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Abstract—Since software systems become more and more 
complex, the efforts for developing, documenting and 
executing meaningful test cases increases. Testing is a vital, but 
time- and resource-consuming activity. To avoid running out 
of time or budget, new test methodologies had to be established 
in order to increase reliable, yet maintainable test scenarios. In 
the last years the Model-Driven idea matures to the most 
promising approaches to solve current problems in the 
software development domain. Model-Based Testing adopts 
these concepts to exploit their benefits for testing area. In this 
paper an integrated tool chain (called FOKUS!MBT) is 
discussed, to enable a Model-based development of testing 
scenarios. It is based on a canonical metamodel for testing 
concerns and a service-oriented model storage and exchange 
infrastructure, that allows a flexible, yet extensible adaptation 
to different test process requirements. Its premise is to 
establish a tooling architecture for the specification and 
development of a domain-independent Model-based testing 
scenario. 

Keywords-FOKUS!MBT, MBT, UTP, Testing Metamodel, 
UML 

I.  INTRODUCTION (HEADING 1) 
Software systems which are used in a critical environment 
have to face increased quality assurance requirements to 
avoid economical or human harm. Spending more efforts 
for quality assurance measures narrows the budget of 
software manufacturers. Such activities have to be well 
planed, organized, executed and documented to prevent 
running out of time and resources. The fundamental 
approach to evaluate a system’s quality is testing. A testing 
process includes activities to validate or verify a software 
system with regard to its specification. These activities can 
be separate into static testing and dynamic testing. 
In Model-Driven Engineering (MDE) the software 
development process is based on (semi-)formal artifacts, 
called models. Models are simplified constructs of an 
existing real-world system or a system to be. They are used 
on a higher level of abstraction to achieve both a better 
understandability and programming language and platform 
independency. Model-Based Testing (MBT), in addition, 
emphasizes a scenario, where the test artifacts are described 

partially or entirely by models to support a model-driven or 
model-based process for testing concerns. Such testing 
models should facilitate the specification, execution, 
evaluation or documentation of the test process, otherwise 
there is no rationale to use models for testing purpose. 
Utting, Preschner and Legeard [8] mentioned, that in 
particular the lack of documentation in traditional testing 
processes is still present.  
Using models for testing purposes is not new. Several 
mature tools [22] [23] are available which produces test 
cases out of models, but mostly, they are intended to 
generate test cases solely, while other test relevant 
information like execution results or documentations are 
still text-based. Moreover the tools usually lack integration 
with other testing tools and the system development 
infrastructure. Unfortunately, there is neither a standardized 
definition of MBT itself nor a recommendation, what kind 
of models should be applied. In fact, it is totally up to a 
developer’s preferences, respectively his needs, what kind 
of concepts a testing metamodel exhibits. 
The contribution of this paper is to present a generic 
architecture for FOKUS!MBT, a model-based tool chain 
that provides a solid and flexible basis to realize MBT 
processes in a larger scale. The canonical model of 
FOKUS!MBT is described by a MOF-based testing 
metamodel, which proves the required degree of formalism. 
This paper is outlined as follows: Section 2 will recapitulate 
the state of the art of MBT as well as related work. Section 
3 introduces the testing metamodel and the repository 
infrastructure briefly. Within section 4, minor case studies 
are described, where the prototype was applied to. Finally, 
we will summarize the discussed key concepts. 

To distinguish between similar named elements of the 
discussed metamodels, we prefix each ambivalent element 
with the qualified prefix, so that UML::Element will differ 
from TestingMM::Element. 
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Figure 1. Conceptual Overview of TestingMM 

II. RELATED WORK 
Pure testing metamodels are rarely proposed in the 

literature. The most prominent approach is the UML2 
Testing Profile (UTP) [2], which represents an enhancement 
of the UML Superstructure [1] to provide test specific 
concepts within the UML. As its name suggest, the UTP was 
defined by using the UML-internal profile mechanism. 
Moreover, a standalone MOF-based metamodel [14] was 
specified too, in order to use the UTP outside of the UML 
scope. With UTP, tester and developer are intended to speak 
the same language for a better understanding of each other 
concerns. The UTP was highly influenced by TTCN-3 [4]. 

With the Test & Performance Tools Platform (TPTP) [3], 
a still ongoing project of the Eclipse Foundation, an open 
source and comprehensive testing metamodel is provided. 
TPTP was one of the first implementations of the UTP 
standalone MOF-based metamodel. Beyond that, it offers 
concepts for the test execution, execution results tracing over 
time, deployment and even more. There are some tools 
available which are based on the TPTP metamodel, but none 
of them deal with the comprehensive idea of MBT directly. 

Schieferdecker and Din [5] presented a metamodel for 
TTCN-3. TTCN-3 stands for Testing and Test Control 
Notation and represents a standardized testing language, 
defined and maintained by the European Telecommunication 
Standards Institute (ETSI) [6] for testing complex, 
distributed systems. The TTCN-3 metamodel was 
established to integrate TTCN-3 into a MDE process 
natively. However, the TTCN-3 metamodel is not a 
comprehensive metamodel for testing but it eases the 
expression of test cases in a model-based or model-driven 
environment.  

Dueñas et al. [15] discussed a metamodel which is 
capable to cope with model-based testing in a Product 
Family Engineering (PFE) environment. The metamodel 
they described is internally based on UTP but with dedicated 
enhancements according to the applied environment. 

The Automatic Test Markup Language (ATML) 
embodies an XML-based specification for a better exchange 
of test data. It was developed and maintained by the IEEE 
[7] and is used especially in the ATE (Automatic Test 
Equipment) industry. 

Another XML-based test description language is given 
with the Automated Generation and Execution of Test Suites 

for DIstributed Component-based Software (AGEDIS) [18]. 
It was developed during the AGEDIS-EU-Project. 

Finally, the Unified Test Modeling Language (UTML) 
[9] had to be mentioned. It was developed by Alain Vouffo-
Feudjio at the Fraunhofer Institut FOKUS [12] to support the 
creation, modification and maintenance of a dedicated 
testing model within a pattern-oriented test description 
approach. 

To sum-up the concepts of the discussed approaches, in 
particular of the UTP and TPTP, there are neither concepts 
for essential testing aspects like test case generation rules or 
requirements association nor a recommendation, how to 
persit testing models within a repository. 

III. ARCHITECTURAL OVERVIEW 
One premise of the Testing Metamodel (TestingMM) was to 
provide concepts for a holistic test modeling and process 
approach. For the exchange and storage of TestingMM 
instances (as well as the correlated system models) and 
other related artifacts, FOKUS!MBT utilizes the integrated 
model repository provided by ModelBus [13] technology.  

A. Structure of TestingMM 
The TestingMM is a conceptual merge of TPTP and 

UTP, with specific additions of the UML. Fig. 1 shows a 
comparison among the UTP, the TPTP and the concepts 
newly introduced to the TestingMM. Staying close to the 
naming convention of the merged metamodels, facilitates 
import and export possibilities between the TestingMM and 
its related models (UML, UTP, TPTP). TestingMM is 
implemented in Ecore [10]. It consists of ten subpackages, 
where each of them deals with a separate concern of the test 
description. The packages are namely: Foundation: The 
foundation package provides basic concepts for object-
oriented modeling. It is a subset of the UML::Kernel 
package with additions from the UML::Components 
package to specify components, ports, data types etc. 

1. Architecture: It is similar to the UTP::Architecture, 
with extra information outside of the scope of the UTP 
like relationship to requirements.  

2. Data: The TestingMM::Data package is similar to the 
UTP::Data package. It supports the concepts for data 
pools and data partitions..  

3. Time: A simple and intuitive timer mechanism. 
4. Behavior: This package includes everything to model 

the behavior of test cases. Available behavioral aspects 
are simplified UML::Interaction models. 

5. Generation: Information of how tools should derive test 
cases out of input models are located in the generation 
package. 

6. Purpose: This package deals with the description of a 
test context’s objectives and its relation to system’s 
requirements to integrate the purposes of a test context. 
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7. Configuration: The configuration package specifies the 
deployment of the test artifacts to distributed locations 
and machines. It is similar to the UML::Deployment 
package. 

8. Platform: The platform package describes how a test 
context and all its related test cases are applied to a 
specific platform. It provides mapping directives among 
interfaces as well as elements to initiate or shutdown the 
target platform. 

9. Execution: Concepts to store the results of one or 
multiple test executions and traces between test results 
and requirements are defined in the execution package. 

B. TestingMM Core Concepts 
The essential package for the creation of test contexts (test 
suites) is TestingMM::Architecture. Fig. 1 has shown the 
core concepts of the UTP related to additional TestingMM 
elements. Fig. 2 represents a concise overview of the 
package, with cross-package references1 (highlighted in a 
different color). The most relevant metaclass is 
TestingMM::TestContext. A test context collects a set of test 
case to satisfy the test context’s purpose. Test cases are 
meant to run against several SUT instances, performed by 
test components. Each test component returns a local verdict 
to the test context they belong. These local verdicts had to 
be assembled to provide a unique and unambiguous verdict 
for the whole test case. An arbiter is responsible for this. 
Arbitration will be managed by an optional arbiter. The idea 
corresponds to the arbitration mechanism of TTCN-3. Test 
designers can abandon this optional part, thus a virtual 
default arbiter will be used instead. In that case, the global 
verdict will be determined by defining a precedence order 
for verdicts, as the TTCN-3 core specification does. The 
order is established as None < Pass < Inconclusive < Fail, 
where < means the right verdict overrides the left verdict. 
Hence, if a test component states a fail, the global verdict 
will never be pass. However, some testing aspects, for 
example real-time testing, require a more fine-grained 
arbitration mechanism as the default one. 

 Figure 2. TestingMM Core Concepts Overview 
 

                                                           
1 Due to readability, we have hidden some of the associations. 

 
Figure 3. Test Purpose Package 

Therefore, it is possible to specify a domain-specific arbiter 
within the testing model. It has to be said, that a default 
arbitration mechanism fits for the most test scenarios where 
TestingMM was involved in.  
Test Cases are expressed as interactions. As mentioned 
before, the specification of interaction behavior is similar to, 
but in some details more intuitive than UML interactions. 
Anyway, they share basic concepts like defining messages, 
passing arguments to the receiver, executing invoked 
behavior and return operations results. A test case can either 
be created manually or be automatically derived from any 
behavioral description stored in whatever artifact. 

C. Test Purposes 
In UTP the rational of a test context or a test case is defined 
by a dependency relationship. Since dependencies 
connecting any element with no specific semantic (except 
that the source element depends on the target element), it 
might be ambiguous if a test case is the objective for a 
UML::Class instance. Commonly, a test purpose (or test 
objective in UTP nomenclature) express’ what a test case or 
a couple of them aim for, otherwise its usage won’t 
contribute any additional findings for the test analysis 
phase. If the intention of test case is not clear and it fails, 
what does this mean for the system? Or vice versa, a 
reviewer won’t gain any confidence in the quality of the 
whole test process, if no unambiguous description for the 
rational of its test cases is available. 
Test cases are intended to verify a system’s requirements, 
elicitated and specified during the requirements engineering 
process. Therefore, a test case is related to at least one 
requirement of the system or its parts.  TestingMM defines a 
more detailed structure for test purposes (see Fig. 3). A 
requirement is not contained by a test purpose, since there is 
a possible many-to-many relationship. One requirement can 
be included by a set of test purposes and vice versa. Instead 
of being a container for a requirement, the test purpose 
contains a TestingMM::RequirementRelation that relates a 
requirement to the execution result of a test case. 
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Figure 4. FOKUS!MBT High-level Architecture 

 
Such a relation states the execution status of a requirement 
(and implicitly of the related test case). Possible values are 
NOT_EXECUTED, PASS and FAIL. The concrete value 
for a requirement status is derived from the related 
execution result. Since a test case is arbitrated to either pass, 
inconclusive or fail, a requirement will only be set to pass, if 
the arbiter states pass, otherwise fail. Inconclusive makes no 
clear statement from requirements point of view, because a 
requirement has to act like it is intended to, thus an 
inconclusive verdict will fail the whole requirement. 
Since a execution result of a test case is traceable over a 
period of time, each new invocation of the test case will 
create a new TestingMM::RequirementRelation instance, 
which will be connected to the new execution result. An 
assigned date for each new invocation enables the reviewer 
to follow a requirements status over time. 

D. Process Workflow and Model Exchange 
Artifacts are stored in repositories to allow them being 
integrated in a distributed development process. The 
ModelBus is a model-driven tool integration framework 
which enables a seamlessly integrated tool and model 
environment for a model-based engineering process 
[28][29]. The idea is to separate participating tools and 
models (testing models as well as system models) in a 
loosely coupled tool chain infrastructure. A general 
overview of the FOKUS!MBT infrastructure is depicted by 
Fig. 4.  
The ModelBus acts as a middleware component to provide a 
transparent access to the development artifacts in a 
distributed, yet integrated environment. Participating tools 
exchange their data through specific web service adapters. 
An adapter exhibits the tool’s services and required 
parameters via the Web Service Description Language 

(WSDL). This enables a tester to work with his desired 
modeling tool, as long as it is adopted.  
The foundation of FOKUS!MBT are the integrated model 
repositories, especially for the TestingMM instances. Test 
case and test data generators can extend the tool chain by 
simply be plugged into the ModelBus infrastructure via their 
specific adapters. 
The process flow orchestration of a specific scenario is 
commonly described (but not limited to) by the Business 
Process Modeling Notation (BPNM) [25]. Workflow and 
quality services won’t be discussed in this paper, since they 
are not a vital for testing purposes. 

IV. CASE STUDY 
The proposed architecture has been used and evaluated in 
several research projects. It has been shown that the 
integrated test repository could be successfully adapted to 
the different tooling infrastructures and project 
requirements. 
In the ModelPlex-Project [24], an interdisciplinary project 
funded by the EU, FOKUS!MBT and its canonical test 
model TestingMM have been developed and applied use 
cases from SAP and Telefonica. 
The RTE-Space-Project [19], initiated by the European 
Space Agency (ESA), explores software migration problems 
and methodologies for the space domain. The MBT tool 
chain was applied to safeguard the modernization of a 
legacy file archiving and versioning system, by focusing on 
test generation from UML::Interaction models in particular 
[20]. In the following we will present an example that 
presents a MBT approach to generate tests for a simplified 
phone conference application. The artifacts necessary to 
generate, execute and manipulate the tests have been stored 
exclusively in the repositories of FOKSUS!MBT.   
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Figure 5. Telephone Conference Scenario 

A. Scenario Description 
The first step was to create a behavior model out of a given 
specification. In contrast to the RTE project [19][20], an 
UML::StateMachine was chosen for this scenario. Fig. 5 
shows the (simplified) behavior model of the system for 
subsequently applied test case generation. 

B. Test Case Generation 
The intention was to generate test cases out of state 
machines by using the MBT tool generator for structural 
coverage. The generator was parameterized by the concepts 
of the TestingMM::Generation package. The successfully 
integrated MBT tool [17] can be configured to use either the 
Dijkstra algorithm [26] or a random algorithm to achieve its 
coverage goal. In most situations it will be either state or 
transition coverage. Table 1 figures out the currently 
available structural coverage criteria of the TestingMM. 
The combination of coverage criteria and their parameter act 
as stop conditions. They can be combined by logical 
operators like AND, OR, XOR to span a tree of fine-grained 
generation stop criteria. The result of such a derivation is an 
ordered list of transition names, that had be traversed. UML 
denotes such a list as an trace and notates it like this: 
<event1, event2, event3…>. These string traces had to be 
converted to concrete operation calls or signal sendings to  
interact with the SUT. A possible test case, resulting from a 
50 percentage transition coverage goal, consist of the 
following trace: <unhook(), call_B(), B_takes_A(), 
press_hook(), call_C(), C_takes_B(), press_hook()>. 

C. Deadlock Prevention 
As Fig. 5 shows, it is possible to run into an infinite loop 
during the derivation process. Assume that a 100 percentage 
transition coverage goal was defined. If the algorithm 
selects the trace <unhook(), call_B(), B_takes_A(), …> its 
stop criteria won’t be reached, since the press_hook() 
transition between the states offline and wait_for_B is 
unreachable. To avoid deadlocks like this, it is necessary to 
define a default stop criterion, which restricts the resulting 
length or the process time of the derivation. In this scenario, 

the default stop criterion restricts the test length to maximal 
30 execution steps. 

D. Test Execution 
After the derivation process, the resulting traces are 
transformed into instances of TestingMM::Interaction 
models. A specific model-to-text transformation generated 
executable TTCN-3 code out of the resulting traces. Each 
test context was transformed into a separate TTCN-3 
module, containing the required type system for execution. 
The transformator was realized with Acceleo [27], an 
implementation of the OMG’s MOFM2T [27] specification.  
In contrast to the RTE scenario, a real SUT was unavailable. 
In order to get the test cases running, the SUT was 
simulated within TTCN-3 by a simple component. The 
generated test cases were successfully executed with the 
TTworkbench [16]. 

TABLE 1. STRUCTURAL COVERAGE CRITERIA  
Coverage 
Criteria 

Description Parameter 

State Coverage Denotes the quantity of 
traversed states of the state 

machine, expressed in 
percent 

0-100% 
(integer) 

Reached State Stops as soon as the state 
with the given name was 

reached 

State name 
(string) 

Transition 
Coverage 

Same as State Coverage but 
concerning transitions 

0-100% 
(integer) 

Reached 
Transition 

See Reached State Edge named 
(string) 

Test Length Restricts the length of the 
resulting sequences 

No of steps 
(integer) 

Test Duration Restricts the test case’s 
length by a maximal 

process duration  

Duration in 
milliseconds 

(integer) 

 

V. CONCLUSION AND FURTHER WORK 
In this paper an approach of an integrated metamodel and 
repository for testing was presented, which merges the 
specific concepts of the UTP and the TPTP. The resulting 
TestingMM is intended to cope with the formalization of an 
entire test process. Needful additions to achieve this goal 
were elaborated and described. Afterwards the service-
oriented infrastructure FOKUS!MBT was presented and 
briefly described. 
It has been shown that FOKUS!MBT was able to handle the 
variety of different domains due to its flexible and to the 
different tooling infrastructures and project requirements. 
FOKUS!MBT was successfully applied into real world case 
studies by following the major MDE concepts. Test cases 
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were automatically derived from appropriate behavioral 
aspects of UML system models and translated into 
executable TTCN-3 test cases. These test cases were 
compiled into Java executables subsequently and executed 
by the TTworkbench. The implemented tool chain showed 
that the entire testing process can be automated even if test 
execution and result analyzation had still to be performed 
manually. Further work will address an adaption of the 
execution environment to invoke the compilation and 
execution process automatically, orchestrated via BPMN as 
well as to establish requirements traceability. 
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