
Establishing a Service-Oriented Tool Chain for the Development of Domain-
Independent MBT Scenarios

Marc-Florian Wendland, Jürgen Großmann, Andreas Hoffmann

Fraunhofer Institut FOKUS
Berlin, Germany

{marc-florian.wendland, juergen.grossmann, andreas.hoffmann}
@fokus.fraunhofer.de

Abstract—Since software systems become more and more
complex, the efforts for developing, documenting and
executing meaningful test cases increases. Testing is a vital, but
time- and resource-consuming activity. To avoid running out
of time or budget, new test methodologies had to be established
in order to increase reliable, yet maintainable test scenarios. In
the last years the Model-Driven idea matures to the most
promising approaches to solve current problems in the
software development domain. Model-Based Testing adopts
these concepts to exploit their benefits for testing area. In this
paper an integrated tool chain (called FOKUS!MBT) is
discussed, to enable a Model-based development of testing
scenarios. It is based on a canonical metamodel for testing
concerns and a service-oriented model storage and exchange
infrastructure, that allows a flexible, yet extensible adaptation
to different test process requirements. Its premise is to
establish a tooling architecture for the specification and
development of a domain-independent Model-based testing
scenario.

Keywords-FOKUS!MBT, MBT, UTP, Testing Metamodel,
UML

I. INTRODUCTION (HEADING 1)
Software systems which are used in a critical environment
have to face increased quality assurance requirements to
avoid economical or human harm. Spending more efforts
for quality assurance measures narrows the budget of
software manufacturers. Such activities have to be well
planed, organized, executed and documented to prevent
running out of time and resources. The fundamental
approach to evaluate a system’s quality is testing. A testing
process includes activities to validate or verify a software
system with regard to its specification. These activities can
be separate into static testing and dynamic testing.
In Model-Driven Engineering (MDE) the software
development process is based on (semi-)formal artifacts,
called models. Models are simplified constructs of an
existing real-world system or a system to be. They are used
on a higher level of abstraction to achieve both a better
understandability and programming language and platform
independency. Model-Based Testing (MBT), in addition,
emphasizes a scenario, where the test artifacts are described

partially or entirely by models to support a model-driven or
model-based process for testing concerns. Such testing
models should facilitate the specification, execution,
evaluation or documentation of the test process, otherwise
there is no rationale to use models for testing purpose.
Utting, Preschner and Legeard [8] mentioned, that in
particular the lack of documentation in traditional testing
processes is still present.
Using models for testing purposes is not new. Several
mature tools [22] [23] are available which produces test
cases out of models, but mostly, they are intended to
generate test cases solely, while other test relevant
information like execution results or documentations are
still text-based. Moreover the tools usually lack integration
with other testing tools and the system development
infrastructure. Unfortunately, there is neither a standardized
definition of MBT itself nor a recommendation, what kind
of models should be applied. In fact, it is totally up to a
developer’s preferences, respectively his needs, what kind
of concepts a testing metamodel exhibits.
The contribution of this paper is to present a generic
architecture for FOKUS!MBT, a model-based tool chain
that provides a solid and flexible basis to realize MBT
processes in a larger scale. The canonical model of
FOKUS!MBT is described by a MOF-based testing
metamodel, which proves the required degree of formalism.
This paper is outlined as follows: Section 2 will recapitulate
the state of the art of MBT as well as related work. Section
3 introduces the testing metamodel and the repository
infrastructure briefly. Within section 4, minor case studies
are described, where the prototype was applied to. Finally,
we will summarize the discussed key concepts.

To distinguish between similar named elements of the
discussed metamodels, we prefix each ambivalent element
with the qualified prefix, so that UML::Element will differ
from TestingMM::Element.

2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4005-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ECBS.2010.47

329

Figure 1. Conceptual Overview of TestingMM

II. RELATED WORK
Pure testing metamodels are rarely proposed in the

literature. The most prominent approach is the UML2
Testing Profile (UTP) [2], which represents an enhancement
of the UML Superstructure [1] to provide test specific
concepts within the UML. As its name suggest, the UTP was
defined by using the UML-internal profile mechanism.
Moreover, a standalone MOF-based metamodel [14] was
specified too, in order to use the UTP outside of the UML
scope. With UTP, tester and developer are intended to speak
the same language for a better understanding of each other
concerns. The UTP was highly influenced by TTCN-3 [4].

With the Test & Performance Tools Platform (TPTP) [3],
a still ongoing project of the Eclipse Foundation, an open
source and comprehensive testing metamodel is provided.
TPTP was one of the first implementations of the UTP
standalone MOF-based metamodel. Beyond that, it offers
concepts for the test execution, execution results tracing over
time, deployment and even more. There are some tools
available which are based on the TPTP metamodel, but none
of them deal with the comprehensive idea of MBT directly.

Schieferdecker and Din [5] presented a metamodel for
TTCN-3. TTCN-3 stands for Testing and Test Control
Notation and represents a standardized testing language,
defined and maintained by the European Telecommunication
Standards Institute (ETSI) [6] for testing complex,
distributed systems. The TTCN-3 metamodel was
established to integrate TTCN-3 into a MDE process
natively. However, the TTCN-3 metamodel is not a
comprehensive metamodel for testing but it eases the
expression of test cases in a model-based or model-driven
environment.

Dueñas et al. [15] discussed a metamodel which is
capable to cope with model-based testing in a Product
Family Engineering (PFE) environment. The metamodel
they described is internally based on UTP but with dedicated
enhancements according to the applied environment.

The Automatic Test Markup Language (ATML)
embodies an XML-based specification for a better exchange
of test data. It was developed and maintained by the IEEE
[7] and is used especially in the ATE (Automatic Test
Equipment) industry.

Another XML-based test description language is given
with the Automated Generation and Execution of Test Suites

for DIstributed Component-based Software (AGEDIS) [18].
It was developed during the AGEDIS-EU-Project.

Finally, the Unified Test Modeling Language (UTML)
[9] had to be mentioned. It was developed by Alain Vouffo-
Feudjio at the Fraunhofer Institut FOKUS [12] to support the
creation, modification and maintenance of a dedicated
testing model within a pattern-oriented test description
approach.

To sum-up the concepts of the discussed approaches, in
particular of the UTP and TPTP, there are neither concepts
for essential testing aspects like test case generation rules or
requirements association nor a recommendation, how to
persit testing models within a repository.

III. ARCHITECTURAL OVERVIEW
One premise of the Testing Metamodel (TestingMM) was to
provide concepts for a holistic test modeling and process
approach. For the exchange and storage of TestingMM
instances (as well as the correlated system models) and
other related artifacts, FOKUS!MBT utilizes the integrated
model repository provided by ModelBus [13] technology.

A. Structure of TestingMM
The TestingMM is a conceptual merge of TPTP and

UTP, with specific additions of the UML. Fig. 1 shows a
comparison among the UTP, the TPTP and the concepts
newly introduced to the TestingMM. Staying close to the
naming convention of the merged metamodels, facilitates
import and export possibilities between the TestingMM and
its related models (UML, UTP, TPTP). TestingMM is
implemented in Ecore [10]. It consists of ten subpackages,
where each of them deals with a separate concern of the test
description. The packages are namely: Foundation: The
foundation package provides basic concepts for object-
oriented modeling. It is a subset of the UML::Kernel
package with additions from the UML::Components
package to specify components, ports, data types etc.

1. Architecture: It is similar to the UTP::Architecture,
with extra information outside of the scope of the UTP
like relationship to requirements.

2. Data: The TestingMM::Data package is similar to the
UTP::Data package. It supports the concepts for data
pools and data partitions..

3. Time: A simple and intuitive timer mechanism.
4. Behavior: This package includes everything to model

the behavior of test cases. Available behavioral aspects
are simplified UML::Interaction models.

5. Generation: Information of how tools should derive test
cases out of input models are located in the generation
package.

6. Purpose: This package deals with the description of a
test context’s objectives and its relation to system’s
requirements to integrate the purposes of a test context.

330

7. Configuration: The configuration package specifies the
deployment of the test artifacts to distributed locations
and machines. It is similar to the UML::Deployment
package.

8. Platform: The platform package describes how a test
context and all its related test cases are applied to a
specific platform. It provides mapping directives among
interfaces as well as elements to initiate or shutdown the
target platform.

9. Execution: Concepts to store the results of one or
multiple test executions and traces between test results
and requirements are defined in the execution package.

B. TestingMM Core Concepts
The essential package for the creation of test contexts (test
suites) is TestingMM::Architecture. Fig. 1 has shown the
core concepts of the UTP related to additional TestingMM
elements. Fig. 2 represents a concise overview of the
package, with cross-package references1 (highlighted in a
different color). The most relevant metaclass is
TestingMM::TestContext. A test context collects a set of test
case to satisfy the test context’s purpose. Test cases are
meant to run against several SUT instances, performed by
test components. Each test component returns a local verdict
to the test context they belong. These local verdicts had to
be assembled to provide a unique and unambiguous verdict
for the whole test case. An arbiter is responsible for this.
Arbitration will be managed by an optional arbiter. The idea
corresponds to the arbitration mechanism of TTCN-3. Test
designers can abandon this optional part, thus a virtual
default arbiter will be used instead. In that case, the global
verdict will be determined by defining a precedence order
for verdicts, as the TTCN-3 core specification does. The
order is established as None < Pass < Inconclusive < Fail,
where < means the right verdict overrides the left verdict.
Hence, if a test component states a fail, the global verdict
will never be pass. However, some testing aspects, for
example real-time testing, require a more fine-grained
arbitration mechanism as the default one.

 Figure 2. TestingMM Core Concepts Overview

1 Due to readability, we have hidden some of the associations.

Figure 3. Test Purpose Package

Therefore, it is possible to specify a domain-specific arbiter
within the testing model. It has to be said, that a default
arbitration mechanism fits for the most test scenarios where
TestingMM was involved in.
Test Cases are expressed as interactions. As mentioned
before, the specification of interaction behavior is similar to,
but in some details more intuitive than UML interactions.
Anyway, they share basic concepts like defining messages,
passing arguments to the receiver, executing invoked
behavior and return operations results. A test case can either
be created manually or be automatically derived from any
behavioral description stored in whatever artifact.

C. Test Purposes
In UTP the rational of a test context or a test case is defined
by a dependency relationship. Since dependencies
connecting any element with no specific semantic (except
that the source element depends on the target element), it
might be ambiguous if a test case is the objective for a
UML::Class instance. Commonly, a test purpose (or test
objective in UTP nomenclature) express’ what a test case or
a couple of them aim for, otherwise its usage won’t
contribute any additional findings for the test analysis
phase. If the intention of test case is not clear and it fails,
what does this mean for the system? Or vice versa, a
reviewer won’t gain any confidence in the quality of the
whole test process, if no unambiguous description for the
rational of its test cases is available.
Test cases are intended to verify a system’s requirements,
elicitated and specified during the requirements engineering
process. Therefore, a test case is related to at least one
requirement of the system or its parts. TestingMM defines a
more detailed structure for test purposes (see Fig. 3). A
requirement is not contained by a test purpose, since there is
a possible many-to-many relationship. One requirement can
be included by a set of test purposes and vice versa. Instead
of being a container for a requirement, the test purpose
contains a TestingMM::RequirementRelation that relates a
requirement to the execution result of a test case.

331

Figure 4. FOKUS!MBT High-level Architecture

Such a relation states the execution status of a requirement
(and implicitly of the related test case). Possible values are
NOT_EXECUTED, PASS and FAIL. The concrete value
for a requirement status is derived from the related
execution result. Since a test case is arbitrated to either pass,
inconclusive or fail, a requirement will only be set to pass, if
the arbiter states pass, otherwise fail. Inconclusive makes no
clear statement from requirements point of view, because a
requirement has to act like it is intended to, thus an
inconclusive verdict will fail the whole requirement.
Since a execution result of a test case is traceable over a
period of time, each new invocation of the test case will
create a new TestingMM::RequirementRelation instance,
which will be connected to the new execution result. An
assigned date for each new invocation enables the reviewer
to follow a requirements status over time.

D. Process Workflow and Model Exchange
Artifacts are stored in repositories to allow them being
integrated in a distributed development process. The
ModelBus is a model-driven tool integration framework
which enables a seamlessly integrated tool and model
environment for a model-based engineering process
[28][29]. The idea is to separate participating tools and
models (testing models as well as system models) in a
loosely coupled tool chain infrastructure. A general
overview of the FOKUS!MBT infrastructure is depicted by
Fig. 4.
The ModelBus acts as a middleware component to provide a
transparent access to the development artifacts in a
distributed, yet integrated environment. Participating tools
exchange their data through specific web service adapters.
An adapter exhibits the tool’s services and required
parameters via the Web Service Description Language

(WSDL). This enables a tester to work with his desired
modeling tool, as long as it is adopted.
The foundation of FOKUS!MBT are the integrated model
repositories, especially for the TestingMM instances. Test
case and test data generators can extend the tool chain by
simply be plugged into the ModelBus infrastructure via their
specific adapters.
The process flow orchestration of a specific scenario is
commonly described (but not limited to) by the Business
Process Modeling Notation (BPNM) [25]. Workflow and
quality services won’t be discussed in this paper, since they
are not a vital for testing purposes.

IV. CASE STUDY
The proposed architecture has been used and evaluated in
several research projects. It has been shown that the
integrated test repository could be successfully adapted to
the different tooling infrastructures and project
requirements.
In the ModelPlex-Project [24], an interdisciplinary project
funded by the EU, FOKUS!MBT and its canonical test
model TestingMM have been developed and applied use
cases from SAP and Telefonica.
The RTE-Space-Project [19], initiated by the European
Space Agency (ESA), explores software migration problems
and methodologies for the space domain. The MBT tool
chain was applied to safeguard the modernization of a
legacy file archiving and versioning system, by focusing on
test generation from UML::Interaction models in particular
[20]. In the following we will present an example that
presents a MBT approach to generate tests for a simplified
phone conference application. The artifacts necessary to
generate, execute and manipulate the tests have been stored
exclusively in the repositories of FOKSUS!MBT.

332

Figure 5. Telephone Conference Scenario

A. Scenario Description
The first step was to create a behavior model out of a given
specification. In contrast to the RTE project [19][20], an
UML::StateMachine was chosen for this scenario. Fig. 5
shows the (simplified) behavior model of the system for
subsequently applied test case generation.

B. Test Case Generation
The intention was to generate test cases out of state
machines by using the MBT tool generator for structural
coverage. The generator was parameterized by the concepts
of the TestingMM::Generation package. The successfully
integrated MBT tool [17] can be configured to use either the
Dijkstra algorithm [26] or a random algorithm to achieve its
coverage goal. In most situations it will be either state or
transition coverage. Table 1 figures out the currently
available structural coverage criteria of the TestingMM.
The combination of coverage criteria and their parameter act
as stop conditions. They can be combined by logical
operators like AND, OR, XOR to span a tree of fine-grained
generation stop criteria. The result of such a derivation is an
ordered list of transition names, that had be traversed. UML
denotes such a list as an trace and notates it like this:
<event1, event2, event3…>. These string traces had to be
converted to concrete operation calls or signal sendings to
interact with the SUT. A possible test case, resulting from a
50 percentage transition coverage goal, consist of the
following trace: <unhook(), call_B(), B_takes_A(),
press_hook(), call_C(), C_takes_B(), press_hook()>.

C. Deadlock Prevention
As Fig. 5 shows, it is possible to run into an infinite loop
during the derivation process. Assume that a 100 percentage
transition coverage goal was defined. If the algorithm
selects the trace <unhook(), call_B(), B_takes_A(), …> its
stop criteria won’t be reached, since the press_hook()
transition between the states offline and wait_for_B is
unreachable. To avoid deadlocks like this, it is necessary to
define a default stop criterion, which restricts the resulting
length or the process time of the derivation. In this scenario,

the default stop criterion restricts the test length to maximal
30 execution steps.

D. Test Execution
After the derivation process, the resulting traces are
transformed into instances of TestingMM::Interaction
models. A specific model-to-text transformation generated
executable TTCN-3 code out of the resulting traces. Each
test context was transformed into a separate TTCN-3
module, containing the required type system for execution.
The transformator was realized with Acceleo [27], an
implementation of the OMG’s MOFM2T [27] specification.
In contrast to the RTE scenario, a real SUT was unavailable.
In order to get the test cases running, the SUT was
simulated within TTCN-3 by a simple component. The
generated test cases were successfully executed with the
TTworkbench [16].

TABLE 1. STRUCTURAL COVERAGE CRITERIA
Coverage
Criteria

Description Parameter

State Coverage Denotes the quantity of
traversed states of the state

machine, expressed in
percent

0-100%
(integer)

Reached State Stops as soon as the state
with the given name was

reached

State name
(string)

Transition
Coverage

Same as State Coverage but
concerning transitions

0-100%
(integer)

Reached
Transition

See Reached State Edge named
(string)

Test Length Restricts the length of the
resulting sequences

No of steps
(integer)

Test Duration Restricts the test case’s
length by a maximal

process duration

Duration in
milliseconds

(integer)

V. CONCLUSION AND FURTHER WORK
In this paper an approach of an integrated metamodel and
repository for testing was presented, which merges the
specific concepts of the UTP and the TPTP. The resulting
TestingMM is intended to cope with the formalization of an
entire test process. Needful additions to achieve this goal
were elaborated and described. Afterwards the service-
oriented infrastructure FOKUS!MBT was presented and
briefly described.
It has been shown that FOKUS!MBT was able to handle the
variety of different domains due to its flexible and to the
different tooling infrastructures and project requirements.
FOKUS!MBT was successfully applied into real world case
studies by following the major MDE concepts. Test cases

333

were automatically derived from appropriate behavioral
aspects of UML system models and translated into
executable TTCN-3 test cases. These test cases were
compiled into Java executables subsequently and executed
by the TTworkbench. The implemented tool chain showed
that the entire testing process can be automated even if test
execution and result analyzation had still to be performed
manually. Further work will address an adaption of the
execution environment to invoke the compilation and
execution process automatically, orchestrated via BPMN as
well as to establish requirements traceability.

ACKNOWLEDGMENTS
This research has been co-funded by the European
Commission within the 6th
Framework Program project Modelplex contract number
034081 (cf. http://www.modelplex.org).

REFERENCES
[1] Object Management Group (OMG): OMG Unified Modeling

Language (OMG UML) Superstructure, Version 2.2.
http://www.omg.org/cgi-bin/doc?formal/2009-02-02.

[2] Object Management Group (OMG): UML2 Testing Profile, Version
1.0. http://www.omg.org/cgi-bin/doc?formal/05-07-07.

[3] Eclipse Foundation: Test & Performance Tools Platform (TPTP).
http://www.eclipse.org/tptp.

[4] European Telecommunications Standards Institute (ETSI): The
Testing and Test Control Notation version 3 (TTCN-3).
http://www.ttcn-3.org.

[5] Schieferdecker, Ina; Din, George: A Metamodel for TTCN-3. In:
Applying Formal Methods: Testing, Performance, M/E-Commerce.
LNCS, vol. 3236, pp. 366-379. Springer, Heidelberg (2004).
ISBN 978-3-540-23169-1.

[6] European Telecommunications Standards Institute (ETSI).
http://www.etsi.org.

[7] IEEE: Automatic Test Markup Language (ATML),
http://grouper.ieee.org/groups/scc20/tii/

[8] Utting, M.; Pretschner, A., Legeard, B.: A Taxonomy of Model-
Based Testing. ISSN 1170-487X, 2006.
http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf.

[9] Unified Test Modeling Language (UTML),
http://www.fokus.fraunhofer.de/de/motion/ueber_motion/
technologien/utml/index.html.

[10] Eclipse Foundation: Eclipse Modeling Framework (EMF).
http://www.eclipse.org/emf.

[11] Eclipse Foundation: UML2 Project (MDT-UML2),
http://www.eclipse.org/modeling/mdt.

[12] Fraunhofer Institut für Offene Kommunikationssysteme (FOKUS),
Berlin. http://www.fokus.fraunhofer.de

[13] MoldeBus 2.0, http://www.modelbus.org.
[14] Object Management Group (OMG): Meta-Object Facility (OMG

MOF). http://www.omg.org/mof/
[15] Dueñas et al.: Model driven testing in Product Family Context.

Universidad Polytécnica de Madrid,
http://modeldrivenarchitecture.esi.es/pdf/paper4-2.pdf.

[16] TTworkbench, Testing Technologies IST GmbH, http://testingtech.de
[17] Model-Based-Testing Tool (MBT), http://mbt.tigris.org
[18] AGEDIS Project, Automated Generation and Execution of Test

Suites for DIstributed Component- based Software,
http://www.agedis.de.

[19] Sadovykh et al.: On Study Results: Round Trip Engineering of Space
Systems. Fifth European European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA) 2009, Twente,
Netherlands.

[20] Sadovykh et al.: Architecture‐Driven Modernization in Practice –
Study Results. 14th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), 2009, Potsdam, Germany.

[21] Eclipse Foundation: Acceleo (MTL),
http://www.eclipse.org/modeling/m2t.

[22] All4Tec: MaTeLo (Markov Test Logic),
http://www.all4tec.net/index.php/All4tec/matelo-product.html

[23] TGV, http://www.inrialpes.fr/vasy/cadp/man/tgv.html
[24] ModelPlex Project, http://www.modelplex.org
[25] Business Process Modeling Notation. http://www.bpmn.org/
[26] Object Management Group (OMG): MOF Model to Text

Transfortmation Language (MOFM2T).
http://www.omg.org/docs/formal/08-01-16.pdf.

[27] Aldazabal et al.: Automated Model Driven Development Processes.
Proceedings of the ECMDA workshop on Model Driven Tool and

[28] Process Integration, Fraunhofer IRB Verlag, Stuttgart 2008. ISBN:
978-3-8164-7645-1.

[29] Hein, Christian; Ritter, Tom; Wagner, Michael: Model-Driven Tool
Integration with ModelBus. Workshop Future Trends of Model-
Driven Development, 2009.

334

