q—
—i

Stability margins and model-free control: A first look

Michel FLIESS-¢ and Cédric JOIRIS4

Abstract—We show that the open-loop transfer functions « F' subsumes the unknown parts, including the perturba-
and the stability margins may be defined within the recent tions,
model-free control setting. Several convincing computer « a is a constant parameter which is chosen by the
experiments are presented including one which studies the . . .
robustness with respect to delays. engineer in such a way that andy are of the same
magnitude.

Keywords— Stability margins, phase margins, gain margins, Remember that Equatiohl(1) applies not only to systems with

(O model-free control, intelligent PID controllers, linear systems, |ymped parameters.e., to systems which are described by
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nonlinear systems, delay systems. ordinary differential equations of any order, but also te-sy

tems with distributed parametetisg., to partial differential

equations (see.g, [13]). Close the loop with
Stability marginsare basic ingredients of control theory. —Feqt "+ 3
es

They are widely taught (see.g, [1], [2], [9], [10], [11], w=—"— (2)
[16], and the references therein) and are quite often atlliz @

in industry in order to check the control design of plants, orSUCh thaj[ . ) .

more exactly, of their mathematical models. The importance * FeSF is a realtime est!mate of' (see Sectiof II-C),
of this topic is highlighted by the following fact: the liure ~ * ¥~ IS @ reference trajectory,

on theoretical advances and on the connections with many® the closed loop system is

case-studies contains several thousands of publicafidmis! e+ F = Fest— F 3)
communication relates stability margins to the recantdel-

free control and the correspondinitelligent PIDs [4],
which were already illustrated by many concrete and varied °

|. INTRODUCTION

wheree = y* — y is the tracking error,
§ is either a proportional controller

applications (seeg.g, the numerous references in [4], and, § = Kpe 4)
?Zugr]ln?stof];a last months, [3], [14], [17], [19], [20], [21], 4%, or, sometimes, a proportional-integral controller
Remark 1.1:Let us emphasize that our model-free control F=Kpe+ Kf/e (5)
design and the corresponding intelligent controllers aostm
easily implementable (see [4], [12]). such that
Our aims are the following ones: e+5=0 (6)
1) Practitioners of stability margins and other frequency  exhibits the desired asymptotic stability. For instance
techniques will recognize that their expertise still Kp in Equation [%) should be positive.
makgs sense within mod_el-free control. _ Equations [[4)i6) and[15}6) vyield the usual open-loop
2) The influence of delays in model-free control is anaggnsfer functions
lyzed for the first time. %
Let us briefly explain our viewpoint. Take a monovariable TioLp = - (7
system which is governed by unknown equations. Consider 5
the ultra-local model [4] and
- 1 K K K
(1) TioLpr = s (Kp+ ?I) = TP + 5_21 (8)
where Their gain andphase margingre by definitions those of the

« u andy are respectively the input and output variablessystems defined by Equatios (7) ahH (8). Note fhat— F
) in Equation [() should be viewed as an additive disturbance.
¢ LIX (CNRS, UMR 7161), Ecole polytechnique, 91128 Palaiseau, Our paper is organized as follows. Basics of model-
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Il. M ODEL-FREE CONTROL A SHORT REVIEW If v = 1 in Equation [[9), we recover Equatiof] (1).
A. The ultra-local model The loop is closed by théntelligent proportional-integral

controller, or iPlI,
Introduce theultra-local model

N —Fest+ y* +KP€+KIf€
«

y) = F +au 9 u

where K; may often be set t0. It yields theintelligent proportional
« the orderv > 0 of derivation is a non-negative integer controller, or iP,
which is selected by the practitiorﬁar, —
« a € R is chosen by the practitioner such that and y—  —Testty” 4 Kpe
y™) are of the same magnitude, a
o F' represents the unknown structure of the contrat, Estimation ofF
system as well as the perturbations.

Assume thatF" in Equation [9) may be “well” approxi-
B. Intelligent controllers mated by a piecewise constant functidhs. According to
the algebraic parameter identification developed in [7], [8
rewrite, if v = 1, Equation [(1) in the operational domain
(see,e.q, [31])

1) Generalities: Close the loop with respect to Equation
@) via theintelligent controller

—Fest+ y*(y) + g(e)

®
u - (10) sY = — +aU +y(0)
where where ® is a constant. We get rid of the initial condition
o Festis a realtime estimate af’, y(0) by multiplying both sides on the left bg‘;:
« y* is the output reference trajectory, dy P dU
o e =y* —y is the tracking error, Y+s—=—5+a—
. . ds 52 ds
« §(e) is a functional ofe such that the closed-loop C : L .
system Noise attenantlon is achl_eved b)_/ multlply|r_19 both S|d§s on
) P F 17y the left by s™=. It yields in the time domain the realtime
e +3(e) = Fes D estimate
exhibits a desired behavior. If, in particular, the estima- 6 [
tion is perfect,.e., Fest= F, then Fes(t) = —— ((T = 20)y(8) + ad(r — 6)u(d)) do
t—T1
e +3(e) =0 (12)  wherer > 0 might be “small’.

. . o Remark 2.1:As in our first publications on model-free
ShOUI(_j be asym[.)totmally s_tabiee., h_mHJro‘_’ e(t) = 0. control, Fes(t) might also be obtained by estimating the
2) Intelligent PIDs: If v = 2 in Equation [9),i.e., noisy derivative ofy (see [5], and [18], [15]).

(13) IIl. OPEN-LOOP TRANSFER FUNCTIONS

Close the loop via theintelligent proportional-integral- A. Definitions

derivative controlley or iPID, Assume that in Equatio (JL0F may be defined by a
- . ransfer functi . Then E ion[(12) yields the transfer
_*Fest+y*+er+K1fe+KDe transfer functiorl; en Equation[(12) yields the transfe

u (14) function T
< Tyor = —> (16)
where Kp, K1, Kp are the usual tuning gains. Combining $ ]
Equations[(IB) and(14) yields which is called theopen-loop transfer functioof the system
defined by Equationd{9) an@_{10). #f = 2, and with an
é+ Kpé+ Kpe +K1/e = Fpsi— F iPID, the open-loop transfer functiof (16) of the system
defined by Equation$ (13) and {14) becomes

K = 0. in Equation m) yields théntelligent proportional- Kr K1 Kp
derivative controlley or iPD, Teorpip = =t a T (17)
w= —Festt i +QKP6 + Kpe (15) It becomes for an iPD:
Such an iPD was employed in [3]. TrorLpp = % + % (18)
1See [4] for more details. If v =1, and with an iPI, the open-loop transfer function

2The existing examples show that may always be chosen quite low, of the system defined by Eduatio 1) al 4) [or (5
i.e, 1, or 2. Most of the timess = 1. The only concrete example until now Y y =94 ng ( ) id ( ) ( )'

with v = 2 is provided by the magnetic bearing [3], where the frictisn i the correspond?ng open-loop transfer functions were dyea
negligible (see the explanation in [4]). given by Equationd{7) andl(8).



Remark 3.1:Notice thatTiorpr and Toporpp are ex- A, B, C, D are given by
pressed by Formulag](8) and {18) , which are identical if

we exchangdlp, K; with K;, Kp. A= o/
K} | K}  KPQKKp—K}) /
B. Stability margins 2 27 6
1) iP: Settings = jw in Equation [[7), where B (K_,% N Kp QKIKP)3/6
« w is a non-negative real number, 3 9 3
e j=v-1 (Kt K} KPQKKp - K}) e
gives Tiorp(jw) = £2 = —jEE Since Kp > 0 and 2 27 6
> 0, we obtain the following margins:
s I 5o Kb Kb 2K
PhaseMargip, ; p = 90° 3 9 3
C=
and 6 2 2\ 2/3
GainMargin,, p = +o© K7} K _ KpQK(Kp - Kp)
2 o7 6
2) iPI: Setting as above = ju{ in Equation [IB} yields % K4 | 2KKp 1/6 (19)
a complex quantity where the imaginary part4sj% T - 3
Therefore 5 6 5 9\ 1/3
GainMargin o p; = +00 (% K_ KP(QKTIG(P — KD))
and 9
K
. Kpwn, — P
PhaseMargip, ; p; = tan™* ( L > D==
! Remark 3.2:Since model-free control encompasses to
where some extent nonlinear control, the above calculationglyiel
K2 + K% T 4K? a kind of nonlinear generalization of stability marginsgse
Wy, = L 5 L ! Sectior TV-A). Remember that the stability margins for non-

linear systems have been studied in a number of publications
is such that the module df oL ps is equal tol. A phase (see,e.g, [25]).
margin of45°, for instance, is obtained by setting IV, NUMERICAL ILLUSTRATIONS
Wiy = Kr The equations of the systems considered below are only
Kp given for achieving of course computer simulations.

Kp and K are then related by the equation A. A nonlinear academic example

1) Description and control:Consider the stable single-
input single-output system

K \/ K} + Kp +4K3
Kp 2
i+ 49 + 3y = 3uu® + 2u3 (20)
3) iPD: It suffices according to Remafk 8.1 to replace,
in the expressions related to the iPls in Seclion IIBk3;  Our ultra-local model is
and K.I respectively byK p and K_I' - j=F+u 1)
4) iPID: It follows from Equation [(1]7) that the stability
margins necessitates here the famous Cardano formule®, v = 1, @ = 1 in Equation [8). We employ the iP
which give the roots of third degree algebraic equations,(secontroller [4) whereK'p = 1. The gain and phase margins
e.g, [28]). A single root is moreover real. Then are given by Section IlI-Bl1, as in many concrete systems.
2) Some computer experimentaccording to the above

GainMargin,; p;p = K control scheme, a “good” estimation &f in Equation [(21L)

KpKp plays a key role. Equations (20) afid)(21) yield the follagvin

and expression which is used for comparison’s sake.
2 3au? 4+ 2ud —4u— 4 — 3
PhaseMargig,; p;p, = tan™! (M) F= 1 =
prm
Figure[1 displays excellent results with a sampling time

where interval Tes; = 0.01s for estimatingt”H The results shown in

/ B
Wi = ([ A+ 6 +D 3Test= 0.01s is also equal to the sampling time period.



Figured 2 and3 are respectively obtained Tog; = 1s and yields

Test = 10s. The damages are visible. Figlile 3 demonstrates oo T
that the results withTess = 10s cannot be exploited in " 9Kp
practice. .

Remark 4.1:Let us emphasize that corrupting noises are®: the maximum adr_n|SS|bIe time lag fqr stab|I|ty._
neglected héré for simplicity’s sake 3) Computer e_x_perlments Wlth delqﬁgure[} displays
' an excellent stability obtained with a time lag= 0.2s and
Kp=1. Thentmax ~ 1.57s.
With the “high” gain Kp = 10, Tmax =~ 0.16s. Stability is
then lost as shown by Figuké 6.

B. A linear academic case

1) Description and control:Consider the unstable single-
input single-output linear system
V. CONCLUSION

20 =3y =u (22) We have demonstrated that the calculations related to

Equation[[21L) is again used as an ultra-local model. The loggability margins may be easily extended to our recent model
is closed via the iP controlleF](4) with some suitable giip. ~ free techniques, where they provide some new insight on the
As above, in Sectiof IV=Al1, the gain and phase margins afébustness with respect to delays. As already discussddiin
given by Sectiofi II-B.1L. Stability is therefore ensureda delays, which remain one of the most irritating questions in
good robustness. Figure 4 displays simulations iith = 1, the model-free setting, do necessitate further inveshtigdﬂ
a sampling time period, = 0.01s, and an additive Gaussian The key point nevertheless in order to ensure satisfactory
corrupting noiseN (0,0.03) on the output. The trajectory Performances is in our opinion a “good” estimatefaf This
tracking is excellent. question, which

2) Robustness with respect to a delayed contiioiroduce « has been summarized in Sectlon IBC,
atime lagr in the control transmission. The transfer function « might become difficult with very severe corrupting

of ([22) is no more noises and/or a poor time sampling,
1 seems unfortunately to be far apart from the stability nreggi
25 —3 techniques.
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Fig. 1: Test= 0.01s
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Fig. 2: Test= 1s
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