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Model reduction of networked passive systems through clustering

Bart Besselink, Henrik Sandberg, Karl Henrik Johansson

Abstract— In this paper, a model reduction procedure for
a network of interconnected identical passive subsystems is
presented. Here, rather than performing model reduction on
the subsystems, adjacent subsystems are clustered, leading to a
reduced-order networked system that allows for a convenient
physical interpretation. The identification of the subsystems to
be clustered is performed through controllability and observ-
ability analysis of an associated edge system and it is shown
that the property of synchronization (i.e., the convergence of
trajectories of the subsystems to each other) is preserved during
reduction. The results are illustrated by means of an example.

I. I NTRODUCTION

Electrical power grids, social networks and the internet
and biological or chemical networks are examples of large-
scale networks of interconnected dynamical (sub)systems,
see, e.g., [19]. Their large scale and complexity complicates
the analysis or control of such networked systems, motivating
the need for tools to obtainapproximatenetworked systems
with lower complexity.

Model reduction techniques such as balanced trunca-
tion [15] or optimal Hankel norm approximation [7] pro-
vide methods for obtaining reduced-order approximations of
large-scale systems [1], [3], but are not directly suited for
application to networked systems. Namely, the applicationof
such methods typically does not preserve the interconnection
structure, making the reduced-order models hard to interpret
and potentially irrelevant for the design of distributed con-
trollers. This paper therefore deals with the development of a
dedicated reduction procedure for networked systems, based
on the clustering of subsystems.

Despite the large interest in networked systems, the reduc-
tion of such systems has not received much attention in the
literature. An exception is given by the work in [10], where
a method for the clustering of subsystems is developed, con-
sidering subsystems that have scalar first-order dynamics.A
different perspective is taken in [14], where networks of iden-
tical linear (higher-order) subsystems are considered. In[14],
reduction is performed on the basis of these subsystems only,
thus leaving the interconnection structure untouched. It is
noted that such reduction techniques for networked systems
can be considered as a structure-preserving model reduction
technique [17].

In the current paper, networks of identical linear sub-
systems are considered. However, rather than performing
reduction of the individual subsystems, reduction is achieved
by clustering neighbouring subsystems. This thus essentially
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represents a reduction of the interconnection topology, lead-
ing to a reduced-order interconnection structure that allows
for a convenient physical interpretation. In particular, the
subsystems are assumed to be passive and the interconnec-
tion topology is assumed to have a tree structure. For such
systems, the importance of each edge in the interconnection
structure (representing a coupling between subsystems) is
studied through an analysis of its controllability and ob-
servability properties, hereby identifying pairs of adjacent
vertices (subsystems) that are hard to steer apart or difficult to
distinguish. Motivated by the method of balanced truncation
and its extensions, these pairs of adjacent vertices will be
clustered to obtain a reduced-order interconnection topology.

This analysis relies on two crucial aspects. First, the
passivity property of the subsystems ensures that controlla-
bility and observability properties of the entire networked
system can be decomposed into parts associated to the
interconnection topology and the subsystem dynamics, re-
spectively. Here, the former is used to identify important
edges. Second, a novel factorization of the graph Laplacian
describing the interconnection topology is exploited, which
allows for the definition of anedge Laplacianfor weighted
and directed graphs, hereby extending a result from [21]. For
tree structures, this factorization is shown to have desirable
properties in the scope of model reduction through clustering.

Finally, it will be shown that the reduced-order networked
system obtained by the clustering of subsystems preserves
synchronization (i.e., the convergence of trajectories ofthe
subsystems to each other) of the original networked system.

The remainder of this paper is organized as follows. After
defining the problem in Section II, the edge Laplacian and its
relation to synchronization is discussed in Section III. The
clustering-based model reduction procedure is introduced
in Section IV and illustrated by means of an example in
Section V. Finally, conclusions are stated in Section VI.

Notation.The field of real numbers is denoted byR. Given
a matrix X ∈ R

n×m, its entry in row i and columnj is
denoted as(X)ij . The identity matrix of sizen is denoted as
In, whereas1n denotes the vector of all ones of lengthn. The
subscriptn is omitted when no confusion arises. Moreover,
ei denotes thei-th column ofIn. Finally,X ⊗ Y denotes the
Kronecker product of the matricesX andY , whose definition
and properties can be found in, e.g., [4].

II. PROBLEM SETTING

A network of identical subsystemsΣi is considered, of
which a minimal realization can be written in the form

Σi :

{

ẋi = Axi +Bvi = (J −R)Qxi +Bvi,
zi = Cxi = BTQxi,

(1)
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with xi ∈ R
n, vi, zi ∈ Rm andi ∈ {1, 2, . . . , n̄}. The right-

most representation in (1) is a so-called port-Hamiltonian
form [20], [18], in which Q = QT ≻ 0 characterizes the
energy stored inΣi asV (xi) =

1
2x

T
i Qxi. Next, J = −JT

is a skew-symmetric matrix andR = RT < 0 represents any
internal dissipation. It is well-known that such a system is
passive (see, e.g., [20] for a definition of passivity).

The subsystemsΣi as in (1) are interconnected as

vi =
∑n̄

j=1,j 6=i wij(zj − zi) +
∑m̄

j=1 gijuj , (2)

whereuj ∈ Rm, j ∈ {1, 2, . . . , m̄} are the external inputs
to the networked system. In (2), the weightswij ∈ R

satisfyingwij ≥ 0 represent the strength of the diffusive
coupling between the subsystems, whereasgij ∈ R describe
the distribution and strength of the external inputs amongst
the subsystems. Similarly, external outputs are given by

yi =
∑n̄

j=1 hijzj (3)

with yi ∈ R
m, i ∈ {1, 2, . . . , p̄}. After definingL as

(L)ij =

{

−wij , i 6= j,
∑n̄

j=1,j 6=i wij , i = j,
(4)

and collecting the parametersgij andhij asG = {gij} and
H = {hij}, respectively, the networked system given by (1),
(2) and (3) can be written as

Σ :

{

ẋ = (I ⊗A− L⊗BC)x + (G⊗B)u,
y = (H ⊗ C)x

(5)

wherexT = [ xT
1 xT

2 . . . xT
n̄ ], uT = [ uT

1 uT
2 . . . uT

m̄ ] and
yT = [ yT1 yT2 . . . yTp̄ ].

The objective of this paper is to obtain a reduced-order
version of the networked system (5) through the clustering
of neighbouring subsystems, essentially creating a new inter-
connection structure of the form (2). A cluster is represented
by a single subsystem, approximating the dynamics of a
group of neighbouring subsystems in the original networked
system. Consequently, the resulting reduced-order networked
system is easy to interpret. Furthermore, this reduced-order
networked system should preserve synchronization properties
(i.e., the convergence of subsystem trajectories to each other)
of the original system. Moreover, the input-output behavior
of the reduced-order system should provide a good approx-
imation of that of the original networked system.

III. E DGE LAPLACIAN AND SYNCHRONIZATION

The interconnection (2) of the subsystems as characterized
by L as in (4) can be associated to a directed graphG =
(V , E) (see, e.g, [8], [13] for details on graph theory). Here,
V = {1, 2, . . . , n̄} represents the set of vertices characteriz-
ing the subsystems andE ⊆ V × V gives the set of directed
edges (or arcs) satisfying(i, j) ∈ E if and only if wji > 0.

Besides this directed graphG, an undirected version of the
same graph is introduced as follows.

Definition 1: Let G be a directed graph with vertex setV
and (directed) edge setE . Then, the undirected graphGu =
(V , Eu) with (i, j) ∈ Eu if and only if wij + wji > 0 is said
to be the underlying undirected graph.

The underlying undirected graphGu thus has an edge be-
tween verticesi andj if at least one of the weightswij and
wji is strictly positive, i.e., if there exists at least one directed
edge betweeni and j. Then, by exploiting the incidence
matrix E ∈ Rn̄×n̄e (with elements in{0,±1} and wherēne

is the number of edges inGu) of an arbitrary orientation of
Gu, the matrixL as in (4) can be factorized as follows.

Lemma 1:Consider the matrixL as in (4) and letE be an
oriented incidence matrix of the underlying undirected graph
Gu. Then,L can be factored as

L = FET, (6)

whereF has the same structure asE. In particular, let the
l-th column ofE be given asei− ej , i.e., characterizing the
edge connecting verticesi and j. Then, thel-th column of
F is given aswijei −wjiej , with wij the weights as in (2).

Proof: It is noted that the matrixL as in (4) can be
written as the sum of matrices characterizing each edge in
Gu individually, leading toL =

∑

(i,j)∈Eu
Lij . Here,

Lij = (wijei − wjiej)(ei − ej)
T, (7)

such that choosing the columns ofF and E as (wijei −
wjiej) andei − ej, respectively, leads to (6).
The eigenvalues ofL can be related to graph-theoretical
properties by exploiting the notion of a directed rooted
spanning tree, which is defined as follows (see [8], [16]).

Definition 2: A graph T is said to be a directed rooted
spanning tree if it is a directed tree connecting all vertices of
the graph, where every vertex, except the single root vertex,
has exactly one incoming directed edge.
The following result can be found in [16], [13].

Lemma 2:Consider the matrixL as in (4) withwij ≥ 0.
Then, L has at least one zero eigenvalue and all nonzero
eigenvalues are in the open right-half plane. Moreover,L
has exactly one zero eigenvalue if and only if the associated
graph G contains a directed rooted spanning tree as a
subgraph.
Now, the property of containing a directed rooted spanning
tree as a subgraph can be related to the matrixF in the
factorization (6) when the underlying undirected graphGu is
a tree, as stated in the following lemma.

Lemma 3:Let the graphG characterized byL as in (4)
be such that the underlying undirected graphGu is a tree.
Then,rankF = n̄ − 1 if and only if G contains a directed
rooted spanning tree as a subgraph.

Proof: First, it is noted that, asGu is a tree, it has
n̄ − 1 edges andF ∈ Rn̄×(n̄−1) (see also the definition of
F in the statement of Lemma 1). Consequently, the rank of
F is at mostn̄ − 1. Assume, for the sake of establishing a
contradiction, thatrankF = n̄− c with c > 1. Then, by the
rank-nullity theorem, the null space ofFT has dimension
c. If V ∈ R

n̄×c is a basis for this null space, it satisfies
FTV = 0. Evaluation of the productV TL = V TFET = 0
implies thatV is also in the null space ofLT, such that
rankL < n̄ − c < n̄ − 1. However, that contradicts the



assumption of the existence of a directed rooted spanning
tree as a subgraph via Lemma 2, such thatrankF = n̄− 1.

To prove the converse, assume thatrankF = n̄−1. Also,
asGu is a tree,rankE = n− 1. Then,L = FET represents
a full-rank factorization (see [9]) andrankL = n̄ − 1.
Consequently, by Lemma 2,G contains a directed rooted
spanning tree as a subgraph.

In the remainder of the paper, networks with a tree
structure will be considered.

Assumption 1:The interconnection structure character-
ized byL as in (4) is such that:

1) the underlying undirected graphGu is a tree, i.e.,̄ne =
n̄− 1;

2) the graphG contains a directed rooted spanning tree
as a subgraph.

Here, it is remarked neither of these items implies the other.
Under Assumption 1, the following lemma holds.
Lemma 4:Let the interconnection structure characterized

by L as in (4) satisfy Assumption 1 and consider its
factorization (6). Then, the matrix

Le = ETF, (8)

which will be referred to as theedge Laplacian, has all
eigenvalues in the open right-half plane. Moreover, these
eigenvalues equal the nonzero eigenvalues ofL.

Proof: To prove this lemma, introduce the matrixT as

T =

[

νT

ET

]

, (9)

where ν is the left eigenvector for the zero eigenvalue of
L, i.e., νTL = 0. By the second item of Assumption 1
and Lemma 2, this eigenvalue has multiplicity one, such
that ν is unique (up to scaling). Also, by exploiting Perron-
Frobenius theory (see, e.g., [9]), it can be shown that all
elements ofν are nonnegative (andν 6= 0). It is therefore
assumed thatν is scaled such thatνT1 = 1. As each column
of E has only zero elements except for the pair(1,−1), ν
is linearly independent of the columns ofE and T as in
(9) is nonsingular. Thus, its inverse exists. In particular, it is
given asT−1 = [ 1 F (ETF )−1 ]. Then, the application of
the similarity transformationT to L as in (4) leads to

TLT−1 =

[

0 0
0 ETF

]

=

[

0 0
0 Le

]

. (10)

By Assumption 1 and Lemma 2,L contains only a single
zero eigenvalue, which is isolated from the matrixLe in the
representation (10). Consequently,Le contains all non-zero
eigenvalues ofL, which are in the open right-half plane by
Lemma 2.

Remark 1:The matrixLe in (8) is directly related to the
dynamics on the edges of the networked system (5). To show
this, the edge coordinatesxe = (ET ⊗ In)x are introduced,
representing the difference between the state components of
two neighboring subsystems. By exploiting the networked
dynamics (5), it is readily shown thatxe satisfies

ẋe = (In̄−1 ⊗A− Le ⊗BC)xe + (ETG⊗B)u, (11)

where the factorizationL = FET and the definition ofLe as
in (8) is used. Motivated by its role in the dynamics (5), the
matrixLe might be thought of as the (directed and weighted)
edge Laplacian for the graphG. The edge Laplacian for
unweighted and undirected graphs is studied in [21].⊳

The edge LaplacianLe, as introduced in Lemma 4, can be
exploited to study synchronization of the networked system
Σ as in (5), as stated in the following theorem.

Theorem 5:Consider the networked systemΣ as in (5)
with passive subsystemsΣi as in (1). Moreover, let the
interconnection structure characterized byL as in (4) be such
that Assumption 1 holds. Then, any trajectory ofΣ for u = 0
satisfies (for alli, j ∈ V)

lim
t→∞

(

xi(t)− xj(t)
)

= 0. (12)

Proof: In order to prove the theorem, it is remarked that
synchronization as in (12) can be equivalently characterized
by asymptotic stability of the edge dynamics as in (11)
for u = 0. Therefore, asymptotic stability of the edge
dynamics (11) will be shown by introduction of the candidate
Lyapunov function

V (xe) = xT
e (K ⊗Q)xe, (13)

whereQ = QT ≻ 0 is the energy function of the passive
subsystems as in (1). The matrixK = KT ≻ 0 in (13)
will be specified later. It is noted that, as bothK and
Q are symmetric positive definite, their Kronecker product
K ⊗Q is symmetric positive definite as well. The time-
differentiation of (13) along the trajectories of (11) foru = 0,
hereby using properties of the Kronecker product as well as
J = −JT leads to

V̇ (xe) = xT
e

(

−2K ⊗QRQ− (LT
e K +KLe)⊗ CTC

)

xe,

≤ xT
e (I⊗CT)

(

(−LT
e K −KLe)⊗ I

)

(I⊗C)xe, (14)

where the propertyR = RT < 0 is used to obtain the latter
inequality. As Assumption 1 guarantees that−Le is Hurwitz
(through Lemma 4), there exists a matrixK = KT ≻ 0 such
thatLT

e K+KLe ≻ αI for someα > 0. Then, (14) satisfies

V̇ (xe) ≤ −αxT
e (I ⊗ CT)(I ⊗ C)xe, (15)

and asymptotic stability of the edge dynamics (11) follows
from observability of the subsystemsΣi (through minimal-
ity) and LaSalle’s invariance principle (see, e.g., [18]).

IV. M ODEL REDUCTION THROUGH CLUSTERING

A. Edge controllability and observability

The reduction of the networked systemΣ as in (5) will
be performed by clustering adjacent vertices (subsystems).
To identify the vertices to be clustered, the importance of
the edges connecting vertices will be analyzed. Thereto, the
edge systemis introduced as

Σe :

{

ẋe = (I ⊗A− Le ⊗BC)xe + (Ge ⊗B)u
ye = (He ⊗ C)xe,

(16)



with xe = (ET ⊗ I)x ∈ R
n̄−1, Ge = ETG and He =

HF (ETF )−1. Also, it is convenient to introduce a different
realization of (16), leading to thedual edge systemas

Σf :

{

ẋf = (I ⊗A− Le ⊗BC)xf + (Gf ⊗B)u
ye = (Hf ⊗ C)xf ,

(17)

with xf = ((ETF )−1 ⊗ I)xe, Gf = (ETF )−1Ge andHf =
HF .

Motivated by the well-known reduction method of bal-
anced truncation [15], the importance of edges will be
characterized through their controllability and observability
properties, motivating the following definition.

Definition 3: The matricesP̄e and Q̄f are said to be the
edge controllability Gramian and edge observability Gramian
of the systemΣ as in (5) if they are the controllability
Gramian ofΣe as in (16) and the observability Gramian
of Σf as in (17), respectively.
As the edge Gramians in Definition 3 do not necessarily
allows for an insightful characterization of the importance
of individual edges, the following matrices are introduced.

Definition 4: The matricesP̃e = Π̃c ⊗Q−1 and Q̃f =
Π̃o ⊗Q are, respectively, said to be a generalized edge
controllability Gramian and a generalized edge observability
Gramian for the networked systemΣ as in (5) if the matrices
Π̃c < 0 andΠ̃o < 0 are diagonal and satisfy the inequalities

LeΠ̃
c + Π̃cLT

e − ETGGTE < 0, (18)

LT
e Π̃

o + Π̃oLe − FTHTHF < 0. (19)

The introduction of the generalized edge Gramians allows for
the interpretation of controllability and observablity proper-
ties on the basis of the interconnection topology only, thus
providing a suitable basis for a reduction procedure based
on clustering of vertices (i.e., subsystems). In particular, the
(structured) generalized edge Gramians provide an upper
bound on the real Gramians, as formalized next.

Theorem 6:Consider the networked systemΣ as in (5)
satisfying Assumption 1 and assume that the generalized
edge controllability Gramian and generalized edge observ-
ability Gramian as in Definition 4 exist. Then, they bound the
edge controllability Gramian and edge observability Gramian
as in Definition 3 as

P̄e 4 Π̃c ⊗Q−1, (20)

Q̄f 4 Π̃o ⊗Q. (21)

Proof: The proof is inspired by results from [2] (see
[11] for a similar result). In particular, the controllability case
will be proven, as the observability case follows similarly.
First, it is remarked thatΣe is asymptotically stable, as
follows from Assumption 1 and Theorem 5. As a result,
the edge controllability Gramian̄Pe can be obtained as the
unique solution of a Lyapunov equation, see, e.g., [1]. Now,
consider the matrix

Λ := (I ⊗A− Le ⊗BC) (Π̃c ⊗Q−1)

+ (Π̃c ⊗Q−1) (I ⊗ A− Le ⊗BC)T

+ (Ge ⊗B)(Ge ⊗B)T, (22)

which is of the same form as this Lyapunov equation.
Consequently, ifΛ 4 0, the matrixΠ̃c ⊗Q−1 satisfies the
corresponding Lyapunov inequality and the desired result
follows [5]. The substitution of the relations for the system
matrices as in (1) in (22), hereby exploiting properties of the
Kronecker product [4], leads to

Λ = −2(Π̃c ⊗R)−
(

LeΠ̃
c + Π̃cLT

e −GeG
T
e

)

⊗BBT. (23)

Then, by recalling thatGe = ETG and that (18) holds, it
follows thatΛ 4 0, proving the theorem.

Remark 2:From (20)-(21), it is clear that the tightest
bound is obtained when the solutionsΠ̃c of (18) an Π̃o of
(19) are minimized in some sense. A suitable heuristic is the
minimization of the trace of̃Πc and Π̃o. ⊳

B. One-step reduction by clustering

The matrices̃Πc and Π̃o as in Definition 4 are written as

Π̃c = diag{πc
1, π

c
2, . . . , π

c
n̄e
}, (24)

Π̃o = diag{πo
1, π

o
2, . . . , π

o
n̄e
}, (25)

where the orderingπc
iπ

o
i ≥ πc

i+1π
o
i+1 is assumed. It is noted

that this can always be achieved by a suitable permutation of
the edge numbers. As̃Πc andΠ̃o characterize the controlla-
bility and observability properties of edges, respectively, the
productsπc

iπ
o
i provide a characterization of the importance

of each edge. Consequently, the final edge in the edge system
is assumed to be the least important.

Assuming that the verticesi andj associated to the least
important edge are numbered asi = n̄ − 1 and j = n̄ (this
can again be achieved by a suitable permutation of vertex
numbers), the projection matrices

V =





I 0
0 1
0 1



 , W =





I 0
0

wji

wij+wji

0
wij

wij+wji



 , (26)

are introduced. Then, the approximation of the statex of
Σ as in (5) asx ≈ (V ⊗ I)ξ and projection of the resulting
dynamics byW ⊗ I leads to the one-step clustered system as

Σ̂ :

{

ξ̇ = (I ⊗A− L̂⊗BC)ξ + (Ĝ⊗B)u,

ŷ = (Ĥ ⊗ C)ξ,
(27)

with L̂ = WTLV , Ĝ = WTG andĤ = HV .
In order to analyze the properties of the reduced-order

networked system (27), the matricesE andF as in (6) can
be partitioned according to the clustered verticesi = n̄− 1
andj = n̄ and the corresponding edgel = n̄e as

E =





E00 0
Ei0 Eil

Ej0 Ejl



 , F =





F00 0
Fi0 Fil

Fj0 Fjl



 . (28)

Here, it is noted that the zero entries in bothE andF result
from the fact that the corresponding column represents the
edge connecting vertexi to j. Specifically,Eil ∈ {−1, 1}
andEjl = −Eil. Similarly, Fil = wijEil andFjl = wjiEjl,
as follows from Lemma 1.



Lemma 7:Let the interconnection structure characterized
by L as in (4) satisfy Assumption 1 and consider its
factorization (6), in whichE and F are partitioned as in
(28). Moreover, letL̂ be the reduced-order interconnection
matrix obtained by projection using the matrices (26), letĜ
be the graph on̄n − 1 vertices it characterizes and̂Gu the
underlying undirected graph. Then,

1) the matrixL̂ can be factored aŝL = F̂ ÊT with

Ê =

[

E00

Ei0+Ej0

]

, F̂ =

[

F00
wji

wij+wji
Fi0+

wij

wij+wji
Fj0

]

; (29)

2) the underlying undirected grapĥGu is a tree;
3) the graphĜ contains a directed rooted spanning tree

as a subgraph.
Proof: The first item can be proven by exploiting the

factorization ofL as in (6), from which it follows that

WTLV = WTFETV = (WTF )(V TE)T. (30)

The computation ofV TE, hereby using (28), leads to

V TE =

[

E00 0
Ei0 + Ej0 0

]

, (31)

where it is noted that the final column contains all zeros since
Eil + Ejl = 0. Namely, thel-th (with l = n̄ − 1) column
of E characterizes the edge that connects verticesi and j,
such thatEil ∈ {1,−1} andEjl = −Eil. Similarly, it can
be shown that

WTF =

[

F00 0
wji

wij+wji
Fi0 +

wij

wij+wji
Fj0 0

]

, (32)

hereby using a similar argument to proof that the final
column contains all zeros. Herein, the choice of the weights
in W as in (26) is crucial. Finally, settinĝE and F̂ as the
nonzero columns ofV TE and WTF , respectively, proves
the first item in the statement of the theorem.

To prove the second item, it is noted that the only nonzero
elements in each column in̂E have values given by the pair
(1,−1), which follows from the properties of the original
indicence matrixE as in (28) and the definition of̂E in (29).
Next, it is clear thatÊ has k̄ = n̄ − 1 rows, corresponding
to the vertices of the clustered graph, andk̄ − 1 columns,
corresponding to the edges in the underlying undirected
graph Gu. Moreover, it can be concluded from (31) that
rank Ê = k̄ − 1, such thatGu is connected. As a tree is
the only graph that connects̄k vertices withk̄− 1 edges,Gu

is a tree.
The third item can be proven using similar arguments. It

can be observed that̂F has the same size and structure (in
the sense as in the statement of Lemma 1) asÊ. Next, it
follows from (32) thatrank F̂ = k̄ − 1, such that the result
follows from Lemma 3.

To obtain further properties of the one-step clustered
model Σ̂ as in (27), the corresponding edge system is
considered, hereby exploiting the explicit expression ofÊ
in (29) to defineξe = (ÊT ⊗ I)ξ, leading to

Σ̂e :

{

ξ̇e =
(

I ⊗A− L̂e ⊗BC
)

ξe + (Ĝe ⊗B)u

ŷe = (Ĥe ⊗ C)ξe,
(33)

with L̂e := ÊTF̂ the reduced-order edge Laplacian for the
graph Ĝ. In (33), the matricesĜe and Ĥe are given as
Ĝe = ÊTWTG and Ĥe = HV F̂ (ÊTF̂ )−1, respectively.
Moreover, after expressing (33) in new coordinatesξf =
((ÊTF̂ )−1 ⊗ I)ξe, the reduced-order dual edge system̂Σf

is obtained. Similar to the high-order counterpart in (17),it
has the same form as the reduced-order edge system (33)
with new external input matrixĜf = (ÊTF̂ )−1ÊTWTG
and external output matrix̂Hf = HV F̂ .

The edge system (5) and dual edge system (17) play a
crucial role in the identification of the most suitable vertices
for clustering. After introducing the partitioning

Le =

[

Le,11 Le,12

Le,21 Le,22

]

, Ge =

[

Ge,1

Ge,2

]

, Hf =
[

Hf,1 Hf,2
]

,(34)

it can be shown that their reduced-order counterparts are
related to the high-order versions through (a partial) singular
perturbation procedure, which will be shown to have desir-
able consequences.

Lemma 8:Consider the edge systemΣe as in (16) and the
dual edge systemΣf as in (17) with the partitioned matrices
(34) and the reduced-order counterpartsΣ̂e andΣ̂f obtained
after application of the projection (26). Then,

L̂e = Le,11 − Le,12L
−1
e,22Le,21, (35)

Ĝe = Ge,1 − Le,12L
−1
e,22Ge,2, (36)

Ĥf = Hf,1 −Hf,2L
−1
e,22Le,21. (37)

Proof: First, the relation (35) will be proven. Thereto,
it is noted thatL̂e can be written as

L̂e = ET
00F00 +

1
wij+wji

(Ei0+Ej0)
T(wjiFi0+wijFj0), (38)

which follows from the definitionL̂e = ÊTF̂ and the
definitions of Ê and F̂ in (29). Next, from (8) and the
partitioned matricesE and F in (28) it can be concluded
that

Le,11 = ET
00F00 + ET

i0Fi0 + ET
j0Fj0 (39)

and that the productLe,12L
−1
e,22Le,21 reads

Le,12L
−1
e,22Le,21 = (ET

i0Fil + ET
j0Fjl)

(

ET
ilFil + ET

jlFjl

)−1

× (ET
ilFi0 + ET

jlFj0). (40)

At this point, it is recalled that thel-th column ofE (and
F ) represents the edge connecting verticesi andj, such that
Eil ∈ {−1, 1},Ejl = −Eil andFil = wijEil, Fjl = wjiEjl.
The substitution of these relations in (40) leads to

Le,12L
−1
e,22Le,21 = 1

wij+wji
(wijEi0 − wjiEj0)

T(Fi0 − Fj0),

such that

Le,11 − Le,12L
−1
e,22Le,21 = ET

00F00

+
(

wji

wij+wji

)

ET
i0Fi0 +

(

wij

wij+wji

)

ET
j0Fj0

+
(

wij

wij+wji

)

ET
i0Fj0 +

(

wji

wij+wji

)

ET
i0Fi0. (41)

It can be checked that (41) equals (38), which proves the
relation (35) in the statement of the lemma.

The relations (36) and (37) can be proven similarly.



C. Synchronization preservation and multi-step reduction

The one-step reduced-order systemΣ̂ as in (27) preserves
the property of synchronization, as formalized as follows.

Theorem 9:Consider the networked systemΣ as in (5)
satisfying Assumption 1 and let̂Σ as in (27) be an approxi-
mation obtained by projection. Then, any trajectory ofΣ̂ for
u = 0 satisfies (for alli, j ∈ V̂ := {1, 2, . . . , n̄− 1})

lim
t→∞

(

ξi(t)− ξj(t)
)

= 0. (42)

Proof: By Lemma 7, the reduced-order grapĥG char-
acterized bŷL satisfies all statements of Assumption 1. As a
result, synchronization follows directly from Theorem 5.
Up to this point, a one-step reduction has been considered.
However, the results in Lemma 8 can be shown to have the
following important consequence.

Theorem 10:Consider the networked systemΣ as in (5)
satisfying Assumption 1 and the reduced-order networked
systemΣ̂ as in (27). Assume that the generalized edge con-
trollability Gramian Π̃c and generalized edge observability
GramianΠ̃o exist and consider (24)-(25). Then,

1) Π̃c
1 := diag{πc

1, . . . , π
c
n̄e−1} is a generalized edge con-

trollability Gramian for the reduced-order system̂Σ;
2) Π̃o

1 := diag{πo
1, . . . , π

o
n̄e−1} is a generalized edge

observability Gramian for the reduced-order systemΣ̂.
Proof: The theorem can be proven by following [6].

In particular, after defining the projection matrixTc =
[ I −Le,12L

−1
e,22 ], it can be applied to (18) to obtain

Tc(LeΠ̃
c + Π̃cLT

e −GeG
T
e )T

T
c

= L̂eΠ̃
c
1 + Π̃c

1L̂
T
e − ĜeĜ

T
e < 0, (43)

where (34) is used as well as (35) and (36). It can be seen
that the right-hand side of the equality in (43) characterizes
a generalized edge controllability Gramian for the reduced-
order systemΣ̂, proving the first part of the theorem. The
observability counterpart can be proven similarly.
The results in Theorem 10 show that the one-step reduced
order systemΣ̂ as in (27) can be characterized by the
relevant parts of the original generalized edge Gramians.
Combined with the observation thatΣ̂ satisfies Assumption 1
(through Lemma 7), this implies that the one-step reductions
can be repeatedly applied to obtain a clustered system of
arbitrary order. Here, the preservation of synchronization as
in Theorem 9 remains guaranteed.

V. I LLUSTRATIVE EXAMPLE

To illustrate the reduction procedure, a simplified thermal
model of a corridor of six rooms is considered. Motivated by
[12], each room is modeled as a two thermal-mass system,
leading to the dynamics

C1Ṫ
i
1 = R−1

int (T
i
2 − T i

1)−R−1
outT

i
1 + Pi,

C2Ṫ
i
2 = R−1

int (T
i
1 − T i

2).
(44)

Here, T i
1 and T i

2 represent the (deviations from the envi-
ronmental) temperature of the fast thermal massC1 (rep-
resenting the air in the room) and slow thermal massC2

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6
1 2 3 4 5

u y

Fig. 1. Path graph representing a corridor and clusters after reduction.

(representing solid elements such as walls, floor and fur-
niture), respectively (i.e.,C2 > C1). In (44), Rint is the
thermal resistance between the slow and fast thermal masses
in the room, whereasRout represents the thermal resistance
of the outer walls, hereby assuming that the environmental
temperature is constant. After choosingxT

i = [ T i
1 T i

2 ],
vi = Pi and zi = T i

1, it is readily checked that (44) can
be written in the form (1) withQ = diag{C1, C2}, J = 0,

R =
1

RintC1C2

[

C2/C1 1
1 C1/C2

]

+
1

RoutC2
1

[

1 0
0 0

]

(45)

and B = [C−1
1 0 ]T. In (44), vi = Pi represents the

power associated with external influences other than that
of the outside temperature, being external inputs such as
heaters and the heat exchange with neighbouring rooms. In
particular, a corridor of six rooms is considered, such that
the coupling between the rooms is given by a path graphG
as in Figure 1. The interconnection can thus be written in the
form (1), where the nonzero weights are given by the thermal
resistances of the walls aswij = wji = R−1

wall. Moreover, the
control of the third room is of interest. Assuming that the
temperature of this room can be influenced (e.g., through
heaters) and measured, it follows thatG = HT = e3.
The parameters are taken asC1 = 4.35 · 104 J/K, C2 =
9.24 · 106 J/K, Rint = 2.0 · 10−3 K/W, Rout = 23 · 10−3 K/W
andRwall = 16 · 10−3 K/W.

At this point, it is remarked that the assumptions on the
networked system (5) require that the (internal) dynamics of
each room is equal. However, the thermal resistances of the
walls separating the rooms are part of the interconnection
(2) and can thus vary between rooms.

The generalized edge GramiansΠ̃c andΠ̃o are computed
by solving (18)-(19), hereby minimizing their trace. Then,
the computation of the productsπc

iπ
o
i shows that edge5 has

the smallest influence on the input-output behavior of the
networked system, followed by edges1 and4. Consequently,
a three-step reduction leads to the clusters as in Figure 1,
where it is noted that the rightmost cluster is formed in two
steps. Thus, the two leftmost rooms as well as the three
rightmost rooms are approximated as a single room each.
However, the thermal resistances between these new approx-
imated rooms and room three have been updated according
to the projection (26) (in three steps) to give a good repre-
sentation of the original high-order model. Consequently,the
wall thermal resistances are no longer equal throughout the
(reduced-order) interconnection topology. Finally, Figure 2
shows a comparison of the transfer functions of the original
networked systemΣ as the reduced-order networked system
Σ̂, indicating a good approximation.
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Fig. 2. Comparison of the magnitude of the frequency response functions
T of Σ and T̂ of Σ̂ for the configuration in Figure 1.

VI. CONCLUSIONS

A clustering-based approach towards model reduction of
networks of interconnected passive subsystems is presented
in this paper, hereby exploiting controllability and observ-
ability properties of the associated edge systems. The in-
tuitive approach is shown to guarantee the preservation of
synchronization properties.
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