
An Analytical Review of Process-Centered Software Engineering Environments

Reza Matinnejad, Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

r_matinnejad@alum.sharif.edu, ramsin@sharif.edu

Abstract—Process-centered Software Engineering
Environments, or PSEEs, are intended for the definition,
modification, and enactment of software process models; they
thus bring software development processes into effect. Even
though research efforts in process-centered software
engineering abound, PSEE technology has not received the
attention that it deserves. In order to create a concise but
effective and practically applicable evaluation framework for
PSEEs, this paper first presents a survey of PSEEs and
highlights the current state of the art of the technology. The
PSEEs which have been reviewed herein have been regarded
as software systems, and as such, have been characterized in
terms of their requirements. After providing a conceptual
critique of the scope and nature of conventional PSEEs, a
detailed criteria-based evaluation of a select set of several
recent PSEEs has been conducted. The evaluation criteria have
been derived from PSEE requirements and the results of the
critique, and have then been refined and evolved into the final
criterion set.

Keywords-software process; process modeling; process
enactment; Process-centered Software Engineering Environment
(PSEE);

I. INTRODUCTION
Responding to the urgent need for high-quality software

is one main goal of software engineering. While there are
several quality factors for software in the literature,
evaluation of software product quality is not as
straightforward as it may seem. The difficulty of software
product quality assurance has motivated the indirect
approach of injecting quality into software products by
concentrating on the quality of the software development
process. Experience has proved that there exists a direct
correlation between the quality of the development process
and the quality of the developed software. Consequently, we
can gain more control over the required quality of software
products by controlling software processes.

It has long been observed that “software processes are
software too” [38]. Consequently, the notion of process
programming has been introduced, dealing with software
processes as pieces of software. In other words, we can
describe, examine, design and even test software processes,
just as we do for software itself.

A software process is typically defined as a set of step-
by-step activities that must be carried out to pursue the aim
of developing a software product. A precise specification of
these steps can be expressed using a Process Modeling
Language (PML). Since the advent of process programming,

several PMLs have been introduced in the literature [22].
However, the OMG’s SPEM, which is a standard meta-
model used to specify models for processes, seems to have
put an end to all the debates [8].

A process model is an explicit representation of a
software process in a PML. A process model can be thought
of as a vehicle for indicating how to carry out software
development activities, how to specify the roles and tasks of
software developers, and how the actions of developers
might be supported by software tools and vice versa. It
should tell developers how and when to activate automated
tools, and how and when to give them feedback from process
execution. Putting a process model into effect is called
process enactment. Software engineering practices can be
applied, guided and automated through process enactment.

A Process-Centered Software Engineering Environment
(PSEE) is an environment that provides various services for
software developers by enacting process models. For
example, interactive assistance throughout software
development, automation of routine and labor-intensive
tasks, invocation and control of software development tools,
and enforcement of mandatory rules and practices are all
among the typical features of PSEEs. PSEEs go by many
names: Process Sensitive Environments (PSE), Process
Support Systems (PSS) and Process Centered Environments
(PCE) are some of the alternative terms used in the literature
for referring to PSEEs. PSEE Technology, however, should
be distinguished from related technologies such as Workflow
Management (WFM) and Computer-Supported Cooperative
Work (CSCW). While PSEEs target the management of
software development processes, WFM systems are mainly
concerned with modeling and automation of business
workflows and industrial processes, and CSCW systems
merely provide assistance for groups of developers in
collaborating and coordinating their activities.

This paper is an analytical review of a select set of the
most prominent PSEEs introduced after the year 2003.
Earlier PSEEs have been comprehensively reviewed in [20]
and [28]. To ensure validity and effectiveness of the
proposed evaluation criteria, PSEEs will first be described in
terms of what they are supposed to provide (their
requirements). The selected set of PSEEs will then be
reviewed and evaluated based on a set of proposed criteria,
specifically developed for this purpose as a part of this
research; this critique, including an informative analysis of
the evaluation results, will reveal their strengths and
weaknesses.

The remainder of this paper is organized as follows:
Section II characterizes the features that PSEEs are supposed
to provide; Section III summarizes where we stand in PSEE
Technology; Section IV reviews and evaluates the selected
set of PSEEs, and extracts useful information from the
evaluation results; and Section V presents the conclusions
and suggests several directions for furthering this research.

II. CHARACTERIZING PSEES
In this section, PSEEs are characterized by the features

that they provide, referred to as PSEE requirements. We will
employ these requirements as the initial criteria for our
evaluation framework in subsequent sections.

The conceptual and terminological framework shown in
Fig. 1 was first introduced by Dowson [35] and has been
used in several other related works. The framework
introduces three software process domains:

• Process model domain
• Process enactment domain
• Process performance domain
The process model domain encompasses the definition

and maintenance of software process models, which are
defined in a PML. The process performance domain spans
the set of actual tasks and activities that are performed by
human or non-human process agents during the software
process. Model and performance domains are linked together
through the process enactment domain. The process
enactment domain supports and controls the process
performance domain through process models. In order to
maintain the consistency and relevancy of software
development process activities, it is essential for process
enactment and process performance to be joined closely
together. The close two-way communication between these
domains is clearly depicted in Fig. 1.

Dowson’s framework was employed in [37] and [33] to
indicate the potential inconsistencies between the three
conceptually distinguished software process domains, and to
provide a solution to this problem. Reference [26] shows
how process support takes place in each different domain.
The methods presented in [15] and [20] have used the
terminology of the framework to help present the key ideas
and concepts of software process technology. This
terminology will be used throughout the rest of this paper.

Another characterization of the software process domains
is provided in Conradi’s framework [36]. This framework
divides a software process into meta-process, process support
and production process. They are conceptually analogous to
Dowson’s framework’s process model, process enactment
and process performance domains respectively (as shown in
Table 1). The research reported in [36] gives enlightening
examples of the activities of each domain: modeling and
instantiating the process from the process model domain,
coding a method of a class during implementation from the
production process domain, and a tool to monitor the actual
state of process execution from the process support domain.

Conradi’s framework is used in [32] to clarify the nature
of PSEEs, as follows: A PSEE is supposed to provide not
only meta-process support, but also a flexible mechanism to

incorporate production process support. Activities like
instantiating process models, monitoring the state of
execution of the process, supporting the evolution of the
process due to change requirements, allowing to associate
agents with the process, and configuration management,
provide meta-process support. Production process support is
provided through a flexible integration tool and an interface
to agents showing which activities to perform at which time.

A. PSEE Requirements
PSEEs have been characterized by many features,

potentials and purposes. As mentioned earlier, software
processes are considered as pieces of software, so we refer to
these features as PSEE requirements. Based on Dowson’s
framework, some of the requirements of PSEEs are
described below:

Enactment Support: The existence of a natural and
simple way for implementing the process
definition/instantiation/enactment paradigm is one important
requirement of all PSEEs [32]. In order to support
enactment, an execution environment based on well-defined
PML(s) is required. Attaining a desired level of semi- or full
automation of process activities is a possible outcome of
process models enactment.

Software Team Distribution: The human-centered
essence of software processes makes it necessary for PSEEs
to support communication and coordination, not only
between user performers, but also between users and
automated process elements. Accordingly, the PML must
include facilities to represent the effect of the performers’
negotiation and interaction on the process state during
process enactment. In order to ensure consistency between
the states of the enactment and performance domains,
performers must give the PSEE frequent feedback on the
unexpected changes and decisions made about the software
process, as illustrated in Dowson’s framework (Fig. 1).

There are several works in the literature that discuss the
importance of cooperation and coordination support in
PSEEs. Referring to this feature as groupware support,
reference [32] organizes the whole issue at two levels: the
project level, and the organizational level: At the project
level, a PSEE should support coordination – defined as
workflow management between agents, and also
collaboration – described as a kind of coordination in which
agents need to share information; at the organizational level,
the goal is to use the potential of PSEEs to build a persistent
and reusable knowledge pool from the organizational
experiences gained throughout the software process.

The research reported in [30] reviews the features and
functionalities offered by SPADE, a well-known PSEE, to
support cooperation. It remarks that specific cooperation
policies are needed in the environment to effectively support
integration with other tools and products. A more accurate
boundary between coordination and cooperation is clarified
by [16]: It introduces cooperative software engineering and
defines cooperation as the manner of coordination in which
an agreement on shared goals should be reached before
development. In another work [17], collaboration is defined
as users’ awareness of each other’s actions and coordination

is defined as mechanisms, like automatic distribution of
work, aimed at avoiding excessive need for collaboration
when supporting groups of software engineers.

Consistency management: PSEEs manage not only
software processes, but also software products, which are
subject to frequent change. There are direct as well as
indirect dependencies between software products, so changes
may pass from one product to another. In order to maintain
consistency, PSEEs should properly handle these changes.
Two common methods among PSEEs to prevent
inconsistency have been presented in [25]: first, dependency
relationships which make it possible to trace the chain of
changes in software products; and second, preserving
consistency by defining predicates that examine consistency
conditions and trigger an exception in case of any
consistency violation. One of these logic-based formalisms
for managing consistency, which is based on modeling
cooperative processes, has been proposed in [37].

Process flexibility: For our purpose, we define flexibility
as the ability to modify software process activities
dynamically during process performance. PSEEs should
support this property to prevent the process enactment from
diverging from the process performance [20]. From the
viewpoint of the Dowson’s framework in Fig. 1, E » P
interaction is most effective only when PSEEs support
software process flexibility. This way it is possible to modify
and adapt the ordering of process actions during process
performance, which is not the case if the PSEE supports only
a fixed process model.

TABLE I. EQUIVALENT DOMAINS IN DOWSON’S AND CONRADI’S
CONCEPTUAL FRAMEWORKS

Dowson’s
Framework

Domain

Conradi’s
Framework

Domain

The Purpose
of the Domain

Process Model Meta-Process Process Modeling

Process Enactment Process Support Support and Control
Production Activities

Process
Performance

Production
Process

Actual Production
Activities

Process evolution: Like the E » P interaction, P » E
feedback is also another essential feature of the Dowson’s
framework that should be supported by PSEEs. Software
processes are performed by people, and human beings are
not pieces of machinery. So the actual process which
happens in the real world is subject to mistakes, oversights
and deviations from the “observed process” [20], which is
what the actual process is supposed to be. The observed
process is also known as the “official process” [27].
Widening the gap between actual and observed processes is a
potential consistency threat to process enactment and
performance. It is only possible through performers’
feedback to inform the PSEE of the process’s evolution, and
to meet this threat. PSEEs may also be used to improve the
software process, which in its turn leads to software products
improvement. Reference [32] suggests that PSESs are the
right environments for addressing the CMM key process
areas (KPAs) and facilitating process maturity improvement.

Modern Requirements: PSEEs should also be adapted
to keep pace with significant changes in the world of
software engineering and especially, the way software is
developed. Reference [15] highlights agile software
development and open source software development as the
most significant challenges for PSEEs in terms of software
process development. Dealing with agility and flexibility of
agile methods in terms of process deviation is anticipated as
the biggest challenge in developing “agile” PSEEs.
Maintaining the flexibility of open-source software
development while enforcing coordination processes has
been pointed out as the most challenging difficulty in
addressing open-source software development. Reference
[22] also identifies the weakness of PSEEs in supporting
issues such as security and rights to access shared artifacts as
an obstacle in the adoption of open-source software
development. Mobile software processes are another new
challenge in the domain of PSEEs [21]. These processes
include mobile process parts, and process participants with
uncertainty about the place and prerequisites of their
execution, mainly due to their mutable site allocation during
the process.

A number of less important requirements that should
typically be considered when implementing a PSEE have
been discussed in [28].

III. STATE OF THE ART
A large number of PSEEs have been introduced in the

literature, based on various concepts and approaches of
software technology. This means that process programming
has turned into a reality. Several reviews and classifications
of current PSEEs have been reported in the literature. We
will go through some of the most significant papers in this
section, and will track the trend of technical viewpoint
changes that have led to contemporary PSEEs. In the next
section we will point out some weaknesses of current PSEEs.

Ambriola et al. [28] offer a thorough assessment of some
contemporary PSEEs, based on a well-defined assessment
grid. The grid is composed of certain critical points and
challenging issues in the PSEE technology. All the
assessment grid entries are organized in three main sections:

Figure 1. Software process domains [35]

PML technology, PSEE architecture, and practical
experiences of the PSEE. The assessment is then conducted
based on the derived grid.

A more recent review on PSEEs has been reported in
[20], in which a group of eight PSEEs have been selected
and defined in terms of their objectives, PML features, and
architectural characteristics. Based on a selected set of
requirements for PSEEs, a comparative review of these
PSEEs has been performed.

Further reports on PSEEs can be found in [21] and [23].
The former gives a brief overview of the key concepts and
trends in the context of PSEEs. The latter is a more detailed
version which presents a quick history of PSEEs and makes
observations on future challenges in the field.

The research reported in [30] categorizes PSEEs into four
groups, according to the support that they offer to their users:
passive guidance, active guidance, process enforcement, and
process automation. The difference between passive and
active guidance is that in the first one, support is provided
only upon user request, while in the second one, the PSEE
may ask for user intervention on-demand. In process
enforcement, the user is asked to perform activities specified
by the PSEE, whereas in process automation, tasks are
performed without involving the user.

The research reported in [27] gives two other
classification criteria for PSEEs. The first one is to classify
them into proactive and reactive groups. Control and
initiation of the operations is performed by the environment
and by the user in each group respectively. The second one is
to arrange PSEEs into four groups with respect to the
paradigm used in the corresponding PML. One approach is
to extend conventional programming languages and adapt
them to the process programming needs. Another approach is
to use rule-based languages to define the software process.
Using preconditions, actions, and postconditions of rules, it
is possible to describe software process activities. State
machines are another powerful means for modeling the
software process. So in the third approach, automata-based
formalisms like Petri nets are extended to provide a practical
solution to software process modeling. Finally, it is also
possible to blend two or more distinct techniques and utilize
the combination to benefit from each technique’s
advantages; this is called the multi-paradigm approach.

Recently, the collaborative qualities of PSEEs are being
highlighted and emphasized more than other attributes [16,
17]. This trend depicts a more promising future for PSEEs,
based on the fact that approximately 70% of the software
developers’ time is consumed for collaborative tasks. The
research reported in [12] presents a classification framework
that organizes the different research areas on collaborative
software development.

Collaborative software development, when
geographically distributed, forms the paradigm of federated
PSEEs. The research reported in [31] provides a brief
introduction to the goals and motivations of federated
PSEEs. It also makes a list of open issues of the technology.
Efforts aimed at addressing these problems have already
been started; the research reported in [10] proposes a peer-to-
peer solution instead of the old client-server architectures for

cooperative development of software processes in highly-
dynamic environments.

Other works have focused on improving PSEE
technology by using new software concepts. For instance,
the research reported in [11] blames traditional software
concepts applied to PSEEs for the limited success of PSEEs
in the software industry. Agent-based PSEEs is the idea
proposed by the authors. Intelligence, autonomy and the
reasoning abilities of agents are utilized to manage software
development activities, and to act in different software
process phases, just as software developers do. Groups of
process agents, called process agent profiles, cooperate with
each other under a framework called the Management Net to
conduct process enactment.

A. A critique of current PSEEs
With serious rival technologies in the software process

industry, it seems that reconsiderations should be made as to
the scope and purpose of PSEEs. In this section, we will
examine some of the most serious weaknesses of current
PSEEs.

The most severe problems of PSEEs seem to be more
about their practicality rather than their practicability. In
other words, due to their complexity and inflexibility (that is,
their intrusiveness [24]), PSEEs are ignored or abandoned by
process engineers during process execution. Flexibility,
defined as tolerance for inconsistencies and process
deviations – mentioned earlier as one of the requirements of
PSEEs – is essential for these environments. To inject
flexibility into a PSEE’s design and resolve the problem of
strictness of process support in PSEEs, several mechanisms
have been proposed in [21]; examples include: concise
activity description at early phases of development, and
guidance offered by the environment upon user request.
However, flexible handling of deviations during software
process enactment is still a major research area [2, 3].

PSEEs also fail in human-related and creativity-involved
aspects of software development. As pointed out in [21],
software processes include parts that demand the creativity
of human minds; this should also be supported by PSEEs
along with other process parts. In order to effectively fulfill
human-related needs, PSEEs should contain flexible
mechanisms to support late changing requirements, emerging
and evolving technologies, and dynamic working
environments. Since human dimension support is a new field
of development in PSEE technology, it is open to further
research and enhancements.

In order to avoid making the same mistakes in the design
and development of future PSEEs, an enlightening
comparison has been reported in [27]. It makes a list of some
strategic decision points that should be considered when
designing a PSEE, defines extremes at each decision point,
and compares their technical effect on the PSEE.

IV. EVALUATION OF SELECTED PSEES
In this section, we have presented a review of the

significant aspects and distinguishing features of a set of
seven PSEEs which were introduced after 2003. As noted
before, earlier PSEEs have been comprehensively reviewed

in [20] and [28]. Each PSEE is briefly characterized in terms
of its applications (and thereby its prominent contributions),
as well as through an informative architectural diagram. A
comprehensive criteria-based evaluation is then performed
on the examined PSEEs, based on a criterion set that has
been developed as an important contribution of this research.
The evaluation results are then analyzed and discussed to
finalize the evaluation.

A. DOSDE Environment
DOSDE (Domain-Oriented Software Development

Environment) is the name of a PSEE which has been based
on the concept of employing domain knowledge during the
software process in order to support development activities
[19]. Domain-specific knowledge is the essential prerequisite
of the critical task of properly identifying software
requirements. In DOSDE, this knowledge is divided into:
1.the knowledge about the concepts of the application
domain, and 2.the knowledge about the typical tasks and
activities of the domain. Considering the need for generality
and reusability of the definition, this knowledge is captured
in the form of interrelated ontologies.

In order to cope with the complexity of the application
domain ontology, and also to facilitate its definition, the
ontology is divided into sub-ontologies. A sub-ontology is a
group of related domain concepts which share the same
semantic context. Application domain sub-ontologies are
constructed through the following phases: definition of the
purpose of the ontology, conceptualization, formalization
(ontology coding), and validation. On the other hand, task
ontologies, augmented by problem solving methods (PSMs),
aim at deepening the understanding of the users of the
domain tasks. While a task ontology merely conceptualizes
the corresponding task, one or more PSMs are associated
with the task to solve it.

The mentioned concepts are utilized in DOSDE
environment in assisting requirements elicitation and
documentation, and also the design activity. Use cases are
described in the form of task ontology and associated PSMs.
During design, data modeling is greatly facilitated in
DOSDE owing to a mapping definition between ontological
constructs and entity relationship diagrams. In addition,
DOSDE studies and stores domain-specific information by
extending various activities of the development process with
a sub-activity called domain investigation activity. Fig. 2
provides a visual representation of DOSDE’s underlying
concepts. Please note that the same legend applies to all the
subsequent figures.

B. VRPML Support Environment
A PML, called VRPML (Virtual Reality Process

Modeling Language) and the design of its support
environment are discussed in [13]. In VRPML, software
processes are generically specified as graphs. These graphs
are constructed from interlinked nodes, representing the
process activities, and arcs, indicating the control-flow of the
process. Different types of activity nodes are supported in
VPRML, including: general-purpose activity nodes, multi-
instance activity nodes, and meeting activity nodes. A start

node generates the initial control-flow signal, which
subsequently triggers activity nodes from top to bottom of
the graph. Decomposable transitions also enable conditional
branching of process control-flow. Two VPRML elements,
named merger and replicator, make it possible to
concurrently enact activity nodes. The language also
provides a macro node, which is a packaging mechanism to
enhance the readability of the graph.

The main components of the VPRML support
environment architecture, illustrated in Fig. 3, are briefly
discussed herein: Graph editor is a dedicated visual editor to
draw and modify the VPRML graphs. The graphs are then
translated into a ready-to-enact intermediate format by
compiler, named roadmap. Run-time interpreter not only
parses and interprets the roadmap, but also decides when to
fire activities on arrival of the control signal and interacts
with the resource manager to check for resource availability.
Runtime client retrieves activities and their resource
allocations from communication repository layer. To-do-list
manager has responsibility for managing the assigned
activities to a particular software engineer. Each activity
work context, including artifacts and tools required to
complete the activity, is generated and maintained by the
workspace manager. Communication repository layer is a
intermediate container for keeping assigned activities and the
control-flow signal. Finally, resource manager handles the
queries for resource allocation received from the runtime
interpreter and the workspace manager.

C. CASDE Environment
In order to effectively support software development
processes in general, and collaborative development activity
in particular, the architecture of a context-aware software
development environment, or CASDE, has been presented in
[9]. As inferred from the name, the context element has the
pivotal role in the proposed architecture. The context of an
entity, that contains state- and location-specific information
about the entity, makes it possible to share artifacts between
different participants. The key aim of CASDE is to support
collaborative features in software development.

CASDE is theoretically founded on the activity theory; it
thus supports collaborative activities in a three level
hierarchical structure, as identified by the activity theory: co-
ordinated level, co-operative level, and co-constructive level.
The co-ordinated level deals with routine flows of
interactions, and accentuates the individuals performing their
assigned activities and roles. The co-operative level focuses
on the problem of actors sharing a common object and
cooperating to achieve a shared objective. The context
element plays an integral part in providing synchronous
communication at the co-operative level. The co-constructive
level is placed at the top of the collaborative activity
hierarchy and involves interactions that concern re-
conceptualization and gradual evolution of the process.

The CASDE architecture is presented in Fig. 4. The
architecture follows the client-server model, and consists of
interconnecting modules at client-side as well as server-side.

Two distinctive modules of CASDE architecture are
wrapped legacy tools and awareness tools. Legacy tools can

be easily adopted in CASDE owing to the tools wrapping
mechanism. The local repository at client-side maintains
local versions of artifacts. Awareness tools update artifact
contexts and notify the developers of the changes.

D. Transforms Environment
According to its developers, Transforms is the first PSEE

dedicated to modeling and enactment of MDA processes, i.e.
model-driven software development processes which adopt
Model Driven Architecture concepts and employ model
transformation tools for building software-intensive systems
[6]. Since MDA specification does not, define a software
process [18], one main goal of the underlying concept of
Transforms is to fill the gap between MDA standards and a
clear-cut process definition for applying MDA concepts.
Unlike most MDA tools and environments, Transforms
focuses on all process design aspects during enactment,
rather than just on model transformations.

We have already mentioned SPEM as a standard notation
for process modeling. Based on a specialized set of SPEM

2.0 concepts, Transforms offers: (1) a meta-model for
defining and instantiating an MDA process extended from
certain SPEM concepts, and (2) a set of diagrams for
modeling the behavior and structure of the MDA process.
The incorporation of SPEM encourages interoperability and
interchangeability of models between model transformation
tools, which is the major weak point of most other MDA
environments. In Transforms, MDA-related particulars are
preferred to be defined at the metamodel layer (M2) instead
of the process model layer (M1) [6]; this way, distinctive
MDA process definitions (encompassing different features)
can be modeled in M1 and then enacted and used at the
process development layer (M0).

Fig. 5 shows the architecture of the Transforms
environment. The MDA process modeling module provides
a visual editor to modify the process’s structure and
behavior, and rule and profile editors to define new
transformation rules and UML profiles. On the other hand,
model transformations and the ability to monitor tasks and
artifacts are supported by MDA process enactment module.

E. SPACE Environment
Mainly targeted at medium-sized projects and small

software teams, SPACE (Semantic Process- and Artifact-
Oriented Collaboration Environment) is a conceptual meta-
model for creating and managing process models as well as
artifact models, and applying the models to support the core
and context activities of the software development process
[5]. Core and context activities are respectively oriented
towards the creation of the actual product, and project
planning and management. Artifact models are semantically
associated with process models to define the artifact
transformation chain throughout process execution, and also
to incorporate traceability into the process.

In order to tailor SPACE to the needs of small
organizations, dynamic and flexible pre-defined process
models should be defined and applied to the development
processes of these companies. Since SPACE is a domain-
independent meta-model, it has been adapted and applied to
software engineering based on a software platform called
SOP (Software Organization Platform), which encompasses
three fundamental components: Lifecycle Artifact and
Process Management, Knowledge Management, and
Stakeholder Collaboration. SOP 2.0 is a user-driven wiki-
based platform which implements SOP. The relationship
between SPACE, SOP and SOP 2.0 is depicted in Fig. 6.

F. The ADAMS System
Advanced Artifact Management System, or ADAMS, is

an artifact-based environment that integrates project and
artifact management features to support software engineering
activities during the entire software process lifecycle [14, 4].
Instead of adopting the common approach of process
definition/instantiation/enactment, ADAMS makes it
possible to define a project in terms of the artifacts to be
produced and the relationships among them. Configuration
management and traceability support for artifacts in the early
phases of software lifecycle, and fine-grained management
of artifacts which enables control and traceability of

Figure 3. VRPML Architecture (adapted from [13])

Figure 2. DOSDE concepts

independent elements in a file, are some of the distinct
advantages of ADAMS. ADAMS architecture, as show in
Fig. 7 is composed of several subsystems; each subsystem
has clearly-defined responsibilities, as follows: The resource
management subsystem implements a role-based access
control policy to provide administrative functionalities and
account management. The project management subsystem is
responsible for providing the management-related
functionalities around the pivotal role of artifacts. Tasks and
activities are represented by the artifacts that they are
supposed to create as their output. The project schedule is
also based on the start and due date of the artifacts.
Resources are assigned to artifacts, and specific roles are
assigned to resources according to their roles in developing
each artifact. The artifact management subsystem provides
fine-grained management and revision control of software
artifacts. The event and notification management subsystem
enhances traceability of artifacts through providing context-
awareness within the project. The quality management
subsystem guarantees the quality of artifacts using related
software engineering practices, such as: employing standard
templates, providing review checklists for artifacts, and
software inspection to identify defects and reduce rework.
Finally, synchronous and asynchronous collaborative tools,
such as internal chat, collaborative UML editors and internal
email, form the cooperative development subsystem.

G. Model-Driven Integrated approach
The approach introduced in [1] integrates the principles

and techniques of model-driven engineering and software
product lines to adopt a model-driven integrated approach to
software process definition, customization and execution.
The approach is implemented through using several well-
known software technologies; since it can be considered as a
PSEE (at least potentially), it has been selected herein.

Fig. 8 gives an overall understanding of the main
elements of the Model-Driven Integrated approach and their
respective relationships. As the first step, modeling and
definition of the software process model takes place, relying
on supporting EPF technologies [39], including the Unified
Method Architecture meta-model, EPF Composer tool, and
the method content; i.e., the process assets to be used as the
basis for composing a broad range of processes. The next
step concentrates on process variability management, which
is perhaps the most prominent advantage of this approach.
Here, a variability model is defined to specify existing
variabilities of a software process. The variability model
includes EMF models that specify which process fragments
(roles, tasks, etc.) represent variabilities (optional and
alternative) when regarding specific projects. Customized
versions of the software process are then derived from an
existing software process. This is done automatically by the
GenArch product derivation tool through selection of the
relevant features from an existing process. The two final
steps are straightforward: First, a model-to-model
transformation language called ATL, an implementation of
OMG Query/View/Transformation language, is used to
translate EPF specification to JPDL workflow specifications;
finally, this JPDL specification is converted to Java Server
Faces (JSF) by a model-to-text language named Acceleo,
which can be deployed and executed by the JBoss Business
Process Management (jBPM) workflow engine.

Figure 5. Transforms Architecture [6]

Figure 4. CASDE Architecture (adapted from [9])

Figure 6. Genealogy of SPACE and SOP Platforms

H. Evaluation of the selected PSEEs
Herein, we present a detailed criteria-based evaluation of

the selected PSEEs using an evaluation method adopted from
the Feature Analysis approach [29]. In our approach, each
evaluation criterion is further divided into several more
features. Each feature is given a weight, identifying the value
of the feature in comparison to other equivalent features.
Weight is a floating number ranging from 0.0 to 1.0, and the
sum of the weights of all the features related to one criterion
should equal 1.0. As in the Feature Analysis approach, we
differentiate between narrative and scale features. A feature
belongs to the narrative type if a PSEE can be simply
evaluated against that feature by a “0” or “1” response. A “1”
response means that the PSEE explicitly incorporates the
corresponding feature; while a “0” response means the
feature is not present in the PSEE. For instance, support for
traceability between artifacts is a narrative feature in table III
with a weight of 0.5, presented in the "Weight" column.

Evaluating a PSEE against some other features, on the
other hand, may necessitate defining a scale to accurately
evaluate the compliance degree of the PSEE to that scale
feature. Process definition support in table II is an example
of scale features which cannot be simply evaluated by a
"yes/no" response. Symbols N and S in the "Type" column,
respectively represent narrative and scale features in tables
II, III and IV. In addition, an extra index for scale features
associates one of the following scales with that feature:

Scale 1 (S1). Scale 1 includes 4 levels: 0/3: the PSEE
doesn’t mention the corresponding feature and thus, provides
no mechanism to support it; 1/3: the PSEE’s definition
merely highlights the corresponding feature importance
and/or provides guidelines/extension points to extend the
PSEE functionality to incorporate the feature; 2/3: the PSEE
partially supports the corresponding feature via other key
modules of the architecture, but no specific mechanism
aimed at the desired feature is defined in the PSEE
definition; 3/3: the PSEE totally supports the corresponding
feature and accentuates the mechanism(s) supporting the
feature, as a dedicated module of the PSEE architecture.

Scale 2 (S2). Scale 2 includes 3 levels: 0/2: the PSEE
doesn't explicitly cover any part of the corresponding feature
or paradigm; 1/2: the PSEE partially covers some parts of the

corresponding feature or paradigm; 2/2: the PSEE covers and
includes all parts of the corresponding feature or paradigm.

We hereby provide examples of employing the defined
scales in order to evaluate the reviewed PSEEs against scale
parameters: As seen in table V, the Transforms environment
is evaluated based on the process flexibility criterion,
resulting in a 2 / 3 mark. This is because flexibility is only
partially provided in Transforms through its meta-model
modification. As the second example, CASDE is given a
1 / 3 mark evaluating against process evolution criterion,
since process evolution is only mentioned at co-constructive
level of CASDE, which is not currently supported by
CASDE. It should be noted that both process flexibility and
process evolution support criteria are composed of only one
feature, as shown in table II. If the criterion is comprised of
more than one feature, the mark presented in the table entry
is the sum of the values resulting from evaluating the PSEE
against all the corresponding features. For example, consider
evaluating SPACE against the coverage criterion. Coverage
consists of two features associated with scale 2, as defined in
table IV. SPACE is given a 2/2 mark and a 1/2 mark for the
first and second features, respectively. Eventually, the
corresponding weights are multiplied by these marks
(2/2*2/3+1/2*1/3), resulting in the table entry (5/6).

The initial set of evaluation criteria have been derived
from PSEE requirements and the results of the critique
provided in the previous section. This strategy guarantees the
validity and effectiveness of the resulting evaluation criteria.
Accordingly, the extracted criteria have been organized into
three groups: 1.Evaluation criteria derived from PSEE
requirements, 2.Evaluation criteria derived from the critique
results, and 3.General software process evaluation criteria.

The final criterion set used here to evaluate PSEEs is
evolved and refined from the initial set. During the
evaluation, the count, granularity, type, and weight of the
criteria and features have been subject to refinement. For
example, interoperability was added as a criterion to general
evaluation criterion set, and tool support was added as a

Figure 7. ADAMS Architectue

Figure 8. The Model-Driven Integrated Approach overview
(adapted from [1])

feature to the process deviation support criterion, after the
evaluation of Transforms environment. While these features
are crucial to Transforms as a PSEE adopted for MDA
processes, they are also essential regarding a typical PSEE.
As another example, traceability, which can be efficiently
supported by the automation offered by a PSEE, was added
to general evaluation criteria after the evaluation of SPACE.
The scaling rules have also been evolved as one target of the
evolution process. For example, scale 2 was wholly added to
fit the evaluation of the coverage criterion. We have also
selected and adapted certain general evaluation criteria, such
as usability, from [7], which provides an analytical review of
Computer Aided Method Engineering (CAME) tools.

During the criteria definition and refinement process, we
have strived to keep the criteria general, precise,
comprehensive and balanced in order to satisfy the meta-
criteria of [34]. The final criteria, categorized in the three
mentioned groups, are shown in tables II, III and IV.

This review aims to address the need for a review on
modern PSEEs. The reviews reported in [20] and [28] were
conducted a decade ago; the PSEEs reviewed here had not
been introduced at that time. Using the matrix framework,
employing scaled features, and introducing evaluation
criteria that are related to modern software technologies, are
the distinguishing features of the present research.

TABLE II. EVALUATION CRITERIA DERIVED FROM PSEE
REQUIREMENTS

Criterion Name Corresponding Feature Type Weight

Enactment
Support

Process definition support S1 1
3

Process instantiation support S1 1
3

Process execution support S1 1
3

Software Team
Distribution

Coordination (Workflow Management)
Support S1 1

2

Collaboration (Information Sharing) Support S1 1
2

Consistency
Management

Consistency Preservation Mechanism
Support S1 1

1

Process Flexibility Dynamic Process Activities Modification
Support S1 1

1

Process Evolution Process Performer’s Feedback Mechanism
Support S1 1

1

Security Role-Based Access Control N 1
1

Mobility Mobility of Process Parts S1 1
1

TABLE III. EVALUATION CRITERIA DERIVED FROM THE RESULTS OF
THE CRITIQUE

Criterion Name Corresponding Feature Type Weight

Process
Deviations
Support

& Inconsistencies
Toleration

Concise activity description at early
development phases support N 1

5

Monitoring of process activities support S1 2
5

Offering guidance and support by environment
upon request support N 1

5

Tool Support for Handling Process Deviations N 1
5

Human
Dimension

Support

Late Changing Requirements support N 1
4

Process experience knowledge pool support S1 1
4

Usability S1 2
4

New Technology
Adoption

Adopting Modern Software Technologies in
PSEEs N 2

3

Introducing Conventional Software Concepts
to PSEEs N 1

3

TABLE IV. GENERAL SOFTWARE PROCESS EVALUATION CRITERIA

Criterion Name Corresponding Feature Type Weight

Coverage
Supporting Whole Generic Life Cycle S2 2

3

Supporting Umbrella Activities S2 1
3

Change
Management

Configuration Management N 1
2

Quality Management S2 1
2

Traceability
Traceability Between Artifacts Support N 1

2
Traceability Between Roles and Activities

Support N 1
2

Interoperability
Using a Standard PML N 2

3

Extension Points Support for Integrating Tools N 1
3

I. Analysis of the Evaluation Results
Table V summarizes the results of applying the

evaluation criteria to the reviewed PSEEs. The results can be
argued and used for two distinct purposes: First, they can be
used to compare the evaluated PSSEs, and to select an
appropriate PSEE in a specific usage context based on a set
of predefined requirements. Second, the evaluation results
can be used alongside the findings from the review to
identify recent trends in PSEE technology.

Normally, most of the PSEEs succeed in meeting the
conventional PSEE requirements to an acceptable extent.
Transforms and MD-Integrated are the only exceptions, in
that they fail to meet some of the most trivial requirements of
PSEEs. This is mainly due to the fact that they are still
incomplete. On the other hand, modern PSEE requirements,
namely security and mobility, are not addressed in most of
the current PSEEs. Also, PSEEs still fail in some of the
general evaluation criteria and the criteria derived from the
results of the critique, just as their predecessors did.

One growing trend among modern PSEEs, such as
SPACE, Transforms and the MD-Integrated, is the use of a
metamodel to define the process model and also to
instantiate and execute the process instance from the process
model. In this manner, they effectively support process
enactment through the employed
definition/instantiation/enactment paradigm.

ADAMS, unlike other reviewed PSEEs, adopts an
artifact-oriented approach to software process and does not
comply with the conventional paradigm of software process
definition/instantiation/enactment. Transforms and MD-
Integrated, which employ some of the more modern software
standards and technologies – such as SPEM, model-driven
development and EPF technologies – succeed in meeting
some of the more challenging criteria, such as process
deviation support and interoperability.

V. CONCLUSIONS AND FUTURE WORK
In this paper, a brief but comprehensive survey on the

current state of process-centered software engineering
environments was presented. We went through PSEE
requirements and demonstrated their capabilities and
shortcomings. A short critique was then conducted in the
hope of tackling the problem of limited acceptance of PSEEs
in the software industry. The results of this critique can be
employed to construct and examine new PSEEs in order to
avoid the pitfalls. We then selected a set of seven modern

PSEEs and provided a detailed review and criteria-based
analysis of each PSEE. We aim to further this research by
extending our evaluation framework and developing a
generic PSEE framework that can be instantiated to yield
custom PSEEs.

REFERENCES
[1] F.A. Aleixo, M.A. Freire, W.C. dos Santos, and U. Kulesza,

“Automating Variabitliy Management, Customization and
Deployment of Software Processes: A Model-Driven Approach”, pp.
372–387, Springer, 2011.

[2] M.A. Almeida da Silva, R. Bendraou, J. Robin, X. Blanc, “Flexible
Deviation Handling during Sofware Process Enactment”, 15th IEEE
International Enterprise Distributed Object Computing Conference
Workshops, 2011.

[3] M.A. Almeida da Silva, R. Bendraou, X. Blanc, M.P. Gervais, “Early
Deviation Detection in Modeling Activities of MDE Processes”,
LNCS, vol. 6395, pp. 303-317, Springer, 2010.

[4] A.D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Fine-grained
management of software artefacts: the ADAMS system”, Software:
Practice and Experience, 40(11):1007–1034, 2010.

[5] S. Weber, A. Emrich, J. Brocher, E. Ras, and Ö. Ünalan, “Supporting
Software Development Teams with a Semantic Process- and Artifact-
oriented Collaboration Environment”, in Workshop on Collaboration
and Knowledge Sharing in Software Development Teams
(SOFTEAM2009 at Software Engineering Conference),
Kaiserslautern, Germany, 2009.

[6] R. S. P. Maciel, B. C. Silva, and N. S. Rosa, “An Integrated Approach
for Model Driven Process Modeling and Enactment”, in XXIII
Brazilian Symposium on Software Engineering, 2009.

[7] A. Niknafs, R. Ramsin, “Computer-Aided Method Engineering: An
Analysis of Existing Environemnts”, LNCS, vol. 5074, pp. 525–540,
Springer, 2008.

[8] OMG. “Software Process Engineering Meta-model Specification”,
Version 2.0, (formal/08-04-01) (2008).

[9] T. Jiang, J. Ying, M. Wu, M. Fang, “An Architecture of Process-
centered Context-aware Software Development Environement”,
Proceedings of the 10th International Conference on Computer
Supported Cooperative Work in Design, IEEE, 2006.

[10] D. Balzarotti, C. Ghezzi, M. Monga, “Supporting Cooperative
Software Processes in a Decentralized and Nomadic World”, IEEE
Transactions On Systems, Man, And Cybernetics—Part A: Systems
And Humans, VOL. 36, No. 6, November 2006.

[11] X. Zhao, K. Chan, M. Li, “Applying Agent Technology to Software
Process Modeling and Process-Centered Software Engineering
Environments”, ACM Symposium on Applied Computing, 2005.

[12] A. Sarma, “A Survey of Collaborative Tools in Software
Development”, ISR Technical Report, UCI-ISR-05-3,March, 2005.

[13] K. Z. Zamli, N. A. Mat Isa, N. Khamis, “The Design And
Implementation Of The VRPML Support Environments”, Malaysian
Journal of Computer Science, Vol. 18 No. 1, June 2005, pp. 57-69.

[14] A.D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “ADAMS: An
artefact-based process support system”, Proceedings of the Seventh
International Conference on Software Engineering and Knowledge
Engineering, Canada, 31-36, 2004.

[15] J. C. Derniame, and F. Oquendo, “Key Issues and New Challenges in
Software Process Technology”, the European journal for the
informatics professional, Vol. V, NO. 5, October 2004.

[16] L. Liang, Y. Tang, W. Xiao, A. Feng, “The Literature Review of
Cooperative Software Engineering”, Proceedings of the 8th
international conference on computer supported cooperative work in
design, 648- 652, May 2004.

[17] P. Barthelmess, “Collaboration and Coordination in Process-Centered
Software Development Environments: a Review of the Literature”,
Information and Software Technology, 45 (2003) 911–928, 2003.

[18] I. Mukerji, and J. Miller, MDA Guide Version 1.0.1. OMG, 2003.
[19] K. M. de Oliveira, F. Zlot, A R. Rocha, G.H. Travassos, C. Galotta,

and C.S. de Menezess, “Domain-oriented software development
environment”, Journal of Systems and Software, 2003.

[20] S. ARBAOUI, J. C. DERNIAME, F. OQUENDO, H. VERJUS, “A
Comparative Review of Process-Centered Software Engineering
Environments”, Annals of Software Engineering, 14, 311–340, 2002.

[21] V. Gruhn, “Process-Centered Software Engineering Environments: A
Brief History and Future Challenges”. Annals of Software
Engineering, 14, 363–382, 2002.

[22] K. Z. Zamli, “Process Modeling Languages: A Literature Review”,
Malaysian Journal of Computer Science, Vol. 14, No. 2, 2001.

[23] G. Engels, W. Schafer, R. Balzer, V. Gruhn, “Process-Centered
Software Engineering Environments: Academic and Industrial
Perspectives”. Proceedings of ICSE’01, 671 - 673 2001.

[24] A. Fuggetta, “Software Process: A Roadmap”, The Future of
Software Engineering (FOSE 2000) in Conjunction with ICSE 2000,
Limerick, Ireland. ACM Press, June 2000.

[25] J. J. Chen, S. C. Chou, “Consistency Management in a Process
Environment”, The Journal of Systems and Software, 105-110, 1999.

[26] K. Pohl, K. Weidenhaupt, R. Domges, P. Haumer, M. Jark, R.
Klamma, “PRIME: Towards Process-Integrated Environments”,
ACM Transactions on Software Engineering and Methodology, 1999.

[27] G. Cugola, A. Fugetta, “Software Processes: a Retrospective and a
Path to the Future”, Software Processes: Improvement and Practice,
4(3), 100-104, 1998.

[28] V. Ambriola, R. Conradii, A. Fuggetta, “Assessing Process-Centered
Software Engineering Environments”, ACM Transactions on
Software Engineering and Methodology, 6(3), 283-328, 1997.

[29] B. Kitchenham, S. Linkman, D. Law, "DESMET: a methodology for
evaluating software engineering methods and tools". Computing and
Contrological Engineering Journal~8, 120-126 (1997).

TABLE V. EVALUATION OF THE SELECTED PSEES

[30] S. Bandinelli, E. Di Nitto, A. Fuggetta, “Supporting Cooperation in
the SPADE-1 Environment". IEEE Transactions on Software
Engineering, 22(2), December 1996.

[31] C. Basile, S. calanna, E. Di Nitto, A. Fuggetta, M. Gemo,
“Mechanisms and policies for federated PSEEs: basic concepts and
open issues”, Proceedings of the 5th European Workshop on Software
Process Technology, LNCS, 1996.

[32] E. Elmer, “Process-Centered Software Engineering Environments as
the Next Generation of CASE Tools”, Next Generation Case Tools
workshop 95, Feb. 1995.

[33] B. Nuseibeh, “Computer-Aided Inconsistency Management in
Software Development”, Technical report DoC, 1995.

[34] G.M. Karam, R.S. Casselman,“A cataloging framework for software
development methods”. IEEE Computer~26(2), 34—45, 1993.

[35] M. Dowson, “Consistency Maintenance in Process Sensitive
Environments”. In Proceedings of the Process Sensitive SEE
Architectures Workshop, 1992.

[36] R. Conradi, C. Fernström, A. Fuggetta, R. Snowdon, “Towards a
Reference Framework for Process Concepts”, Proceedings of
EWSPT-2, LNCS 635, Springer, pp. 3-17, 1992.

[37] I. Alloui, F. Oquendo, “Managing Consistency in Cooperating
Software Processes”, Lecture Notes in Computer Science, Volume
1487/1998, 92-99, 1992.

[38] L. Osterweil, “Software Processes Are Software too”, In Proceedings
of ICSE’87, ACM Press, 2-13, 1987.

[39] Eclipse Process Framework - http://www.eclipse.org/epf/.

