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Abstract—Process-centered Software Engineering 
Environments, or PSEEs, are intended for the definition, 
modification, and enactment of software process models; they 
thus bring software development processes into effect. Even 
though research efforts in process-centered software 
engineering abound, PSEE technology has not received the 
attention that it deserves. In order to create a concise but 
effective and practically applicable evaluation framework for 
PSEEs, this paper first presents a survey of PSEEs and 
highlights the current state of the art of the technology. The 
PSEEs which have been reviewed herein have been regarded 
as software systems, and as such, have been characterized in 
terms of their requirements. After providing a conceptual 
critique of the scope and nature of conventional PSEEs, a 
detailed criteria-based evaluation of a select set of several 
recent PSEEs has been conducted. The evaluation criteria have 
been derived from PSEE requirements and the results of the 
critique, and have then been refined and evolved into the final 
criterion set.  

Keywords-software process; process modeling; process 
enactment; Process-centered Software Engineering Environment 
(PSEE);  

I.  INTRODUCTION 
Responding to the urgent need for high-quality software 

is one main goal of software engineering. While there are 
several quality factors for software in the literature, 
evaluation of software product quality is not as 
straightforward as it may seem. The difficulty of software 
product quality assurance has motivated the indirect 
approach of injecting quality into software products by 
concentrating on the quality of the software development 
process. Experience has proved that there exists a direct 
correlation between the quality of the development process 
and the quality of the developed software. Consequently, we 
can gain more control over the required quality of software 
products by controlling software processes.  

It has long been observed that “software processes are 
software too” [38]. Consequently, the notion of process 
programming has been introduced, dealing with software 
processes as pieces of software. In other words, we can 
describe, examine, design and even test software processes, 
just as we do for software itself. 

A software process is typically defined as a set of step-
by-step activities that must be carried out to pursue the aim 
of developing a software product. A precise specification of 
these steps can be expressed using a Process Modeling 
Language (PML). Since the advent of process programming, 

several PMLs have been introduced in the literature [22]. 
However, the OMG’s SPEM, which is a standard meta-
model used to specify models for processes, seems to have 
put an end to all the debates [8].  

A process model is an explicit representation of a 
software process in a PML. A process model can be thought 
of as a vehicle for indicating how to carry out software 
development activities, how to specify the roles and tasks of 
software developers, and how the actions of developers 
might be supported by software tools and vice versa. It 
should tell developers how and when to activate automated 
tools, and how and when to give them feedback from process 
execution. Putting a process model into effect is called 
process enactment. Software engineering practices can be 
applied, guided and automated through process enactment. 

A Process-Centered Software Engineering Environment 
(PSEE) is an environment that provides various services for 
software developers by enacting process models. For 
example, interactive assistance throughout software 
development, automation of routine and labor-intensive 
tasks, invocation and control of software development tools, 
and enforcement of mandatory rules and practices are all 
among the typical features of PSEEs. PSEEs go by many 
names: Process Sensitive Environments (PSE), Process 
Support Systems (PSS) and Process Centered Environments 
(PCE) are some of the alternative terms used in the literature 
for referring to PSEEs. PSEE Technology, however, should 
be distinguished from related technologies such as Workflow 
Management (WFM) and Computer-Supported Cooperative 
Work (CSCW). While PSEEs target the management of 
software development processes, WFM systems are mainly 
concerned with modeling and automation of business 
workflows and industrial processes, and CSCW systems 
merely provide assistance for groups of developers in 
collaborating and coordinating their activities. 

This paper is an analytical review of a select set of the 
most prominent PSEEs introduced after the year 2003. 
Earlier PSEEs have been comprehensively reviewed in [20] 
and [28]. To ensure validity and effectiveness of the 
proposed evaluation criteria, PSEEs will first be described in 
terms of what they are supposed to provide (their 
requirements). The selected set of PSEEs will then be 
reviewed and evaluated based on a set of proposed criteria, 
specifically developed for this purpose as a part of this 
research; this critique, including an informative analysis of 
the evaluation results, will reveal their strengths and 
weaknesses.  



The remainder of this paper is organized as follows: 
Section II characterizes the features that PSEEs are supposed 
to provide; Section III summarizes where we stand in PSEE 
Technology; Section IV reviews and evaluates the selected 
set of PSEEs, and extracts useful information from the 
evaluation results; and Section V presents the conclusions 
and suggests several directions for furthering this research. 

II. CHARACTERIZING PSEES 
In this section, PSEEs are characterized by the features 

that they provide, referred to as PSEE requirements. We will 
employ these requirements as the initial criteria for our 
evaluation framework in subsequent sections. 

The conceptual and terminological framework shown in 
Fig. 1 was first introduced by Dowson [35] and has been 
used in several other related works. The framework 
introduces three software process domains: 

• Process model domain 
• Process enactment domain 
• Process performance domain 
The process model domain encompasses the definition 

and maintenance of software process models, which are 
defined in a PML. The process performance domain spans 
the set of actual tasks and activities that are performed by 
human or non-human process agents during the software 
process. Model and performance domains are linked together 
through the process enactment domain. The process 
enactment domain supports and controls the process 
performance domain through process models. In order to 
maintain the consistency and relevancy of software 
development process activities, it is essential for process 
enactment and process performance to be joined closely 
together. The close two-way communication between these 
domains is clearly depicted in Fig. 1. 

Dowson’s framework was employed in [37] and [33] to 
indicate the potential inconsistencies between the three 
conceptually distinguished software process domains, and to 
provide a solution to this problem. Reference [26] shows 
how process support takes place in each different domain. 
The methods presented in [15] and [20] have used the 
terminology of the framework to help present the key ideas 
and concepts of software process technology. This 
terminology will be used throughout the rest of this paper. 

Another characterization of the software process domains 
is provided in Conradi’s framework [36]. This framework 
divides a software process into meta-process, process support 
and production process. They are conceptually analogous to 
Dowson’s framework’s process model, process enactment 
and process performance domains respectively (as shown in 
Table 1). The research reported in [36] gives enlightening 
examples of the activities of each domain:  modeling and 
instantiating the process from the process model domain, 
coding a method of a class during implementation from the 
production process domain, and a tool to monitor the actual 
state of process execution from the process support domain. 

Conradi’s framework is used in [32] to clarify the nature 
of PSEEs, as follows: A PSEE is supposed to provide not 
only meta-process support, but also a flexible mechanism to 

incorporate production process support. Activities like 
instantiating process models, monitoring the state of 
execution of the process, supporting the evolution of the 
process due to change requirements, allowing to associate 
agents with the process, and configuration management, 
provide meta-process support. Production process support is 
provided through a flexible integration tool and an interface 
to agents showing which activities to perform at which time. 

A. PSEE Requirements 
PSEEs have been characterized by many features, 

potentials and purposes. As mentioned earlier, software 
processes are considered as pieces of software, so we refer to 
these features as PSEE requirements. Based on Dowson’s 
framework, some of the requirements of PSEEs are 
described below: 

Enactment Support: The existence of a natural and 
simple way for implementing the process 
definition/instantiation/enactment paradigm is one important 
requirement of all PSEEs [32]. In order to support 
enactment, an execution environment based on well-defined 
PML(s) is required. Attaining a desired level of semi- or full 
automation of process activities is a possible outcome of 
process models enactment. 

Software Team Distribution: The human-centered 
essence of software processes makes it necessary for PSEEs 
to support communication and coordination, not only 
between user performers, but also between users and 
automated process elements. Accordingly, the PML must 
include facilities to represent the effect of the performers’ 
negotiation and interaction on the process state during 
process enactment. In order to ensure consistency between 
the states of the enactment and performance domains, 
performers must give the PSEE frequent feedback on the 
unexpected changes and decisions made about the software 
process, as illustrated in Dowson’s framework (Fig. 1). 

There are several works in the literature that discuss the 
importance of cooperation and coordination support in 
PSEEs. Referring to this feature as groupware support, 
reference [32] organizes the whole issue at two levels: the 
project level, and the organizational level: At the project 
level, a PSEE should support coordination – defined as 
workflow management between agents, and also 
collaboration – described as a kind of coordination in which 
agents need to share information; at the organizational level, 
the goal is to use the potential of PSEEs to build a persistent 
and reusable knowledge pool from the organizational 
experiences gained throughout the software process.  

The research reported in [30] reviews the features and 
functionalities offered by SPADE, a well-known PSEE, to 
support cooperation. It remarks that specific cooperation 
policies are needed in the environment to effectively support 
integration with other tools and products. A more accurate 
boundary between coordination and cooperation is clarified 
by [16]: It introduces cooperative software engineering and 
defines cooperation as the manner of coordination in which 
an agreement on shared goals should be reached before 
development. In another work [17], collaboration is defined 
as users’ awareness of each other’s actions and coordination 



is defined as mechanisms, like automatic distribution of 
work, aimed at avoiding excessive need for collaboration 
when supporting groups of software engineers. 

Consistency management: PSEEs manage not only 
software processes, but also software products, which are 
subject to frequent change. There are direct as well as 
indirect dependencies between software products, so changes 
may pass from one product to another. In order to maintain 
consistency, PSEEs should properly handle these changes. 
Two common methods among PSEEs to prevent 
inconsistency have been presented in [25]: first, dependency 
relationships which make it possible to trace the chain of 
changes in software products; and second, preserving 
consistency by defining predicates that examine consistency 
conditions and trigger an exception in case of any 
consistency violation. One of these logic-based formalisms 
for managing consistency, which is based on modeling 
cooperative processes, has been proposed in [37]. 

Process flexibility: For our purpose, we define flexibility 
as the ability to modify software process activities 
dynamically during process performance. PSEEs should 
support this property to prevent the process enactment from 
diverging from the process performance [20]. From the 
viewpoint of the Dowson’s framework in Fig. 1, E » P 
interaction is most effective only when PSEEs support 
software process flexibility. This way it is possible to modify 
and adapt the ordering of process actions during process 
performance, which is not the case if the PSEE supports only 
a fixed process model. 

TABLE I.  EQUIVALENT DOMAINS IN DOWSON’S AND CONRADI’S 
CONCEPTUAL FRAMEWORKS  

Dowson’s  
Framework 

Domain 

Conradi’s  
Framework 

Domain 

The Purpose  
of the Domain  

Process Model Meta-Process Process Modeling 

Process Enactment Process Support Support and Control 
Production Activities 

Process 
Performance 

Production  
Process 

Actual Production 
Activities 

 

Process evolution: Like the E » P interaction, P » E 
feedback is also another essential feature of the Dowson’s 
framework that should be supported by PSEEs. Software 
processes are performed by people, and human beings are 
not pieces of machinery. So the actual process which 
happens in the real world is subject to mistakes, oversights 
and deviations from the “observed process” [20], which is 
what the actual process is supposed to be. The observed 
process is also known as the “official process” [27]. 
Widening the gap between actual and observed processes is a 
potential consistency threat to process enactment and 
performance. It is only possible through performers’ 
feedback to inform the PSEE of the process’s evolution, and 
to meet this threat. PSEEs may also be used to improve the 
software process, which in its turn leads to software products 
improvement. Reference [32] suggests that PSESs are the 
right environments for addressing the CMM key process 
areas (KPAs) and facilitating process maturity improvement. 

Modern Requirements: PSEEs should also be adapted 
to keep pace with significant changes in the world of 
software engineering and especially, the way software is 
developed. Reference [15] highlights agile software 
development and open source software development as the 
most significant challenges for PSEEs in terms of software 
process development. Dealing with agility and flexibility of 
agile methods in terms of process deviation is anticipated as 
the biggest challenge in developing “agile” PSEEs. 
Maintaining the flexibility of open-source software 
development while enforcing coordination processes has 
been pointed out as the most challenging difficulty in 
addressing open-source software development. Reference 
[22] also identifies the weakness of PSEEs in supporting 
issues such as security and rights to access shared artifacts as 
an obstacle in the adoption of open-source software 
development. Mobile software processes are another new 
challenge in the domain of PSEEs [21]. These processes 
include mobile process parts, and process participants with 
uncertainty about the place and prerequisites of their 
execution, mainly due to their mutable site allocation during 
the process. 

A number of less important requirements that should 
typically be considered when implementing a PSEE have 
been discussed in [28]. 

III. STATE OF THE ART 
A large number of PSEEs have been introduced in the 

literature, based on various concepts and approaches of 
software technology. This means that process programming 
has turned into a reality. Several reviews and classifications 
of current PSEEs have been reported in the literature. We 
will go through some of the most significant papers in this 
section, and will track the trend of technical viewpoint 
changes that have led to contemporary PSEEs. In the next 
section we will point out some weaknesses of current PSEEs. 

Ambriola et al. [28] offer a thorough assessment of some 
contemporary PSEEs, based on a well-defined assessment 
grid. The grid is composed of certain critical points and 
challenging issues in the PSEE technology. All the 
assessment grid entries are organized in three main sections: 

Figure 1.    Software process domains [35] 



PML technology, PSEE architecture, and practical 
experiences of the PSEE. The assessment is then conducted 
based on the derived grid.  

A more recent review on PSEEs has been reported in 
[20], in which a group of eight PSEEs have been selected 
and defined in terms of their objectives, PML features, and 
architectural characteristics. Based on a selected set of 
requirements for PSEEs, a comparative review of these 
PSEEs has been performed. 

Further reports on PSEEs can be found in [21] and [23]. 
The former gives a brief overview of the key concepts and 
trends in the context of PSEEs. The latter is a more detailed 
version which presents a quick history of PSEEs and makes 
observations on future challenges in the field.  

The research reported in [30] categorizes PSEEs into four 
groups, according to the support that they offer to their users: 
passive guidance, active guidance, process enforcement, and 
process automation. The difference between passive and 
active guidance is that in the first one, support is provided 
only upon user request, while in the second one, the PSEE 
may ask for user intervention on-demand. In process 
enforcement, the user is asked to perform activities specified 
by the PSEE, whereas in process automation, tasks are 
performed without involving the user. 

The research reported in [27] gives two other 
classification criteria for PSEEs. The first one is to classify 
them into proactive and reactive groups. Control and 
initiation of the operations is performed by the environment 
and by the user in each group respectively. The second one is 
to arrange PSEEs into four groups with respect to the 
paradigm used in the corresponding PML. One approach is 
to extend conventional programming languages and adapt 
them to the process programming needs. Another approach is 
to use rule-based languages to define the software process. 
Using preconditions, actions, and postconditions of rules, it 
is possible to describe software process activities. State 
machines are another powerful means for modeling the 
software process. So in the third approach, automata-based 
formalisms like Petri nets are extended to provide a practical 
solution to software process modeling. Finally, it is also 
possible to blend two or more distinct techniques and utilize 
the combination to benefit from each technique’s 
advantages; this is called the multi-paradigm approach. 

Recently, the collaborative qualities of PSEEs are being 
highlighted and emphasized more than other attributes [16, 
17]. This trend depicts a more promising future for PSEEs, 
based on the fact that approximately 70% of the software 
developers’ time is consumed for collaborative tasks. The 
research reported in [12] presents a classification framework 
that organizes the different research areas on collaborative 
software development.  

Collaborative software development, when 
geographically distributed, forms the paradigm of federated 
PSEEs. The research reported in [31] provides a brief 
introduction to the goals and motivations of federated 
PSEEs. It also makes a list of open issues of the technology. 
Efforts aimed at addressing these problems have already 
been started; the research reported in [10] proposes a peer-to-
peer solution instead of the old client-server architectures for 

cooperative development of software processes in highly-
dynamic environments.  

Other works have focused on improving PSEE 
technology by using new software concepts. For instance, 
the research reported in [11] blames traditional software 
concepts applied to PSEEs for the limited success of PSEEs 
in the software industry. Agent-based PSEEs is the idea 
proposed by the authors. Intelligence, autonomy and the 
reasoning abilities of agents are utilized to manage software 
development activities, and to act in different software 
process phases, just as software developers do. Groups of 
process agents, called process agent profiles, cooperate with 
each other under a framework called the Management Net to 
conduct process enactment. 

A. A critique of current PSEEs 
With serious rival technologies in the software process 

industry, it seems that reconsiderations should be made as to 
the scope and purpose of PSEEs. In this section, we will 
examine some of the most serious weaknesses of current 
PSEEs. 

The most severe problems of PSEEs seem to be more 
about their practicality rather than their practicability. In 
other words, due to their complexity and inflexibility (that is, 
their intrusiveness [24]), PSEEs are ignored or abandoned by 
process engineers during process execution. Flexibility, 
defined as tolerance for inconsistencies and process 
deviations – mentioned earlier as one of the requirements of 
PSEEs – is essential for these environments. To inject 
flexibility into a PSEE’s design and resolve the problem of 
strictness of process support in PSEEs, several mechanisms 
have been proposed in [21]; examples include: concise 
activity description at early phases of development, and 
guidance offered by the environment upon user request. 
However, flexible handling of deviations during software 
process enactment is still a major research area [2, 3].  

PSEEs also fail in human-related and creativity-involved 
aspects of software development. As pointed out in [21], 
software processes include parts that demand the creativity 
of human minds; this should also be supported by PSEEs 
along with other process parts. In order to effectively fulfill 
human-related needs, PSEEs should contain flexible 
mechanisms to support late changing requirements, emerging 
and evolving technologies, and dynamic working 
environments. Since human dimension support is a new field 
of development in PSEE technology, it is open to further 
research and enhancements. 

In order to avoid making the same mistakes in the design 
and development of future PSEEs, an enlightening 
comparison has been reported in [27]. It makes a list of some 
strategic decision points that should be considered when 
designing a PSEE, defines extremes at each decision point, 
and compares their technical effect on the PSEE. 

IV. EVALUATION OF SELECTED PSEES 
In this section, we have presented a review of the 

significant aspects and distinguishing features of a set of 
seven PSEEs which were introduced after 2003. As noted 
before, earlier PSEEs have been comprehensively reviewed 



in [20] and [28]. Each PSEE is briefly characterized in terms 
of its applications (and thereby its prominent contributions), 
as well as through an informative architectural diagram. A 
comprehensive criteria-based evaluation is then performed 
on the examined PSEEs, based on a criterion set that has 
been developed as an important contribution of this research. 
The evaluation results are then analyzed and discussed to 
finalize the evaluation. 

A. DOSDE Environment 
DOSDE (Domain-Oriented Software Development 

Environment) is the name of a PSEE which has been based 
on the concept of employing domain knowledge during the 
software process in order to support development activities 
[19]. Domain-specific knowledge is the essential prerequisite 
of the critical task of properly identifying software 
requirements. In DOSDE, this knowledge is divided into: 
1.the knowledge about the concepts of the application 
domain, and 2.the knowledge about the typical tasks and 
activities of the domain. Considering the need for generality 
and reusability of the definition, this knowledge is captured 
in the form of interrelated ontologies. 

In order to cope with the complexity of the application 
domain ontology, and also to facilitate its definition, the 
ontology is divided into sub-ontologies. A sub-ontology is a 
group of related domain concepts which share the same 
semantic context. Application domain sub-ontologies are 
constructed through the following phases: definition of the 
purpose of the ontology, conceptualization, formalization 
(ontology coding), and validation. On the other hand, task 
ontologies, augmented by problem solving methods (PSMs), 
aim at deepening the understanding of the users of the 
domain tasks. While a task ontology merely conceptualizes 
the corresponding task, one or more PSMs are associated 
with the task to solve it. 

The mentioned concepts are utilized in DOSDE 
environment in assisting requirements elicitation and 
documentation, and also the design activity. Use cases are 
described in the form of task ontology and associated PSMs. 
During design, data modeling is greatly facilitated in 
DOSDE owing to a mapping definition between ontological 
constructs and entity relationship diagrams. In addition, 
DOSDE studies and stores domain-specific information by 
extending various activities of the development process with 
a sub-activity called domain investigation activity. Fig. 2 
provides a visual representation of DOSDE’s underlying 
concepts. Please note that the same legend applies to all the 
subsequent figures. 

B. VRPML Support Environment 
A PML, called VRPML (Virtual Reality Process 

Modeling Language) and the design of its support 
environment are discussed in [13]. In VRPML, software 
processes are generically specified as graphs. These graphs 
are constructed from interlinked nodes, representing the 
process activities, and arcs, indicating the control-flow of the 
process. Different types of activity nodes are supported in 
VPRML, including: general-purpose activity nodes, multi-
instance activity nodes, and meeting activity nodes. A start 

node generates the initial control-flow signal, which 
subsequently triggers activity nodes from top to bottom of 
the graph. Decomposable transitions also enable conditional 
branching of process control-flow. Two VPRML elements, 
named merger and replicator, make it possible to 
concurrently enact activity nodes. The language also 
provides a macro node, which is a packaging mechanism to 
enhance the readability of the graph. 

The main components of the VPRML support 
environment architecture, illustrated in Fig. 3, are briefly 
discussed herein: Graph editor is a dedicated visual editor to 
draw and modify the VPRML graphs. The graphs are then 
translated into a ready-to-enact intermediate format by 
compiler, named roadmap. Run-time interpreter not only 
parses and interprets the roadmap, but also decides when to 
fire activities on arrival of the control signal and interacts 
with the resource manager to check for resource availability. 
Runtime client retrieves activities and their resource 
allocations from communication repository layer. To-do-list 
manager has responsibility for managing the assigned 
activities to a particular software engineer. Each activity 
work context, including artifacts and tools required to 
complete the activity, is generated and maintained by the 
workspace manager. Communication repository layer is a 
intermediate container for keeping assigned activities and the 
control-flow signal. Finally, resource manager handles the 
queries for resource allocation received from the runtime 
interpreter and the workspace manager. 

C. CASDE Environment 
In order to effectively support software development 
processes in general, and collaborative development activity 
in particular, the architecture of a context-aware software 
development environment, or CASDE, has been presented in 
[9]. As inferred from the name, the context element has the 
pivotal role in the proposed architecture. The context of an 
entity, that contains state- and location-specific information 
about the entity, makes it possible to share artifacts between 
different participants. The key aim of CASDE is to support 
collaborative features in software development. 

CASDE is theoretically founded on the activity theory; it 
thus supports collaborative activities in a three level 
hierarchical structure, as identified by the activity theory: co-
ordinated level, co-operative level, and co-constructive level. 
The co-ordinated level deals with routine flows of 
interactions, and accentuates the individuals performing their 
assigned activities and roles. The co-operative level focuses 
on the problem of actors sharing a common object and 
cooperating to achieve a shared objective. The context 
element plays an integral part in providing synchronous 
communication at the co-operative level. The co-constructive 
level is placed at the top of the collaborative activity 
hierarchy and involves interactions that concern re-
conceptualization and gradual evolution of the process. 

The CASDE architecture is presented in Fig. 4. The 
architecture follows the client-server model, and consists of 
interconnecting modules at client-side as well as server-side.  

Two distinctive modules of CASDE architecture are 
wrapped legacy tools and awareness tools. Legacy tools can 



be easily adopted in CASDE owing to the tools wrapping 
mechanism. The local repository at client-side maintains 
local versions of artifacts.  Awareness tools update artifact 
contexts and notify the developers of the changes. 

D. Transforms Environment 
According to its developers, Transforms is the first PSEE 

dedicated to modeling and enactment of MDA processes, i.e. 
model-driven software development processes which adopt 
Model Driven Architecture concepts and employ model 
transformation tools for building software-intensive systems 
[6]. Since MDA specification does not, define a software 
process [18], one main goal of the underlying concept of 
Transforms is to fill the gap between MDA standards and a 
clear-cut process definition for applying MDA concepts. 
Unlike most MDA tools and environments, Transforms 
focuses on all process design aspects during enactment, 
rather than just on model transformations. 

We have already mentioned SPEM as a standard notation 
for process modeling. Based on a specialized set of SPEM 

2.0 concepts, Transforms offers: (1) a meta-model for 
defining and instantiating an MDA process extended from 
certain SPEM concepts, and (2) a set of diagrams for 
modeling the behavior and structure of the MDA process. 
The incorporation of SPEM encourages interoperability and 
interchangeability of models between model transformation 
tools, which is the major weak point of most other MDA 
environments. In Transforms, MDA-related particulars are 
preferred to be defined at the metamodel layer (M2) instead 
of the process model layer (M1) [6]; this way, distinctive 
MDA process definitions (encompassing different features) 
can be modeled in M1 and then enacted and used at the 
process development layer (M0).  

Fig. 5 shows the architecture of the Transforms 
environment.  The MDA process modeling module provides 
a visual editor to modify the process’s structure and 
behavior, and rule and profile editors to define new 
transformation rules and UML profiles. On the other hand, 
model transformations and the ability to monitor tasks and 
artifacts are supported by MDA process enactment module. 

E. SPACE Environment 
Mainly targeted at medium-sized projects and small 

software teams, SPACE (Semantic Process- and Artifact-
Oriented Collaboration Environment) is a conceptual meta-
model for creating and managing process models as well as 
artifact models, and applying the models to support the core 
and context activities of the software development process 
[5]. Core and context activities are respectively oriented 
towards the creation of the actual product, and project 
planning and management. Artifact models are semantically 
associated with process models to define the artifact 
transformation chain throughout process execution, and also 
to incorporate traceability into the process. 

In order to tailor SPACE to the needs of small 
organizations, dynamic and flexible pre-defined process 
models should be defined and applied to the development 
processes of these companies. Since SPACE is a domain-
independent meta-model, it has been adapted and applied to 
software engineering based on a software platform called 
SOP (Software Organization Platform), which encompasses 
three fundamental components: Lifecycle Artifact and 
Process Management, Knowledge Management, and 
Stakeholder Collaboration. SOP 2.0 is a user-driven wiki-
based platform which implements SOP. The relationship 
between SPACE, SOP and SOP 2.0 is depicted in Fig. 6. 

F. The ADAMS System 
Advanced Artifact Management System, or ADAMS, is 

an artifact-based environment that integrates project and 
artifact management features to support software engineering 
activities during the entire software process lifecycle [14, 4]. 
Instead of adopting the common approach of process 
definition/instantiation/enactment, ADAMS makes it 
possible to define a project in terms of the artifacts to be 
produced and the relationships among them. Configuration 
management and traceability support for artifacts in the early 
phases of software lifecycle, and fine-grained management 
of artifacts which enables control and traceability of 

Figure 3.    VRPML Architecture (adapted from [13]) 

Figure 2.    DOSDE concepts 



independent elements in a file, are some of the distinct 
advantages of ADAMS. ADAMS architecture, as show in 
Fig. 7 is composed of several subsystems; each subsystem 
has clearly-defined responsibilities, as follows:  The resource 
management subsystem implements a role-based access 
control policy to provide administrative functionalities and 
account management. The project management subsystem is 
responsible for providing the management-related 
functionalities around the pivotal role of artifacts. Tasks and 
activities are represented by the artifacts that they are 
supposed to create as their output. The project schedule is 
also based on the start and due date of the artifacts. 
Resources are assigned to artifacts, and specific roles are 
assigned to resources according to their roles in developing 
each artifact. The artifact management subsystem provides 
fine-grained management and revision control of software 
artifacts. The event and notification management subsystem 
enhances traceability of artifacts through providing context-
awareness within the project. The quality management 
subsystem guarantees the quality of artifacts using related 
software engineering practices, such as: employing standard 
templates, providing review checklists for artifacts, and 
software inspection to identify defects and reduce rework. 
Finally, synchronous and asynchronous collaborative tools, 
such as internal chat, collaborative UML editors and internal 
email, form the cooperative development subsystem.  

G. Model-Driven Integrated approach 
The approach introduced in [1] integrates the principles 

and techniques of model-driven engineering and software 
product lines to adopt a model-driven integrated approach to 
software process definition, customization and execution. 
The approach is implemented through using several well-
known software technologies; since it can be considered as a 
PSEE (at least potentially), it has been selected herein.  

Fig. 8 gives an overall understanding of the main 
elements of the Model-Driven Integrated approach and their 
respective relationships. As the first step, modeling and 
definition of the software process model takes place, relying 
on supporting EPF technologies [39], including the Unified 
Method Architecture meta-model, EPF Composer tool, and  
the method content; i.e., the process assets to be used as the 
basis for composing a broad range of processes. The next 
step concentrates on process variability management, which 
is perhaps the most prominent advantage of this approach. 
Here, a variability model is defined to specify existing 
variabilities of a software process. The variability model 
includes EMF models that specify which process fragments 
(roles, tasks, etc.) represent variabilities (optional and 
alternative) when regarding specific projects. Customized 
versions of the software process are then derived from an 
existing software process. This is done automatically by the 
GenArch product derivation tool through selection of the 
relevant features from an existing process. The two final 
steps are straightforward: First, a model-to-model 
transformation language called ATL, an implementation of 
OMG Query/View/Transformation language, is used to 
translate EPF specification to JPDL workflow specifications; 
finally, this JPDL specification is converted to Java Server 
Faces (JSF) by a model-to-text language named Acceleo, 
which can be deployed and executed by the JBoss Business 
Process Management (jBPM) workflow engine.  

Figure 5.    Transforms Architecture [6] 

Figure 4.    CASDE Architecture (adapted from [9]) 

Figure 6.    Genealogy of SPACE and SOP Platforms 



H. Evaluation of the selected PSEEs 
Herein, we present a detailed criteria-based evaluation of 

the selected PSEEs using an evaluation method adopted from 
the Feature Analysis approach [29]. In our approach, each 
evaluation criterion is further divided into several more 
features. Each feature is given a weight, identifying the value 
of the feature in comparison to other equivalent features. 
Weight is a floating number ranging from 0.0 to 1.0, and the 
sum of the weights of all the features related to one criterion 
should equal 1.0. As in the Feature Analysis approach, we 
differentiate between narrative and scale features. A feature 
belongs to the narrative type if a PSEE can be simply 
evaluated against that feature by a “0” or “1” response. A “1” 
response means that the PSEE explicitly incorporates the 
corresponding feature; while a “0” response means the 
feature is not present in the PSEE. For instance, support for 
traceability between artifacts is a narrative feature in table III 
with a weight of 0.5, presented in the "Weight" column. 

Evaluating a PSEE against some other features, on the 
other hand, may necessitate defining a scale to accurately 
evaluate the compliance degree of the PSEE to that scale 
feature. Process definition support in table II is an example 
of scale features which cannot be simply evaluated by a 
"yes/no" response. Symbols N and S in the "Type" column, 
respectively represent narrative and scale features in tables 
II, III and IV. In addition, an extra index for scale features 
associates one of the following scales with that feature: 

Scale 1 (S1). Scale 1 includes 4 levels: 0/3: the PSEE 
doesn’t mention the corresponding feature and thus, provides 
no mechanism to support it; 1/3: the PSEE’s definition 
merely highlights the corresponding feature importance 
and/or provides guidelines/extension points to extend the 
PSEE functionality to incorporate the feature;  2/3: the PSEE 
partially supports the corresponding feature via other key 
modules of the architecture, but no specific mechanism 
aimed at the desired feature is defined in the PSEE 
definition; 3/3: the PSEE totally supports the corresponding 
feature and accentuates the mechanism(s) supporting the 
feature, as a dedicated module of the PSEE architecture. 

Scale 2 (S2). Scale 2 includes 3 levels: 0/2: the PSEE 
doesn't explicitly cover any part of the corresponding feature 
or paradigm; 1/2: the PSEE partially covers some parts of the 

corresponding feature or paradigm; 2/2: the PSEE covers and 
includes all parts of the corresponding feature or paradigm. 

We hereby provide examples of employing the defined 
scales in order to evaluate the reviewed PSEEs against scale 
parameters: As seen in table V, the Transforms environment 
is evaluated based on the process flexibility criterion, 
resulting in a 2 / 3 mark. This is because flexibility is only 
partially provided in Transforms through its meta-model 
modification. As the second example, CASDE is given a 
1 / 3 mark evaluating against process evolution criterion, 
since process evolution is only mentioned at co-constructive 
level of CASDE, which is not currently supported by 
CASDE. It should be noted that both process flexibility and 
process evolution support criteria are composed of only one 
feature, as shown in table II. If the criterion is comprised of 
more than one feature, the mark presented in the table entry 
is the sum of the values resulting from evaluating the PSEE 
against all the corresponding features. For example, consider 
evaluating SPACE against the coverage criterion. Coverage 
consists of two features associated with scale 2, as defined in 
table IV. SPACE is given a 2/2 mark and a 1/2 mark for the 
first and second features, respectively. Eventually, the 
corresponding weights are multiplied by these marks 
(2/2*2/3+1/2*1/3), resulting in the table entry (5/6). 

The initial set of evaluation criteria have been derived 
from PSEE requirements and the results of the critique 
provided in the previous section. This strategy guarantees the 
validity and effectiveness of the resulting evaluation criteria. 
Accordingly, the extracted criteria have been organized into 
three groups: 1.Evaluation criteria derived from PSEE 
requirements, 2.Evaluation criteria derived from the critique 
results, and 3.General software process evaluation criteria.  

The final criterion set used here to evaluate PSEEs is 
evolved and refined from the initial set. During the 
evaluation, the count, granularity, type, and weight of the 
criteria and features have been subject to refinement. For 
example, interoperability was added as a criterion to general 
evaluation criterion set, and tool support was added as a 

Figure 7.    ADAMS Architectue 

Figure 8.    The Model-Driven Integrated Approach overview 
(adapted from [1]) 



feature to the process deviation support criterion, after the 
evaluation of Transforms environment. While these features 
are crucial to Transforms as a PSEE adopted for MDA 
processes, they are also essential regarding a typical PSEE. 
As another example, traceability, which can be efficiently 
supported by the automation offered by a PSEE, was added 
to general evaluation criteria after the evaluation of SPACE. 
The scaling rules have also been evolved as one target of the 
evolution process. For example, scale 2 was wholly added to 
fit the evaluation of the coverage criterion. We have also 
selected and adapted certain general evaluation criteria, such 
as usability, from [7], which provides an analytical review of 
Computer Aided Method Engineering (CAME) tools.  

During the criteria definition and refinement process, we 
have strived to keep the criteria general, precise, 
comprehensive and balanced in order to satisfy the meta-
criteria of [34]. The final criteria, categorized in the three 
mentioned groups, are shown in tables II, III and IV. 

This review aims to address the need for a review on 
modern PSEEs. The reviews reported in [20] and [28] were 
conducted a decade ago; the PSEEs reviewed here had not 
been introduced at that time. Using the matrix framework, 
employing scaled features, and introducing evaluation 
criteria that are related to modern software technologies, are 
the distinguishing features of the present research. 

TABLE II.  EVALUATION CRITERIA DERIVED FROM PSEE 
REQUIREMENTS 

Criterion Name Corresponding Feature Type Weight

Enactment 
Support 

Process definition support S1 1
3

Process instantiation support S1 1
3

Process execution support S1 1
3

Software Team 
Distribution 

Coordination (Workflow Management) 
Support S1 1

2
 

Collaboration (Information Sharing) Support S1 1
2

Consistency 
Management 

Consistency Preservation Mechanism 
Support S1 1

1
 

Process Flexibility Dynamic Process Activities Modification 
Support S1 1

1
 

Process Evolution Process Performer’s Feedback Mechanism 
Support S1 1

1
 

Security Role-Based Access Control N 1
1

Mobility Mobility of Process Parts S1 1
1

TABLE III.  EVALUATION CRITERIA DERIVED FROM THE  RESULTS OF 
THE CRITIQUE  

Criterion Name Corresponding Feature Type Weight

Process 
Deviations 
Support 

& Inconsistencies 
Toleration 

 

Concise activity description at early 
development phases support N 1

5
 

Monitoring of process activities support S1 2
5

Offering guidance and support by environment 
upon request support N 1

5
 

Tool Support for Handling Process Deviations N 1
5

Human 
Dimension 

Support 

Late Changing Requirements support N 1
4

Process experience knowledge pool support S1 1
4

Usability S1 2
4

New Technology 
Adoption 

Adopting Modern Software Technologies in 
PSEEs N 2

3
 

Introducing Conventional Software Concepts 
to PSEEs N 1

3
 

TABLE IV.  GENERAL SOFTWARE PROCESS EVALUATION CRITERIA 

Criterion Name Corresponding Feature Type Weight

Coverage 
Supporting Whole Generic Life Cycle S2 2

3

Supporting Umbrella Activities S2 1
3

Change 
Management 

Configuration Management N 1
2

Quality Management S2 1
2

Traceability 
Traceability Between Artifacts Support N 1

2
Traceability Between Roles and Activities 

Support N 1
2

 

Interoperability 
Using a Standard PML N 2

3

Extension Points Support for Integrating Tools N 1
3

I. Analysis of the Evaluation Results 
Table V summarizes the results of applying the 

evaluation criteria to the reviewed PSEEs. The results can be 
argued and used for two distinct purposes: First, they can be 
used to compare the evaluated PSSEs, and to select an 
appropriate PSEE in a specific usage context based on a set 
of predefined requirements. Second, the evaluation results 
can be used alongside the findings from the review to 
identify recent trends in PSEE technology. 

Normally, most of the PSEEs succeed in meeting the 
conventional PSEE requirements to an acceptable extent. 
Transforms and MD-Integrated are the only exceptions, in 
that they fail to meet some of the most trivial requirements of 
PSEEs. This is mainly due to the fact that they are still 
incomplete. On the other hand, modern PSEE requirements, 
namely security and mobility, are not addressed in most of 
the current PSEEs. Also, PSEEs still fail in some of the 
general evaluation criteria and the criteria derived from the 
results of the critique, just as their predecessors did.  

One growing trend among modern PSEEs, such as 
SPACE, Transforms and the MD-Integrated, is the use of a 
metamodel to define the process model and also to 
instantiate and execute the process instance from the process 
model. In this manner, they effectively support process 
enactment through the employed 
definition/instantiation/enactment paradigm.  

ADAMS, unlike other reviewed PSEEs, adopts an 
artifact-oriented approach to software process and does not 
comply with the conventional paradigm of software process 
definition/instantiation/enactment. Transforms and MD-
Integrated, which employ some of the more modern software 
standards and technologies –  such as SPEM, model-driven 
development and EPF technologies – succeed in meeting 
some of the more challenging criteria, such as process 
deviation support and interoperability.  

V. CONCLUSIONS AND FUTURE WORK 
In this paper, a brief but comprehensive survey on the 

current state of process-centered software engineering 
environments was presented. We went through PSEE 
requirements and demonstrated their capabilities and 
shortcomings. A short critique was then conducted in the 
hope of tackling the problem of limited acceptance of PSEEs 
in the software industry. The results of this critique can be 
employed to construct and examine new PSEEs in order to 
avoid the pitfalls. We then selected a set of seven modern 



PSEEs and provided a detailed review and criteria-based 
analysis of each PSEE. We aim to further this research by 
extending our evaluation framework and developing a 
generic PSEE framework that can be instantiated to yield 
custom PSEEs. 
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