Intra-prediction stage, each MB in
the frame is decoded based on predicted data from previous
frames or other MBs in the frame. Finally, the MBs of
each slice are put together (Reconstruction) and a filtering
stage is applied to improve quality of the decoded slice.
Correspondingly, each MTT will have five tasks, one for
each of the above stages. The MTT corresponding to the
decoding process is presented in Figure 4. We consider that
for each frame the same MTT will process the same slice.

Entropy 

Decoding

[9,23]

DQIT

[1,1]

Inter/Intra-

prediction

[3,6]

Reconstruction

[1,1]

Filtering

[3,7]

Figure 4. The MTT for slice decod-
ing.

To see how we can ap-
ply our method on the
H.264 decoder, we ex-
tracted the execution pa-
rameters of the tasks in
a MTT through profil-
ing of the FFMPEG1 en-
coder using three real
video files2 with increas-
ing level of spatial details
and amount of movement. After profiling we have obtained
the [bcet, wcet] intervals shown in Figure 4.

We have checked the schedulability of the component
model using the UPPAAL model checker by issuing the
verification of the A[] not Error property. We ran
experiments considering that for each frame of the video
2 (experiment 2-S), 3 (3-S), 4 (4-S) or 5 (5-S) slices are
processed in parallel, where for each slice we have a MTT.
The number of actual tasks in each experiment is five times
the number of slices used for the experiment. First, for each
task in a MTT, we have considered the time intervals in
Figure 4 and for the period and deadline of the MTT we have
chosen the value 100. Since we noticed that the difference
between the wcet and the bcet of each task and between
execution times of different tasks influences the scalability
of our method (the maximum number of supported MTTs),
we then ran experiments in which all these time values were
doubled (experiments 2-SD, 3-SD, 4-SD, 5-SD). In the last
series of experiments (2-SD1, 3-SD1, 4-SD1, 5-SD1) we
doubled only the execution time of the first task in the
MTTs. We have chosen only this task since it has the greatest
execution time, which varies along the largest interval. For
all experiments we have used a set of three execution servers,
one on each processor, with periods equal to 50 and a total
processor utilization of 2.0 meaning that every 50 time units
the servers provide 100 execution units to the decoder. The
experiments were executed on a machine with Intel Core 2
Quad 2.40 GHz processor and 4 GB RAM running Ubuntu.
The model checking time of all experiments is presented in
Figure 5.

We can see in Figure 5 that although the number of
tasks gets up to 25 the model checking time is rather

1http://ffmpeg.org/
2We have used the QCIF Akiyo, Foreman and Mobile videos from

http://trace.eas.asu.edu/yuv
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Figure 5. Model checking time

small (maximum 310 seconds). Also it can be seen that
the complexity is a factor of the number of tasks, but is
influenced also by the difference between the best and worst
case execution time. Also, from the last four experiments
(2-SD1 - 5-SD1) it can be observed that by increasing the
difference between parameters of different tasks, the model
checking time also grows even more than when we double
all task parameters. We believe this is due to the fact that
the change in these experiments has increased the non-
determinism of the model.

VI. CONCLUSIONS

In this paper, we have proposed an approximation method
for analysis of schedulability of component-based applica-
tions using model checking. Using timed automata we have
provided a decidable method for schedulability verification
in multi-core systems. The method captures dependencies
between preemptable tasks and is able to capture continuous
task execution times using a discrete time formalism. We
have shown that the approximations in our method give
a sufficient condition to determine the schedulability of a
component and, by using iteratively the analysis on the
parent application we can also prove the schedulability of
the application. The applicability of our method was shown
on a H.264 decoder.
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