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Performance Analysis and Coherent Guaranteed Cost Controlfor
Uncertain Quantum Systems

Chengdi Xiang, Ian R. Petersen and Daoyi Dong

Abstract— This paper presents several results on perfor-
mance analysis for a class of uncertain linear quantum systems
subject to either quadratic or non-quadratic perturbation s
in the system Hamiltonian. Also, coherent guaranteed cost
controllers are designed for the uncertain quantum systemsto
achieve improved control performance. The coherent controller
is realized by adding a control Hamiltonian to the quantum
system and its performance is demonstrated by an example.

I. INTRODUCTION

Recent years have seen a rapid development of quantum
technology and consequently there has been a considerable
amount of research focusing on the area of quantum feedback
control systems; e.g., see [1]-[7], [10]-[12]. In this research,
robustness plays a vital role; e.g., see [5], [11], [12]. Several
robust control methods that are widely used in classical
systems have been adopted in quantum control areas. For
example,H∞ control theory has been used to solve a robust
feedback controller synthesis problem for quantum systems
[5]. A transfer function approach has also been used to anal-
yse robustness in the feedback control of quantum systems
[11], [12]. The small gain theorem has been used to analyse
the stability and robustness of quantum feedback networks
[14]. In this paper, we extend some results in classical control
on system performance analysis and guaranteed cost control
design to quantum systems.

A majority of existing papers in quantum feedback control
only consider the case where the controller is a classical
system. That is, the controller may be implemented via
analog or digital electronics and quantum measurements are
involved. However, some recent results have shown that the
controller itself can be a quantum system, which is often
referred to as coherent quantum control [5], [11], [12], [14],
[15]. The advantage of using coherent quantum control is
its ability to achieve improved system performance, since
quantum measurements inherently involve the destruction of
quantum information. Such controllers are often defined by
linear quantum stochastic differential equations (QSDEs)and
require physical realizability conditions so that they represent
physically implementable systems; e.g., [5], [15], [16]. The
coherent quantum controller, designed in this paper uses
the framework involving triples(S,L,H), where S is a
scattering matrix,L is a vector of coupling operators and
H is a Hamiltonian operator [7]. The matrixS, together
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with the vectorL, specifies the interface between the system
and the fields and the parameterH describes the self-energy
of the system. To control such a quantum system, we add a
controller Hamiltonian to the system. In this approach, we
do not need to consider physical realizability conditions for
the controller system, since a triple(S,L,H) automatically
represents a physically realizable quantum system. This
(S,L,H) paramerization for open quantum systems is used
in some recent papers, e.g., see [4], [5], [6] and [13], but
few controller design methods have been established based
on the(S,L,H) approach.

The paper [4] presents conditions of dissipativity and
stability for this class of quantum systems. Then, the paper
[1] built on the result of [4] to provide stability conditions
for a class of uncertain quantum systems subject to unknown
perturbations. Based on [6] and [4], we extend the guaranteed
cost control method to the quantum domain and provide a
performance guarantee for the given system when the system
Hamiltonian is in the form ofH = H1 + H2, whereH1

is a known nominal Hamiltonian andH2 is a perturbation
Hamiltonian. Furthermore, motivated by [8] and [9], we add
a quantum controllerH3 in the system Hamiltonian of the
given system not only to guarantee that the system is stable
but also to obtain an adequate level of performance.

We begin in Section II by presenting the general class
of uncertain quantum system models under consideration.
In particular, we specify the underlying systems as linear
quantum systems. In Section III, we present a class of
quadratic perturbation Hamiltonians and a general class of
non-quadratic perturbation Hamiltonians. In Section IV, we
present the performance analysis problem for the given
systems in terms of a strict bounded real condition. In Section
V, we add a quantum controller to the original system to
achieve stability and a guaranteed performance level. In
Section VI, we provide an example to illustrate the theory
which has been developed in this paper. Conclusions are
presented in Section VII.

II. QUANTUM SYSTEMS

The open quantum systems under consideration are de-
fined by parameters(S,L,H) where the system Hamiltonian
is decomposed asH = H1 + H2. Here H1 is a known
nominal Hamiltonian andH2 is a perturbation Hamiltonian
contained in a specified set of HamiltoniansW ; e.g., [1], [4]
and [7]. We define the corresponding generator operator

G(X) = −i[X,H ] + L(X) (1)
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whereL(X) = 1
2
L†[X,L] + 1

2
[L†, X ]L. Here, [X,H ] =

XH−HX describes the commutator between two operators
and the notation† refers to the adjoint transpose of a vector
of operators.H1 andH2 are two self-adjoint operators on
the underlying Hilbert space. By introducing a quantum
stochastic differential equation, the Heisenberg evolution
X(t) of an operatorX is defined by the triple(S,L,H)
together with the corresponding generators [4]. The results
presented in this paper will build on the following results
from [3].

Lemma 1: [3] Consider an open quantum system defined
by (S,L,H) and suppose there exist non-negative self-
adjoint operatorsV andW on the underlying Hilbert space
such that

G(V ) +W ≤ λ (2)

whereλ is a real number. Then for any plant state, we have

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt ≤ λ. (3)

HereW (t) denotes the Heisenberg evolution of the operator
W and 〈·〉 denotes quantum expectation; e.g., see [3] and
[4].

In this paper, we consider nominal systems corresponding
to linear quantum systems. We assume thatH1 is in the
following form

H1 =
1

2

[

a† aT
]

M

[

a
a#

]

(4)

where M ∈ C
2n×2n is a Hermitian matrix and has the

following form with M1 = M †
1 andM2 = MT

2

M =

[

M1 M2

M#
2 M#

1

]

. (5)

Herea is a vector of annihilation operators on the underlying
Hilbert space anda# is the corresponding vector of creation
operators. In the case of matrices, the notation† refers to
the complex conjugate transpose of a matrix. In the case
of vectors of operators, the notation# refers to the vector
of adjoint operators and in the case of complex matrices,
this notation refers to the complex conjugate matrix. The
commutation relations between annihilation and creation
operators are described as follows
[
[

a
a#

]

,

[

a
a#

]†
]

=

[

a
a#

] [

a
a#

]†

−
(
[

a
a#

]# [

a
a#

]T
)T

= J
(6)

whereJ =

[

I 0
0 −I

]

[6].

The coupling vectorL is assumed to be of the form

L =
[

N1 N2

]

[

a
a#

]

(7)

whereN1 ∈ Cm×n andN2 ∈ Cm×n. We also write
[

L
L#

]

= N

[

a
a#

]

=

[

N1 N2

N#
2 N#

1

] [

a
a#

]

. (8)

We consider a self-adjoint ”Lyapunov” operatorsV of the
form

V =
[

a† aT
]

P

[

a
a#

]

(9)

whereP ∈ C2n×2n is a positive definite Hermitian matrix
of the form

P =

[

P1 P2

P#
2 P#

1

]

. (10)

We then consider the set of non-negative self-adjoint
operatorsP defined as

P =

{

V of the form(9) such thatP > 0 is a
Hermitian matrix of the form(10)

}

. (11)

III. PERTURBATIONS OF THE HAMILTONIAN

A. Quadratic Hamiltonian Perturbations

For the set of non-negative self-adjoint operatorsP and
given real parametersγ > 0, δ ≥ 0, a particular set
of perturbation HamiltoniansW1 is defined in terms of
commutator decomposition

[V,H2] = [V, z†]w − w†[z, V ] (12)

for V ∈ P , wherew and z are given vectors of operators.
W1 is then defined in terms of sector bound condition:

w†w ≤ 1

γ2
z†z + δ. (13)

We define

W1 =

{

H2 : ∃ w, z such that(13) is satisfied
and (12) is satisfied∀ V ∈ P

}

. (14)

We then consider a set of quadratic perturbation Hamilto-
niansW2 that is in the form of

H2 =
1

2

[

ζ† ζT
]

∆

[

ζ
ζ#

]

(15)

whereζ = E1a + E2a
# and∆ ∈ C

2m×2m is a Hermitian
matrix of the form

∆ =

[

∆1 ∆2

∆#
2 ∆#

1

]

(16)

with ∆1 = ∆†
1 and∆2 = ∆T

2 . The matrix∆ is subject to
the norm bound

‖∆‖ ≤ 2

γ
(17)

where‖.‖ refers to the matrix induced norm.
We define

W2 =

{

H2 of the form (15) such that
conditions (16) and (6) are satisfied

}

. (18)

Since the nominal system is linear, we use the relationship:

z =

[

ζ
ζ#

]

=

[

E1 E2

E#
1 E#

2

] [

a
a#

]

= E

[

a
a#

]

.

(19)



Then

H2 =
1

2

[

a† aT
]

E†∆E

[

a
a#

]

(20)

In [1], it has been proven that for any set of self-adjoint
operatorsP ,

W2 ⊂ W1. (21)

B. Non-quadratic Hamiltonian Perturbations

For the set of non-negative self-adjoint operatorsP and
given real parametersγ > 0, δ1 ≥ 0 andδ2 ≥ 0, a particular
set of perturbation HamiltoniansW3 is defined in terms of
commutator decomposition

[V,H2] = [V, z]w∗
1−w1[z

∗, V ]+
1

2
[z, [V, z]]w∗

2−
1

2
w2[z, [V, z]]

∗

(22)
for V ∈ P , wherew1, w2 and z are given scalar operators.
Here, the notation∗ refers to the adjoint of an operator. The
setW3 is defined in terms of the sector bound condition

w1w
∗
1 ≤ 1

γ2
zz∗ + δ1 (23)

and the condition
w2w

∗
2 ≤ δ2. (24)

We define

W3 =

{

H2 : ∃ w1, w2, z such that (23) and (24)
are satisfied and (22) is satisfied∀ V ∈ P

}

.

(25)
We consider a set of non-quadratic perturbation Hamilto-

niansW4. For the set of non-negative self-adjoint operators
P and given real parametersγ > 0, δ1 ≥ 0, δ2 ≥ 0, a set
of non-quadratic perturbation HamiltoniansW4 is defined in
terms of the following power series.

H2 = f(ζ, ζ∗) =

∞
∑

k=0

∞
∑

l=0

Sklζ
k(ζ∗)l =

∞
∑

k=0

∞
∑

l=0

SklHkl

(26)
whereSkl = S∗

lk, Hkl = ζk(ζ∗)l, andζ is a scalar operator
on the underlying Hilbert space. Also

H∗
2 =

∞
∑

k=0

∞
∑

l=0

S∗
klζ

l(ζ∗)k =
∞
∑

l=0

∞
∑

k=0

Slkζ
l(ζ∗)k = H2.

(27)
Hence,H2 is self-adjoint operator. We define

f ′(ζ, ζ∗) =

∞
∑

k=1

∞
∑

l=0

kSklζ
k−1(ζ∗)l, (28)

f ′′(ζ, ζ∗) =

∞
∑

k=1

∞
∑

l=0

k(k − 1)Sklζ
k−2(ζ∗)l. (29)

We consider the sector bound condition

f ′(ζ, ζ∗)∗f ′(ζ, ζ∗) ≤ 1

γ2
ζζ∗ + δ1, (30)

and the condition

f ′′(ζ, ζ∗)∗f ′′(ζ, ζ∗) ≤ δ2. (31)

We define

W4 =

{

H2 of the form (26) such that (30) and
(31) are satisfied

}

.

(32)
From [1], we have the fact that for any set of self-adjoint
operatorsP ,

W4 ⊂ W3. (33)

In the nominal linear system, we define

z = ζ = E1a+ E2a
#

=
[

E1 E2

]

[

a
a#

]

= Ẽ

[

a
a#

]

.
(34)

The following result has been proven in [1].
Lemma 2: (See Lemma 5 of [1]) Given anyV ∈ P ,

µ = [z, [V, z]] = −ẼΣJPJẼT is a constant, (35)

whereΣ =

[

0 I
I 0

]

.

IV. PERFORMANCE ANALYSIS

In this section, we present several results on performance
analysis for the two classes of quantum systems defined
above. We define the associated cost function for a quantum
system as

J = lim sup
T→∞

1

T

∫ T

0

〈
[

a† aT
]

R

[

a
a#

]

〉dt (36)

whereR > 0. We denote that

W =
[

a† aT
]

R

[

a
a#

]

. (37)

In order to prove the following theorems on performance
analysis, we require some algebraic identities.

Lemma 3: (See Lemma 3 of [1]) ConsiderV ∈ P , H1 is
of the form (4) andL is of the form (7). Then

[V,H1] =

[

a
a#

]†

(PJM −MJP )

[

a
a#

]

, (38)

L(V ) =− 1

2

[

a
a#

]†

(N †JNJP + PJN †JN)

[

a
a#

]

+ Tr(PJN †

[

I 0
0 0

]

NJ), (39)

[

[

a
a#

]

,

[

a
a#

]†

P

[

a
a#

]

] = 2JP

[

a
a#

]

. (40)

Now we present two theorems which can be used to anal-
yse the performance of quantum systems subject to quadratic
Hamiltonian perturbations and non-quadratic Hamiltonian
perturbations, respectively.



A. Quadratic Hamiltonian Perturbations

Theorem 1: Consider an uncertain quantum system
(S,L,H), whereH = H1+H2, H1 is in the form of (4),L
is of the form (7) andH2 ∈ W2. If F = −iJM− 1

2
JN †JN

is Hurwitz, and
[

F †P + PF + E†E
γ2τ2 +R 2PJE†

2EJP −I/τ2

]

< 0 (41)

has a solutionP > 0 in the form of (10) andτ > 0, then

J = lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt

= lim sup
T→∞

1

T

∫ T

0

〈
[

a† aT
]

R

[

a
a#

]

〉dt ≤ λ̃+
δ

τ2

(42)

where

λ̃ = Tr(PJN †

[

I 0
0 0

]

NJ). (43)

In order to prove this theorem, we need the following two
lemmas.

Lemma 4: Consider an open quantum system(S,L,H)
whereH = H1 + H2 andH2 ∈ W1, and the set of non-
negative self-adjoint operatorsP . If there exists aV ∈ P
and real constants̃λ ≥ 0, τ > 0 such that

− i[V,H1] + L(V ) + τ2[V, z†][z, V ] +
1

γ2τ2
z†z +W ≤ λ̃,

(44)
then

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt ≤ λ̃+
δ

τ2
, ∀t ≥ 0. (45)

Proof: SinceV ∈ P andH2 ∈ W1,

G(V ) = −i[V,H1] + L(V )− i[V, z†]w + iw†[z, V ]. (46)

Also,

0 ≤ (τ [V, z†]− i

τ
w†)(τ [V, z†]− i

τ
w†)†

= τ2[V, z†][z, V ] + i[V, z†]w − iw†[z, V ] +
w†w

τ2
.

(47)

Substituting (46) into (47) and using the sector bound
condition (13), the following inequality is obtained:

G(V ) ≤ −i[V,H1]+L(V )+τ2[V, z†][z, V ]+
1

γ2τ2
z†z+

δ

τ2
,

(48)
Hence,

G(V ) +W ≤ λ̃+
δ

τ2
. (49)

Consequently, the conclusion in the lemma follows from
Lemma 1. ✷

Lemma 5: For V ∈ P andz defined in (19),

[z, V ] = 2EJP

[

a
a#

]

, (50)

[V, z†][z, V ] = 4

[

a
a#

]†

PJE†EJP

[

a
a#

]

, (51)

z†z =

[

a
a#

]†

E†E

[

a
a#

]

. (52)

Proof: The proof follows from Lemma 3. ✷

Proof of Theorem 1: Using the Schur complement, the
inequality (41) is equivalent to

F †P + PF + 4τ2PJE†EJP +
E†E

γ2τ2
+R < 0. (53)

If the Riccati inequality (53) has a solutionP > 0 of the
form (10) andτ > 0, according to Lemma 3 and Lemma 5,
we have

− i[V,H1] + L(V ) + τ2[V, z†][z, V ] +
1

γ2τ2
z†z +W =

[

a
a#

]†
(

F †P + PF + 4τ2PJE†EJP

+E†E
γ2τ2 +R

)

[

a
a#

]

+ Tr(PJN †

[

I 0
0 0

]

NJ).

(54)

Therefore, it follows from (41) that condition (44) will be
satisfied with

λ̃ = Tr(PJN †

[

I 0
0 0

]

NJ) ≥ 0. (55)

Then, according to the relationship (21) and Lemma 4, we
have

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt

= lim sup
T→∞

1

T

∫ T

0

〈
[

a† aT
]

R

[

a
a#

]

〉dt ≤ λ̃+
δ

τ2
.

(56)

✷

B. Non-quadratic Hamiltonian Perturbations

Theorem 2: Consider an uncertain quantum system
(S,L,H), whereH = H1+H2, H1 is in the form of (4),L
is of the form (7) andH2 ∈ W4. If F = −iJM− 1

2
JN †JN

is Hurwitz, and
[

F †P + PF + ΣẼT Ẽ#Σ
γ2τ2 +R 2PJΣẼT

2Ẽ#ΣJP −I/τ2

]

< 0 (57)

has a solutionP > 0 of the form (10) andτ > 0, then

J = lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt

= lim sup
T→∞

1

T

∫ T

0

〈
[

a† aT
]

R

[

a
a#

]

〉dt

≤ λ̃+
δ1
τ2

+ µµ∗/4 + δ2

(58)

where

λ̃ = Tr(PJN †

[

I 0
0 0

]

NJ), (59)

andµ is defined as in (35).
In order to prove this theorem, we need the following two

lemmas.



Lemma 6: Consider an open quantum system(S,L,H)
whereH = H1 + H2 andH2 ∈ W3, and the set of non-
negative self-adjoint operatorsP . For anyV ∈ P , µ is a
constant. If there exist real constantsλ̃ ≥ 0 andτ > 0 such
that

− i[V,H1] + L(V ) + τ2[V, z][z∗, V ] +
1

γ2τ2
zz∗ +W ≤ λ̃,

(60)
then

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt ≤ λ̃+
δ1
τ2

+ µµ∗/4 + δ2, ∀t ≥ 0.

(61)
Proof: SinceV ∈ P andH2 ∈ W3 ,

G(V ) =− i[V,H1] + L(V )− i[V, z]w∗
1 + iw1[z

∗, V ]

− i

2
µw∗

2 +
i

2
w2µ

∗. (62)

Also,

0 ≤ (τ [V, z]− i

τ
w1)(τ [V, z]−

i

τ
w1)

∗

= τ2[V, z][z∗, V ] + i[V, z]w∗
1 − iw1[z

∗, V ] +
1

τ2
w1w

∗
1 .

(63)

Furthermore,

0 ≤ (
1

2
µ− iw2)(

1

2
µ− iw2)

∗

=
1

4
µµ∗ − i

2
w2µ

∗ +
i

2
µw∗

2 + w2w
∗
2 .

(64)

Substituting (63) and (64) into (62), the following inequality
is obtained.

G(V ) ≤− i[V,H1] + L(V ) + τ2[V, z][z∗, V ] +
1

γ2τ2
zz∗

+
δ1
τ2

+
1

4
µµ∗ + δ2. (65)

Hence, using (60), it follows that

G(V ) +W ≤ λ̃+
δ1
τ2

+ µµ∗/4 + δ2. (66)

Consequently, the conclusion in the lemma follows from
Lemma 1. ✷

Lemma 7: For V ∈ P andz defined in (34),

[z∗, V ] = 2Ẽ#ΣJP

[

a
a#

]

, (67)

[V, z][z∗, V ] = 4

[

a
a#

]†

PJΣẼT Ẽ#ΣJP

[

a
a#

]

,

(68)

zz∗ =

[

a
a#

]†

ΣẼT Ẽ#Σ

[

a
a#

]

. (69)

Proof: The proof follows from Lemma 3. ✷

Proof of Theorem 2: Using the Schur complement, the
inequality (57) is equivalent to

F †P+PF+4τ2PJΣẼT Ẽ#ΣJP+ΣẼT Ẽ#Σ/(γ2τ2)+R < 0.
(70)

If the Riccati inequality (70) has a solutionP > 0 in the
form of (10) andτ > 0, according to Lemma 3 and Lemma
7, we have

− i[V,H1] + L(V ) + τ2[V, z][z∗, V ] +
1

γ2τ2
zz∗ +W =

[

a
a#

]†(
F †P + PF + 4τ2PJΣẼT Ẽ#ΣJP

+ΣẼT Ẽ#Σ/(γ2τ2) +R

)[

a
a#

]

+ Tr(PJN †

[

I 0
0 0

]

NJ). (71)

Therefore, it follows from (57) that condition (60) will be
satisfied with

λ̃ = Tr(PJN †

[

I 0
0 0

]

NJ) ≥ 0. (72)

According to the relationship (33) and Lemma 6, we have

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt

= lim sup
T→∞

1

T

∫ T

0

〈
[

a† aT
]

R

[

a
a#

]

〉dt

≤ λ̃+
δ1
τ2

+ µµ∗/4 + δ2.

(73)

✷

V. COHERENT GUARANTEED COST
CONTROLLER DESIGN

In some applications, it is desirable to design a quantum
control system which is not only stable but also guarantees
an adequate level of performance. In this section, we designa
coherent guaranteed cost controller for quantum systems sub-
ject to quadratic or non-quadratic Hamiltonian perturbations.
The coherent controller is realized by adding a termH3 to
the nominal system Hamiltonian. Assume that the controller
HamiltonianH3 is of the form

H3 =
1

2

[

a† aT
]

K

[

a
a#

]

(74)

whereK ∈ C2n×2n is a Hermitian matrix of the form

K =

[

K1 K2

K#
2 K#

1

]

(75)

andK1 = K†
1 , K2 = KT

2 . Associated with this system is
the cost functionJ

J = lim sup
T→∞

1

T

∫ ∞

0

(

[

a
a#

]†

(R + ρK2)

[

a
a#

]

)dt (76)

whereρ ∈ (0,∞) is a weighting factor. We let

W =

[

a
a#

]†

(R+ ρK2)

[

a
a#

]

. (77)

The following sections present our main results on coher-
ent guaranteed cost controller design for quantum systems
subject to quadratic and non-quadratic Hamiltonian pertur-
bations, respectively.



A. Quadratic Hamiltonian Perturbations

Theorem 3: Consider an uncertain quantum system
(S,L,H), whereH = H1 + H2 + H3, H1 is in the form
of (4), L is of the form (7),H2 ∈ W2 and the controller
HamiltonianH3 is in the form of (74). WithQ = P−1,
Y = KQ and F = −iJM − 1

2
JN †JN , if there exist a

matrix Q = q ∗ I (q is a constant andI is identity matrix),
a Hermitian matrixY and a constantτ > 0, such that








A+ 4τ2JE†EJ Y qR
1
2 qE†

Y −I/ρ 0 0

qR
1
2 0 −I 0

qE 0 0 −γ2τ2I









< 0 (78)

whereA = qF †+Fq+ iY J− iJY , then the associated cost
function satisfies the bound

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt

= lim sup
T→∞

1

T

∫ ∞

0

(

[

a
a#

]†

(R+ ρK2)

[

a
a#

]

)dt ≤ λ̃+
δ

τ2

(79)

where

λ̃ = Tr(PJN †

[

I 0
0 0

]

NJ). (80)

Proof: Suppose the conditions of the theorem are satisfied.
Using the Schur complement, (78) is equivalent to




A+ 4τ2JE†EJ + ρY Y qR
1
2 qE†

qR
1
2 −I 0

qE 0 −γ2τ2I



 < 0.

(81)
Applying the Schur complement again, it is clear that (81)
is equivalent to
[

A+ 4τ2JE†EJ + ρY Y + q2R qE†

qE −γ2τ2I

]

< 0 (82)

and (82) is equivalent to

qF † + Fq + iY J − iJY + 4τ2JE†EJ

+ ρY Y + q2(
E†E

γ2τ2
+R) < 0.

(83)

SubstitutingY = Kq = qK† into (83), we obtain

q(F − iJK)† + (F − iJK)q + 4τ2JE†EJ

+ q2(
E†E

γ2τ2
+R+ ρK2) < 0.

(84)

Since P = Q−1, premultiplying and postmultiplying this
inequality by the matrixP , we have

(F − iJK)†P + P (F − iJK) + 4τ2PJE†EJP

+
E†E

γ2τ2
+R + ρK2 < 0.

(85)

We knowE†E ≥ 0, R > 0 andK2 > 0. Hence

4τ2PJE†EJP +
E†E

γ2τ2
+R+ ρK2 > 0,

(F − iJK)†P + P (F − iJK) < 0.

(86)

Therefore, we have the following fact

F̃ = −iJ(M +K)− 1

2
JN †JN is Hurwitz. (87)

We also know that

− i[V,H1 +H3] + L(V ) + τ2[V, z†][z, V ] +
1

γ2τ2
z†z +W

=

[

a
a#

]†




(F − iJK)†P + P (F − iJK)
+4τ2PJE†EJP + E†E/(γ2τ2)
+R+ ρK2





[

a
a#

]

+ Tr(PJN †

[

I 0
0 0

]

NJ). (88)

According to the relationship (21) and Lemma 4, we have

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt

= lim sup
T→∞

1

T

∫ ∞

0

(

[

a
a#

]†

(R + ρK2)

[

a
a#

]

)dt

≤ λ̃+
δ

τ2

(89)

where

λ̃ = Tr(PJN †

[

I 0
0 0

]

NJ). (90)

✷

Remark 1: In order to design a coherent controller which
minimizes the cost bound (79) in the above theorem, we need
to formulate an inequality

Tr(PJN †

[

I 0
0 0

]

NJ) +
δ

τ2
≤ ξ. (91)

We know thatP = Q−1 = q−1I and apply Schur comple-
ment to inequality (91), so that we have

[

−ξ + δ
τ2 B

1
2

B
1
2 −q

]

≤ 0 (92)

whereB = Tr(JN †

[

I 0
0 0

]

NJ). Applying Schur Com-

plement again, it is clear that (92) is equivalent to





−ξ δ
1
2 B

1
2

δ
1
2 −τ2 0

B
1
2 0 −q



 ≤ 0. (93)

Hence, we minimizeξ subject to (93) and (78) in Theorem
3. This is a standard LMI problem.

B. Non-quadratic Hamiltonian Perturbations

Theorem 4: Consider an uncertain quantum system
(S,L,H), whereH = H1 + H2 + H3, H1 is in the form
of (4), L is of the form (7),H2 ∈ W4 and the controller
HamiltonianH3 is in the form of (74). WithQ = P−1,
Y = KQ and F = −iJM − 1

2
JN †JN , if there exist a



matrix Q = q ∗ I, a Hermitian matrixY and a constant
τ > 0, such that









A+ 4τ2JΣẼT Ẽ#ΣJ Y qR
1
2 qΣẼT

Y −I/ρ 0 0

qR
1
2 0 −I 0

qẼ#Σ 0 0 −γ2τ2I









< 0

(94)
whereA = qF †+Fq+ iY J− iJY , then the associated cost
function satisfies the bound

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt ≤ λ̃+
δ1
τ2

+ µµ∗/4 + δ2 (95)

where

λ̃ = Tr(PJN †

[

I 0
0 0

]

NJ), (96)

µµ∗/4 =
1

4
ẼΣJPJẼT Ẽ#JPJΣẼ†. (97)

Proof: Suppose the conditions of the theorem are satisfied.
By using the same method as in the proof of Theorem 3, we
have

(F − iJK)†P + P (F − iJK) + 4τ2PJΣẼT Ẽ#ΣJP

+ΣẼT Ẽ#Σ/(γ2τ2) +R+ ρK2 < 0.
(98)

Using a similar method to Theorem 3, the following inequal-
ity is obtained.

(F − iJK)†P + P (F − iJK) < 0. (99)

Therefore, we have the following result:

F̃ = −iJ(M +K)− 1

2
JN †JN is Hurwitz. (100)

We also know that

− i[V,H1 +H3] + L(V ) + τ2[V, z†][z∗, V ] +
1

γ2τ2
zz∗ +W

=

[

a
a#

]†





(F − iJK)†P + P (F − iJK)

+4τ2PJΣẼT Ẽ#ΣJP

+ΣẼT Ẽ#Σ/(γ2τ2) +R + ρK2





[

a
a#

]

+ Tr(PJN †

[

I 0
0 0

]

NJ). (101)

It follows from (98) that condition (60) will be satisfied with

λ̃ = Tr(PJN †

[

I 0
0 0

]

NJ). (102)

Therefore, the following result follows from the relationship
(33) and Lemma 6:

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt ≤ λ̃+
δ1
τ2

+ µµ∗/4 + δ2. (103)

✷

VI. ILLUSTRATIVE EXAMPLE

Consider an example of an open quantum system with

H1 =
1

4
i((a†)2−a2), H2 =

1

4
i((a†)2−a2), S = I, L =

√
κa.

(104)
The corresponding parameters considered in Theorems 1 and
3 are as follows:

M =

[

0 1
2
i

− 1
2
i 0

]

, N =

[ √
κ 0
0

√
κ

]

,

F =

[

−κ
2

0.5
0.5 −κ

2

]

, E = I, δ = 1

(105)

and

∆∆ =

[

0 1
2
i

− 1
2
i 0

] [

0 1
2
i

− 1
2
i 0

]

=

[

1
4

0
0 1

4

]

. (106)

Here, γ = 1 is chosen to satisfy (17) andH2 ∈ W2. The
dash line in Figure 1 is the cost bound for the linear quantum
system considered in Theorem 1 as a function of parameter
κ.

Next, we add the guaranteed cost controller considered in
Theorem 3 to the linear quantum system. The solid line in
Figure 1 shows the performance with the coherent controller.
Compared to the performance of the quantum system without
a controller, our coherent controller can guarantee the system
is stable for a larger range of valueκ and leads to a closed
loop system having better performance.

Fig. 1. Guaranteed cost bounds for uncertain quantum systems with a
controller (solid line) and without a controller (dash line)

VII. CONCLUSION

This paper has evaluated the performance of uncertain
quantum systems with either quadratic or non-quadratic
perturbations in the system Hamiltonian. We designed a
coherent guaranteed cost controller for the class of uncertain
quantum systems to obtain improved performance bounds.
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