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Stability margins and model-free control: A first look

Michel FLIESSa,c and Cédric JOINb,c,d

Abstract— We show that the open-loop transfer functions
and the stability margins may be defined within the recent
model-free control setting. Several convincing computer
experiments are presented including one which studies the
robustness with respect to delays.

Keywords— Stability margins, phase margins, gain margins,
model-free control, intelligent PID controllers, linear systems,
nonlinear systems, delay systems.

I. I NTRODUCTION

Stability marginsare basic ingredients of control theory.
They are widely taught (see,e.g., [1], [2], [9], [10], [11],
[16], and the references therein) and are quite often utilized
in industry in order to check the control design of plants, or,
more exactly, of their mathematical models. The importance
of this topic is highlighted by the following fact: the literature
on theoretical advances and on the connections with many
case-studies contains several thousands of publications!This
communication relates stability margins to the recentmodel-
free control and the correspondingintelligent PIDs [4],
which were already illustrated by many concrete and varied
applications (see,e.g., the numerous references in [4], and,
during the last months, [3], [14], [17], [19], [20], [21], [24],
[29], [30]).

Remark 1.1:Let us emphasize that our model-free control
design and the corresponding intelligent controllers are most
easily implementable (see [4], [12]).
Our aims are the following ones:

1) Practitioners of stability margins and other frequency
techniques will recognize that their expertise still
makes sense within model-free control.

2) The influence of delays in model-free control is ana-
lyzed for the first time.

Let us briefly explain our viewpoint. Take a monovariable
system which is governed by unknown equations. Consider
the ultra-local model [4]

ẏ = F + αu (1)

where

• u andy are respectively the input and output variables,
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• F subsumes the unknown parts, including the perturba-
tions,

• α is a constant parameter which is chosen by the
engineer in such a way thatαu and ẏ are of the same
magnitude.

Remember that Equation (1) applies not only to systems with
lumped parameters,i.e., to systems which are described by
ordinary differential equations of any order, but also to sys-
tems with distributed parameters,i.e., to partial differential
equations (see,e.g., [13]). Close the loop with

u =
−Fest+ ẏ⋆ + F

α
(2)

such that
• Fest is a realtime estimate ofF (see Section II-C),
• y⋆ is a reference trajectory,
• the closed loop system is

ė+ F = Fest− F (3)

wheree = y⋆ − y is the tracking error,
• F is either a proportional controller

F = KP e (4)

or, sometimes, a proportional-integral controller

F = KP e+KI

∫

e (5)

such that
ė+ F = 0 (6)

exhibits the desired asymptotic stability. For instance
KP in Equation (4) should be positive.

Equations (4)-(6) and (5)-(6) yield the usual open-loop
transfer functions

T1OLP =
KP

s
(7)

and

T1OLPI =
1

s
× (KP +

KI

s
) =

KP

s
+

KI

s2
(8)

Their gain andphase marginsare by definitions those of the
systems defined by Equations (7) and (8). Note thatFest−F

in Equation (3) should be viewed as an additive disturbance.
Our paper is organized as follows. Basics of model-

free control are briefly revisited in Section II. Section III
computes some open loop functions for iPID’s, iPD’s, iPIs,
iPs as well as the corresponding stability margins. Several
computer experiments are examined in Section IV, including
the robustness with respect to delays. Concluding remarks
are developed in Section V.
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II. M ODEL-FREE CONTROL: A SHORT REVIEW1

A. The ultra-local model

Introduce theultra-local model

y(ν) = F + αu (9)

where

• the orderν ≥ 0 of derivation is a non-negative integer
which is selected by the practitioner,2

• α ∈ R is chosen by the practitioner such thatαu and
y(ν) are of the same magnitude,

• F represents the unknown structure of the control
system as well as the perturbations.

B. Intelligent controllers

1) Generalities:Close the loop with respect to Equation
(9) via the intelligent controller

u =
−Fest+ y∗(ν) + F(e)

α
(10)

where

• Fest is a realtime estimate ofF ,
• y∗ is the output reference trajectory,
• e = y∗ − y is the tracking error,
• F(e) is a functional of e such that the closed-loop

system
e(ν) + F(e) = Fest− F (11)

exhibits a desired behavior. If, in particular, the estima-
tion is perfect,i.e., Fest = F , then

e(ν) + F(e) = 0 (12)

should be asymptotically stable,i.e., limt→+∞ e(t) = 0.

2) Intelligent PIDs: If ν = 2 in Equation (9),i.e.,

ÿ = F + αu (13)

Close the loop via theintelligent proportional-integral-
derivative controller, or iPID,

u =
−Fest+ ÿ∗ +KP e+KI

∫

e+KDė

α
(14)

whereKP , KI , KD are the usual tuning gains. Combining
Equations (13) and (14) yields

ë+KDė +KP e +KI

∫

e = Fest− F

KI = 0 in Equation (14) yields theintelligent proportional-
derivative controller, or iPD,

u =
−Fest+ ÿ∗ +KP e+KDė

α
(15)

Such an iPD was employed in [3].

1See [4] for more details.
2The existing examples show thatν may always be chosen quite low,

i.e., 1, or 2. Most of the timesν = 1. The only concrete example until now
with ν = 2 is provided by the magnetic bearing [3], where the friction is
negligible (see the explanation in [4]).

If ν = 1 in Equation (9), we recover Equation (1).
The loop is closed by theintelligent proportional-integral
controller, or iPI,

u =
−Fest+ ẏ∗ +KP e+KI

∫

e

α

KI may often be set to0. It yields theintelligent proportional
controller, or iP,

u = −
−Fest+ ẏ∗ +KP e

α

C. Estimation ofF

Assume thatF in Equation (9) may be “well” approxi-
mated by a piecewise constant functionFest. According to
the algebraic parameter identification developed in [7], [8],
rewrite, if ν = 1, Equation (1) in the operational domain
(see,e.g., [31])

sY =
Φ

s
+ αU + y(0)

whereΦ is a constant. We get rid of the initial condition
y(0) by multiplying both sides on the left bydds :

Y + s
dY

ds
= −

Φ

s2
+ α

dU

ds

Noise attenuation is achieved by multiplying both sides on
the left by s−2. It yields in the time domain the realtime
estimate

Fest(t) = −
6

τ3

∫ t

t−τ

((τ − 2δ)y(δ) + αδ(τ − δ)u(δ)) dδ

whereτ > 0 might be “small”.
Remark 2.1:As in our first publications on model-free

control, Fest(t) might also be obtained by estimating the
noisy derivative ofy (see [5], and [18], [15]).

III. O PEN-LOOP TRANSFER FUNCTIONS

A. Definitions

Assume that in Equation (10)F may be defined by a
transfer functionTF. Then Equation (12) yields the transfer
function

TνOL =
TF

sν
(16)

which is called theopen-loop transfer functionof the system
defined by Equations (9) and (10). Ifν = 2, and with an
iPID, the open-loop transfer function (16) of the system
defined by Equations (13) and (14) becomes

T2OLPID =
KP

s2
+

KI

s3
+

KD

s
(17)

It becomes for an iPD:

T2OLPD =
KP

s2
+

KD

s
(18)

If ν = 1, and with an iPI, the open-loop transfer function
of the system defined by Equations (1) and (4) or (5),
the corresponding open-loop transfer functions were already
given by Equations (7) and (8).



Remark 3.1:Notice that T1OLPI and T2OLPD are ex-
pressed by Formulae (8) and (18) , which are identical if
we exchangeKP , KI with KI , KD.

B. Stability margins

1) iP: Settings = jω in Equation (7), where

• ω is a non-negative real number,
• j =

√
−1,

gives T1OLP (jw) = KP

jω = −jKP

ω . SinceKP > 0 and
ω ≥ 0, we obtain the following margins:

PhaseMargin1OLP = 90◦

and

GainMargin1OLP = +∞

2) iPI: Setting as aboves = jω in Equation (8) yields
a complex quantity where the imaginary part is−jKP

ω .
Therefore

GainMargin1OLPI = +∞

and

PhaseMargin1OLPI = tan−1

(

KPωm

KI

)

where

ωm =

√

K2
P +

√

K4
P + 4K2

I

2

is such that the module ofT1OLPI is equal to1. A phase
margin of45◦, for instance, is obtained by setting

ωm =
KI

KP

KP andKI are then related by the equation

KI

KP
=

√

K2
P +

√

K4
P + 4K2

I

2

3) iPD: It suffices according to Remark 3.1 to replace,
in the expressions related to the iPIs in Section III-B.2,KP

andKI respectively byKD andKI .
4) iPID: It follows from Equation (17) that the stability

margins necessitates here the famous Cardano formulae
which give the roots of third degree algebraic equations (see,
e.g., [28]). A single root is moreover real. Then

GainMargin2OLPID =
KI

KDKP

and

PhaseMargin2OLPID = tan−1

(

KDω2
m −KI

KPwm

)

where

ωm =

√

A+
B

C
+D

A, B, C, D are given by

A =
(

K2
I

2
+

K6
P

27
−

K2
P (2KIKP −K2

D)

6

)2/6

−
(

K2
D

3
+

K4
P

9
−

2KIKP

3

)3/6

+

(

K2
I

2
+

K6
P

27
−

K2
P (2KIKP −K2

D)

6

)1/3

B =
K2

D

3
+

K4
P

9
−

2KIKP

3

C =
(

K2
I

2
+

K6
P

27
−

K2
P (2KIKP −K2

D)

6

)2/3

−
(

K2
D

3
+

K4
P

9
−

2KIKP

3

)1/6

+

(

K2
I

2
+

K6
P

27
−

K2
P (2KIKP −K2

D)

6

)1/3

(19)

D =
K2

P

3

Remark 3.2:Since model-free control encompasses to
some extent nonlinear control, the above calculations yield
a kind of nonlinear generalization of stability margins (see
Section IV-A). Remember that the stability margins for non-
linear systems have been studied in a number of publications
(see,e.g., [25]).

IV. N UMERICAL ILLUSTRATIONS

The equations of the systems considered below are only
given for achieving of course computer simulations.

A. A nonlinear academic example

1) Description and control:Consider the stable single-
input single-output system

ÿ + 4ẏ + 3y = 3u̇u2 + 2u3 (20)

Our ultra-local model is

ẏ = F + u (21)

i.e., ν = 1, α = 1 in Equation (9). We employ the iP
controller (4) whereKP = 1. The gain and phase margins
are given by Section III-B.1, as in many concrete systems.

2) Some computer experiments:According to the above
control scheme, a “good” estimation ofF in Equation (21)
plays a key rôle. Equations (20) and (21) yield the following
expression which is used for comparison’s sake.

F =
3u̇u2 + 2u3 − 4u− ÿ − 3y

4

Figure 1 displays excellent results with a sampling time
intervalTest= 0.01s for estimatingF .3 The results shown in

3Test = 0.01s is also equal to the sampling time period.



Figures 2 and 3 are respectively obtained forTest = 1s and
Test = 10s. The damages are visible. Figure 3 demonstrates
that the results withTest = 10s cannot be exploited in
practice.

Remark 4.1:Let us emphasize that corrupting noises are
neglected here for simplicity’s sake.

B. A linear academic case

1) Description and control:Consider the unstable single-
input single-output linear system

2ẏ − 3y = u (22)

Equation (21) is again used as an ultra-local model. The loop
is closed via the iP controller (4) with some suitable gainKP .
As above, in Section IV-A.1, the gain and phase margins are
given by Section III-B.1. Stability is therefore ensured with a
good robustness. Figure 4 displays simulations withKP = 1,
a sampling time periodTe = 0.01s, and an additive Gaussian
corrupting noiseN(0, 0.03) on the output. The trajectory
tracking is excellent.

2) Robustness with respect to a delayed control:Introduce
a time lagτ in the control transmission. The transfer function
of (22) is no more

1

2s− 3

but
e−τs

2s− 3

Remark 4.2:Such delays, which might occur in practice,
have already been studied in the literature (see,e.g., [22],
[23], [27]).

Remark 4.3:Systems with transfer functions of the form

T (s)e−τs

where T ∈ R(s) is a rational function, are according to
[6] the most usual linear delay single-input single-output
systems. It is also well known that they are used for
approximating “complex” nonlinear systems without delays
(see,e.g., [26]). It has been emphasized in [4] that such
approximations are becoming useless when applying model-
free control design.

Assume that we are doing the same computations as in
Section IV-B.1, and, in particular, thatF is estimated with
the techniques presented in Section II-C. It amounts saying
that we are in fact replacing Equation (21) by

y(t) = F + u(t− τ)

The open loop transfer function becomes therefore

T1τOLP =
KP e

−τs

s

Solving the equation

T1τOLP (jω) = −1

yields

τmax =
π

2KP

i.e., the maximum admissible time lag for stability.
3) Computer experiments with delay:Figure 5 displays

an excellent stability obtained with a time lagτ = 0.2s and
KP = 1. Thenτmax ≃ 1.57s.

With the “high” gainKP = 10, τmax ≃ 0.16s. Stability is
then lost as shown by Figure 6.

V. CONCLUSION

We have demonstrated that the calculations related to
stability margins may be easily extended to our recent model-
free techniques, where they provide some new insight on the
robustness with respect to delays. As already discussed in [4],
delays, which remain one of the most irritating questions in
the model-free setting, do necessitate further investigations.4

The key point nevertheless in order to ensure satisfactory
performances is in our opinion a “good” estimate ofF . This
question, which

• has been summarized in Section II-C,5

• might become difficult with very severe corrupting
noises and/or a poor time sampling,

seems unfortunately to be far apart from the stability margins
techniques.

REFERENCES
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