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Abstract— A constrained model predictive control technique
for tracking is proposed for systems whose models become
uncertain (for example after a sensor failure). A linear time
invariant robust controller with integral action is used as a
baseline and “reverse engineered” into the form of a reduced
order observer, steady state target calculator and control
gain, based on a nominal model, augmented with integrating
disturbance states. Constraints are enforced by optimising over
perturbations to the nominal control action. Clean transition
between a nominal, high performance mode of operation when
parameters are known, to a safe and recursively feasible robust
mode when parameters are unknown can be facilitated by using
the same steady state target in both cases.

I. INTRODUCTION

Model predictive control (MPC) is a popular [1] technique
for control of constrained multivariable systems. MPC con-
trollers can be designed to be stabilising and recursively feasi-
ble [2] for systems with additive (e.g. [3]) and/or parametric
(e.g. [4], [5]) uncertainty. For tracking of non-zero setpoints,
there has been substantial focus on systems with additive
uncertainty [6]–[9]. One approach is to regulate the error
dynamics between the plant state and a target equilibrium
state/input pair. For systems with parametric uncertainty,
the equilibrium state and inputs may be unknown a priori.
In [10] multiple disturbance observers are implemented
for each vertex of a polytopic uncertainty set, augmented
with integrating disturbances and a single steady-state target
estimate is obtained by adjusting the disturbance estimation.
The min-max robust feedback MPC approach of [11], is
then applied to regulate to this target. In [12], a dead-beat
disturbance observer is designed using a nominal model,
and combined with a target calculator and LQR feedback
gain based on the same model. Offline, an optimisation
is performed over the space of nominal models to find
a controller that simultaneously stabilises all realisations
whilst minimising a quadratic cost. Following [5], the online
MPC minimises deviations from the nominal control law
whilst maintaining feasibility by means of polytopic robust
controlled invariant set constraint.

An alternative approach uses the linear velocity form, which
considers an augmented model in terms of the input and
state increments. In [13] a robust tracking MPC is proposed,
based on the linear velocity form with ellipsoidal input
constraints, building upon the LMI-based infinite-horizon
robust feedback MPC method of [4]. Ellipsoidal constraint-
admissible invariant sets are computed, tightened based on
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bounds on the set of possible steady-state equilibria. [14]
proposes a tube-MPC scheme based on the linear velocity
form with polytopic constraints, and shows that the effect
of parametric uncertainties can be modelled as an additive
disturbance if they are “small”.

The present work proposes a method complementary to
[12]. Similarities are that the constraints are polytopic, and
that the implementation relies only on quadratic programming.
There is no differencing of states, nor an exponentially
growing tree of predictions over a long horizon, nor online
solution of LMIs. The key dissimilarity is that the proposed
method does not rely upon the existence of a single model for
which a nominal LQR controller and dead-beat disturbance
observer simultaneously stabilise all possible realisations of
the uncertain plant. Instead, a linear (baseline) controller that
already exists, or can be designed using standard methods to
achieve adequate small-signal responses, is reverse engineered
into a reduced-order observer-based form by application of
the theory of [15], [16], and then further transformed into an
observer/target-calculator-based form by development of the
methods proposed in [17]. When there is no uncertainty, the
MPC can optimise regulation to the target state and input from
this construction. When there is uncertainty (e.g. due to a
fault), the online MPC maintains recursive feasibility through
perturbations to the reference and control signals of the reverse
engineered baseline controller. The use of reverse-engineering
provides the system designer the flexibility to design the
closed-loop small-signal behaviour of the uncertain system
using a range of methods and then cast the unconstrained
design into a form where constraints can be handled in a
computationally efficient manner.

This paragraph codifies the contents of the paper: Section II
states the standing assumptions; Section III presents the trans-
formation of a pre-standing satisfactory linear controller into
a reduced-order-observer-target-calculator form; Section IV
describes the integration into an MPC-based framework;
Section V presents a motivating example in the form of control
of the short-period longitudinal dynamics of an aircraft after
loss of airspeed measurements.

II. ASSUMPTIONS AND NOTATION

Assumption 1 (Plant model): Letting x(k) ∈ Rnx , u(k) ∈
Rnu , yr(k) ∈ Rnr , ym(k) ∈ Rnm denote the plant state,
input, controlled output, and measured output at time k, the
plant is described by a parameterised state-space model

x(k + 1) = A(θ)x(k) +B(θ)u(k) + d(θ)

yr(k) = Crx(k), ym(k) = Cx(k) (1)



where the matrices A(θ) ∈ Rnx×nx , B(θ) ∈ Rnx×nu , d(θ) ∈
Rnx×1, Cr ∈ Rnr×nx , C ∈ Rnm×nx . The variable θ ∈ Θ ⊂
RM may not be measurable and parameterises

A(θ) =

M−1∑
i=0

θiA
{i}, B(θ) =

M−1∑
i=0

θiB
{i}, d(θ) =

M−1∑
i=0

θid
{i}

(2)
Θ , {θ : θi ≥ 0 i = 0, . . . ,M − 1,

∑M−1
i=0 θi = 1}.

The number of controlled outputs is less than or equal to
the number of manipulated inputs: ny ≤ nu. (A(θ), B(θ)) is
controllable and (C(θ), A(θ)) is observable ∀θ ∈ Θ.

Remark 1: A non-zero d(θ) implies that x(k) = 0 is not
an unforced equilibrium. The input required to maintain
equilibrium varies with the parameter θ.

Assumption 2: An LTI controller with state xK ∈ RnK

with integral action that provides satisfactory robust stabilisa-
tion, tracking and transient response exists or can be designed:

xK(k + 1) = xK(k)− Crx(k) + r(k) (3a)
u(k) = K1x(k) +K2xK(k). (3b)

If r(k) and θ are constant, then limk→∞ yr(k)→ r(k).

III. REVERSE ENGINEERING

A. Reduced observer-based form

This subsection re-states some key results from [16] for
observer-based realisations of linear regulators in a discrete-
time setting, and explains their relevance in the context of
the remainder of the paper.

Definition 1 (Candidate nominal system and controller):
Consider a candidate nominal linear plant model

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) (4)

and a stabilising linear controller

xK(k + 1) = AKxK(k) +BKy(k) (5a)
u(k) = CKxK(k) +DKy(k). (5b)

Remark 2: The LTI model (4) used for observer design
can be constructed to accommodate an uncertain integrating
term by adding an additional nd states in the same way as
for estimation of uncertain persistent disturbances e.g.

A =

[
Â Ind

0 Ind

]
, B =

[
B̂ 0

]
, C =

[
Ĉ 0

]
(6)

where Â, B̂ and Ĉ are nominal estimates of the matrices
A(θ), B(θ) and C(θ) (e.g. an average value.)

Remark 3: When r(k) = 0, (5) is equal to (3) when AK =
I , BK = −Cr, CK = K2, DK = K1.

Lemma 1: The system:

z(k + 1) = Fz(k) +Gy(k) + TBu(k) (7)

is an observer of the variable ξ = Tx of the system (4) if

TA− FT = GC and F stable. (8)

Lemma 2: The controller state xK is an observer of ξ =
Tx if T satisfies the non-symmetric Riccati equation

TA− (AK − TBCK)T − (BK − TBDK)C = 0. (9)
Proof: To make (7) equivalent to (5), let

F = AK − TBCK , and G = BK − TBDK . (10)

Then substitute into (8) and apply Lemma 1 [16].
Remark 4: If a solution to (9) exists, it may not be unique.
Remark 5: When nK = dim(xK) < dim(x) = nx =

nx + nd, the observer-based realisation can include a full
order observer with nx − nK freely positioned eigenvalues
in its error dynamics [17], [18], or instead, a reduced order
observer can be designed. The former was used to transform
linear tracking controllers for LTI systems into a target-
calculator based MPC controller form in [17], whilst the
latter has also been exploited for MPC design for linear
systems in [19]. Here, the main purpose of the “observer” is
to estimate the agglomeration of the uncertain affine term and
parameter uncertainty. To minimise the number of states in the
closed-loop system, the reduced-order observer is therefore
favoured. (Mismatch between the design model and the real
plant precludes invoking the separation principle anyway.)

Lemma 3: Controller (5) can be re-written as:

z(k + 1) = Fz(k) +Gy(k) + TBu(k) (11a)

x̂(k) = H2z(k) +H1y(k) (11b)

u(k) = Kcx̂(k) +DQ

(
y(k)− Cx̂(k)

)
(11c)

whereKc = CKT +DKC,
[
H1 H2

] [
C

T
TT
]T

= I,

(12)
F and G satisfy (10), T satisfies (9), x̂ denotes an estimate of
the state of (4) and DQ is a static Youla parameter, satisfying:

CK = (Kc−DQC)H2, DK = (Kc−DQC)H1+DQ. (13)
Remark 6: If nK +nx ≤ nx then the solution for H1 and

H2 is non-unique and can be exploited to affect the behaviour
of the internal signals to the controller (Sec. III-D).

B. Handling the reference input

Controller (11) assumes a zero-valued reference input.
In [17] a controller whose input was y(k) − r(k) was
reverse engineered by exploiting linear superposition, and
implementing an observer on x(k) excited by y(k) and a
prefilter with the same dynamics, but excited by r(k). Here,
the reference enters into the controller (3) differently from
the measured output (state), and the tracked output is only a
subset of the measured output.

Theorem 1: A controller that gives equivalent input/output
behaviour to (3) can be parameterised as:

z(k + 1) = Fz(k) +Gy(k) + TBu(k) (14a)
z2(k + 1) = Fz2(k) +Grr(k) (14b)

u(k) = Kc (H2z(k) +H1y(k) +H3z2(k))

+DQ(y − C(H1y(k) +H2z(k)−H3z2(k))) (14c)



where F and G satisfy (10) and T satisfies (9). For the
baseline controller parameters given in Remark 3, Gr = I
and H3 = H2.

Proof: Substituting (14c) into (14a) gives

z(k + 1) = (F + TB(KcH2 −DQCH2))z(k)

+ (G+ TB(KcH1 +DQ(I − CH1)))y(k)

+ TB(KcH3 +DQCH3)z2(k). (15)

Let ζ(k) = z(k) + z2(k) and substitute z(k) = ζ(k)− z2(k),
let H2 = H3 and Gr = I then:

ζ(k + 1) = (F + TB(KcH2 −DQCH2))ζ(k)

+ (G+ TB(KcH1 +DQ(I − CH1)))y(k) + r(k), (16)

u(k) = (Kc−DQC)H2ζ(k)+(KcH1+DQ(I−CH1))y(k).
Comparing (13) and (10) term-by-term,

F + TB(KcH2 −DQCH2) = AK (17a)

G+ TB(KcH1 +DQ(I − CH1)) = BK (17b)

Therefore, by (17) and (13), it is shown that (16) (which gives
the same control action as (14c) with Gr = I and H3 =
H2) is identical to: ζ(k + 1) = AKζ(k) + BKy(k) + r(k),
u(k) = CKζ(k) +DKy(k). With values from Remark 3 this
is the same as (3).

C. Target calculator design

When the model structure (6) is applied, the state estimate
can be partitioned into an “estimated controlled state” and
“estimated uncontrolled disturbance”, and the state feedback
gain Kc can be partitioned into corresponding components

x̂(k) =
[
x̂(k)T d̂(k)T

]T
, Kc =

[
Kcx Kcd

]
. (18)

As in [17] a steady-state target calculator is to be implemented,
such that the input computation (14c) is

u(k) = Kcx (x̂(k)− xs(k)) + us(k) (19)

where (Â− I)xs(k) + B̂us(k) = −d̂(k) (20a)
Crxs(k) = rp(k). (20b)

Proposition 1: A pair (xs(k), us(k)) is an equilibrium pair
satisfying Cxs(k) = CH2z2, and the control action (19) is
equivalent to (14c) if it also holds that

−Kcxxs(k)+us(k) = Kcdd̂(k)+KcH2z2 +dq +dP , (21)

where dq = −DQ(x̂(k) − y(k)), dP = −DQCH2z2, and
rp(k) is a filtered reference signal derived from the state
z2(k) and the static Youla parameters from the observer and
prefilter dq and dP respectively. Let the superscript •+ denote
the Moore-Penrose Pseudoinverse of •.

Definition 2: Define:

M =

[
M11 M12

M21 M22

]
=

[
(Â− I) B̂
Cr 0

]+
(22)

Proposition 2: If there can be found an xref(k) such that

V xref(k) = KcH2z2(k) + dq(k) + dP (k) (23)

where V = (M22 −KcxM12)Cr, then (assuming existence
of a solution), control action (19) is equivalent to (14c) with
(xs(k), us(k))(Â− I) B̂

Cr 0
−Kcx I

[xs(k)
us(k)

]
=

−I 0
0 Cr

Kcd V

[ d̂(k)
xref(k)

]
. (24)

Proof: Equation (23) enforces that the “contribution” to
the final control action from the reference Crxref(k) is equal
to the combined contribution of z2(k), dq(k) and dP (k) to
that of (14c). The matrix V is also used in the third row of
(24) to enforce (21).

Proposition 3: From equivalence to the baseline con-
troller, the solution to (24) exists by construction when
the baseline controller is designed to track the controlled
output without offset. Similarly, by the same observation,
limk→∞ Crxref(k)→ r(k).

Corollary 1: If nr = nu and a unique solution exists for
(22) then the target calculator (24) can be implemented in
the standard way simply solving[

(Â− I) B̂
Cr 0

] [
xs(k)
us(k)

]
=

[
−I 0
0 I

] [
d̂(k)
rp(k)

]
(25)

where rp(k) = Crxref(k) with xref satisfying Proposition 2.

D. Enforcing steady-state consistency

Even when a solution to (24) exists, and is used to compute
control action (19) from application of (24), (23), (14a),
(14b), (18), (11), it is not automatically guaranteed that
limk→∞(Cxs(k), us(k)) = limk→∞(Cx(k), u(k)) for plant
(1) for all constant θ ∈ Θ, even though the net control
action is identical to that from (3) by construction and
limk→∞ Crxs(k) = limk→∞ Crx(k) for a constant reference
r(k).

This section contains the key enabling contribution of
the present paper: a method to use the degrees of freedom
available in (12) when nK + nx < nx to produce a design
for which the measured outputs and target calculator are
consistent in steady state despite the inevitable mismatch
between the plant and the candidate design model due to
possible uncertain knowledge of the former.

For brevity, the following derivation assumes that the
number of tracked outputs is equal to the number of inputs
and the number of controller states, and the static Youla
parameter DQ = 0 (satisfied by the example in Section V).

Definition 3: When [C
T
, TT ]T is not of full row rank, the

solution to (12) is not unique. Letting the superscript •⊥
denote an orthogonal basis for the nullspace of • (of rank
n⊥), define

Z =

[
Z11 Z12

Z21 Z22

]
,

[
C
T

]+
, W =

[
W1

W2

]
,

[
C
T

]⊥
(26)

such that for some X ,
[
X1 ∈ Rn⊥×nm X2 ∈ Rn⊥×nK

]
H2 =

[
Z12 +W1X2

Z22 +W2X2

]
, H1 =

[
Z11 +W1X1

Z21 +W2X1

]
. (27)



Definition 4: The unconstrained target calculator can be
expressed in the closed form:[

xs(k)
us(k)

]
=

[
Y11 Y12
Y21 Y22

] [
rp(k)

d̂(k)

]
(28)

The objective of the following is to obtain conditions on
X1 and X2 such that Cxs(k)→ y(k) at equilibrium.

Theorem 2: For the observer (14a) and target calculator
(24), a constant reference r(k) = r∞, and steady state
measurement/input signals y∞ and u∞, the target output
corresponding to the the steady state equilibrium pair, and
the target input will be equal to the true measured plant
output and input in steady state if X1 and X2 satisfy:

Inm+nu
=

[
CY11Cr CY12
Y21Cr Y22

]
×([

Z12 Z11

Z22 Z21

]
+

[
W1 W1

W2 W2

] [
X2 0
0 X1

])
×([

InK+nm 0(nK+nm)×nu

] [(I − F )−1[G,TB]
Inm+nu

])
.

(29)
Proof: For given steady values of y∞, u∞, the steady

state value of the state and disturbance estimate using (14a)
and (11b) is, by application of the Final Value Theorem and
some algebraic rearrangement:[

x̂∞
d̂∞

]
=

(([
Z12 Z11

Z22 Z21

]
+

[
W1 W1

W2 W2

] [
X2 0
0 X1

])
×

[
InK+nm

0nK+nm×nu

]
×
[
(I − F )−1[G,TB]

Inm+nu

])[
y∞
u∞

]
(30)

In steady state, the controller will have, by design, driven the
plant to a state where Crx∞ = r∞, and the corresponding
output from the target calculator will be:[

xs,∞
us,∞

]
=

[
Y11 Y12
Y21 Y22

] [
Cr 0nr×nd

0nd×nx
Ind

] [
x̂∞
d̂∞

]
. (31)

The required steady state behaviour is expressed as[
C 0nr×nu

0nu×nx Inu

] [
xs,∞
us,∞

]
=

[
y∞
u∞

]
. (32)

Condition (29) in the theorem is thus constructed by com-
bining (32), (31) and (30).

Corollary 2: If nK = nr, then (29) can be re-written as
ABC = F, where

A =

[
CY11Cr CY12
Y21Cr Y22

]
,B =

[
W1 W1

W2 W2

]
,C =

[
X2 0
0 X1

]
F =

[
(I − F )−1G (I − F )−1TB

Inm
0

]−1
−A

[
Z12 Z11

Z22 Z21

]
.

Letting E ,
{
E : E

[
vec(X2)T vec(X1)

]T
= vec(C)

}
,

condition (29) can be achieved if there exists a solution
to

(Inr+nK
⊗AB)E[vec(X2)T , vec(X1)T ]T = vec(F) (33)

Remark 7: (33) may have redundant equalities (e.g. con-
straining a tracked output to be equal to the reference, or its
equivalent measured output at equilibrium).

IV. CONSTRAINED MPC

A. Inner loop

Defining Kx = Kcx(H11−Y12H21)Ĉ+Y22H21Ĉ, Kz =
Kcx(H12 − Y12H22) + Y22H22, Kr = (Y21 − KcxY11),
the closed-loop system with the uncertain plant and the
unconstrained reverse-engineered controller based on the
nominal plant model can be re-written as two separate systems.
The first is the prestabilised plant (now including the affine
term),

x(k+ 1) = A(θ)x(k) +B(θ)u(k) + d(θ), y(k) = Cx(k),
(34)

where x(k) = [x(k)T , z(k)T ]T , u(k) = [rp(k)T , v(k)T ]T ,
v(k) is an additive input perturbation that an outer loop can
manipulate, d(θ) = [d(θ)T , 0T ]T ,

A(θ) =

[
A(θ) +B(θ)Kx B(θ)Kz

GĈ + TBKx F + TBKz

]
B(θ) =

[
B(θ)Kr B(θ)
TBKr TB

]
, C =

[
Ĉ 0

]
.

The steady state target estimate can be seen as an additional
output of this system:[
xs(k)
us(k)

]
=

[
Y12H21Ĉ Y12H22

Y22H21Ĉ Y22H22

] [
x(k)
ẑ(k)

]
+

[
Y11
Y21

]
rp(k).

(35)
The second system is the prefilter z2(k+1) = Fz2(k)+r(k),

r∗p(k) = CrV
+KcH2z2(k). (36)

For the unconstrained baseline, rp(k) = r∗p(k).

B. Constraints and MPC formulation

The purpose of applying MPC in this scenario is to enforce
input and state constraints in a manner that will be recursively
feasible (within the confines of the modelling assumptions)
for the constraints Hxu

[
x(k)T u(k)

]T ≤ hTxu. This can be
re-written as (more usefully):

Hxu

[
I 0 0 0
Kx Kz Kr I

] [
x(k)
u(k)

]
≤ hxu. (37)

Tracking MPC for LTI systems often uses a terminal con-
straint that is a maximal positively invariant set O∞ for an
autonomous system under a candidate controller, augmented
with integrating states parameterising the reference [20]. With
parametric uncertainty, the steady state setpoint is not known a
priori, and the system (34) augmented with an integrating state
representing rp(k) does not admit a unique transformation that
partitions the augmented state space into stable and marginally
stable modes [21], so obtaining a finitely determined robust
polytopic O∞ for the uncertain augmented system is difficult.
The affine component of the model, and the desire to non-
conservatively enforce asymmetric constraints also makes
ellipsoids unattractive.

Instead, the method proposed in [12] (also advocated in
[22]) is applied, and a polyhedral robust controlled invariant
set C [23] is computed for (34) assuming v(k) = 0:



C ,
{

(x(k), z(k)) : ∃rp satisfying (37) with v(k) = 0,

such that (x(k + 1), z(k + 1)) ∈ C, ∀θ ∈ Θ
}
.

When the variable θ is unknown, at each time step the
online MPC formulation can compute v(k) and rp(k) as:

min
u(k)

v(k)TRvv(k) + (rp(k)− r∗p(k))TS(rp(k)− r∗p(k))

subject to (37) and

A(θ)x(k) + B(θ)u(k) + d(θ) ∈ C, ∀θ ∈ Θ. (38)

The target-calculator based formulation also means that when
θ is known (e.g. absence of sensor failure), a “standard”
MPC optimisation problem based on the same target can
subsequently be performed over a finite horizon (c.f. [6], [7],
[9]) as a heuristic to “improve” performance:

min
xi,vi

vT0 Rvv0 +Rr‖rp(k)− r∗p(k)‖1 + ‖xi − xs(k)‖2P

+

N−1∑
i=0

(
‖xi − xs(k)‖2Q + ‖ui − us(k)‖2R

)
subject to (38), ui = Kxxi + Kzzi + Krri + vi, ∀i ∈
ZN−1
0 , x0 = x(k), xi+1 = A(θ)xi + Bui + d(θ), ∀i ∈

ZN−1
0 , Hxu[xTi , u

T
i ]T ≤ hxu, ∀i ∈ ZN−1

0 , Hxu[xTi , 0
T ]T ≤

hxu, i = N . Q, P , R, Rr, Rv, S are appropriately sized
weighting matrices. If θ becomes unknown (e.g. loss of sensor)
(38) remains feasible and thus the “robust” MPC can be used,
but lower performance is achieved.

V. MOTIVATING EXAMPLE

The developed MPC is applied to the control of the
linearised short-period dynamics (e.g. [24]) of an aircraft
[25] following a detected loss of airspeed measurement. It
is assumed that it is possible to use other measurements to
maintain groundspeed such that the airspeed is within a given
range, and that the aircraft remains within a bounded altitude
range. These dynamics are nonlinear, but can be approximated
by local linear models (affine if the “input” and “state” are
the true values rather than deviation from equilibrium), which
vary as a function of the airspeed and altitude (which are
not considered states in the short-period model). We consider
a three-state discrete-time system sampled at ts = 0.25 s,
with states q (pitch rate), nz (vertical acceleration in body
frame), e (elevator position). The input u is the elevator
increment, delayed by one time step. (It is more usual to
use angle of attack α as a state variable, with nz considered
a measured output — the model used here is obtained by
simple coordinate change.)

Linearisations of the nonlinear model are taken at straight
and level equilibrium flight points, and the short period
approximation is made in the usual way [24], transformed
into the desired coordinate system and discretised. The flight
points chosen, P1–P4 are 5000 m altitude at 160 ms−1 and
260 ms−1 airspeed and 7500 m altitude at 180 ms−1 and
260 ms−1 airspeed. Since each of these equilibrium points
requires different value of e, and the exact point is not known
a priori, e retains its physical value and the non-equilibrium
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Fig. 1. Effect of H1, H2 solution on target estimate (solid line is the
measured state, dashed line is the steady state target estimate)
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Fig. 2. Closed-loop behaviour matching for small deviations of nz

dynamics are encoded by the affine disturbance term in
the uncertain model form (2). The control objective is to
track references in nz . To obtain a baseline controller, the
system is augmented with an integrating state with dynamics
ζ(k+1) = ζ(k)−nz(k)+r(k), and the unconstrained version
of the robust MPC method of [4] is used to obtain a static
feedback gain for the linear parts of the uncertain model
giving satisfactory robust performance. The state ζ(k + 1) is
then detatched, and along with the computed gain rearranged
to form a controller of form (3).

Figure 1 shows the unconstrained response to a unit step
in reference for the second state, for plant P4 using P1 as
the nominal model for design with X1 = 0, X2 = 0, and
for X1 and X2 designed using (33). In the former case, the
“target” is inconsistent, whilst in the latter case, the steady
state target is consistent with the plant state by design.

Constraints are defined as −2 ≤ nz ≤ 1.5, −17 ≤ e ≤ 23,
−37ts ≤ u ≤ 37ts,−2 ≤ rp ≤ 1.5. A controlled invariant set
C for the uncertain plant is computed (c.f. [23]), but slightly
tightening constraints to avoid lots of “almost redundant”
constraints (c.f. [26]) before computing each projection,
and the MPC (38) is implemented using YALMIP [27]. To
demonstrate the equivalence of the unconstrained behaviour,
Figure 2 shows the response to a multi-step trajectory for each
of the flight points, starting from equilibrium states, chosen so
that no constraints are active, firstly for the baseline controller
of form (3), and then for the reverse engineered MPC (38).
The responses are identical by design. Meanwhile Figure 3
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Fig. 3. Robust (conservative) enforcement of output constraints

0 5 10 15 20
−0.3

−0.2

−0.1

0

0.1

0.2

Time (s)

n
z
 (

g
)

 

 
P1

P2

P3

P4

0 5 10 15 20
−4

−2

0

2

4

Time (s)

E
le

v
. 

d
e

fl
e

c
ti
o

n
 (

d
e

g
)

Fig. 4. Switchover from nominal MPC to robust MPC at t = 10 s

shows robust handling of nominal output constraints for a
larger reference signal. The constraint (38) means that the
constraint on nz is treated more conservatively for the lower-
speed flight points P1 and P3 than for P2 and P4 and instead
of reaching the setpoint, the nearest safe value inside C is
achieved. Figure 4 shows transition from a nominal “high
performance” MPC to the robust MPC (both using the same
steady state target from the reverse-engineered controller) at
t = 10 s. The output trajectory is slower after the transition,
but there is minimal jump in the commanded input.

VI. CONCLUSIONS

This paper has proposed an MPC method for constrained
tracking control for a system with parametric uncertainty,
which relies online only on constrained quadratic program-
ming (for which efficient embedded solvers exist), based
on reverse-engineering of an existing LTI controller into
an observer-target calculator-gain form. This can give more
design flexibility than prior approaches, and whilst the
observer is still based on a nominal model, the unconstrained
control law inherits the robust stabilising properties of the
original controller. Algebraic conditions are given to ensure
that the steady-state target computed within the reverse-
engineered controller is consistent with the setpoint achieved
by the plant, allowing the same steady state target to be used in
a “nominal” setup based on an arbitrary cost function and full
model information and a “robust” setup based on minimising
deviation from the behaviour of the existing controller. The
proposed method could be an enabling ingredient in a fault-
tolerant system, for example facilitating a fallback in case
of loss of scheduling parameter in a time-varying system
through sensor failure.
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