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Model reduction of networked passive systems through clusting

Bart Besselink, Henrik Sandberg, Karl Henrik Johansson

Abstract—In this paper, a model reduction procedure for represents a reduction of the interconnection topology-le
a network of interconnected identical passive subsystemssi ing to a reduced-order interconnection structure thawelo
presented. Here, rather than performing model reduction on for a convenient physical interpretation. In particuldre t

the subsystems, adjacent subsystems are clustered, leaglito a bsvst dtob . d the int
reduced-order networked system that allows for a convenien Subsystems are assumed 10 be passive an € Interconnec-

physical interpretation. The identification of the subsysems to  tion topology is assumed to have a tree structure. For such
be clustered is performed through controllability and obsev-  systems, the importance of each edge in the interconnection

ability analysis of an associated edge system and it is shown structure (representing a coupling between subsystems) is
that the property of synchronization (i.e., the convergene of studied through an analysis of its controllability and ob-
trajectories of the subsystems to each other) is preservedudng . . . g . .
reduction. The results are illustrated by means of an examg. Serv_ab'l'ty properties, hereby identifying pairs of a@;qt
vertices (subsystems) that are hard to steer apart or diifficu
|. INTRODUCTION distinguish. Motivated by the method of balanced truncatio

Electrical power grids, social networks and the interne?nd its extensions, these pairs of adjacent vertices will be
and biological or chemical networks are examples of largé!ustered to obtain a reduced-order interconnection tapol
scale networks of interconnected dynamical (sub)systems,This analysis relies on two crucial aspects. First, the
see, e.g., [19]. Their large scale and complexity compdisat Passivity property of the subsystems ensures that coatroll
the analysis or control of such networked systems, motigati bility and observability properties of the entire netwatke
the need for tools to obtaiapproximatenetworked systems System can be decomposed into parts associated to the
with lower complexity. interconnection topology and the subsystem dynamics, re-

Model reduction techniques such as balanced truncgpectively. Here, the former is used to identify important
tion [15] or optimal Hankel norm approximation [7] pro- €dges. Second, a novel factorization of the graph Laplacian
vide methods for obtaining reduced-order approximatidns élescribing the interconnection topology is exploited, atthi
large-scale systems [1], [3], but are not directly suited foallows for the definition of aredge Laplaciarfor weighted
application to networked systems. Namely, the application and directed graphs, hereby extending a result from [2X]. Fo
such methods typically does not preserve the intercororectitree structures, this factorization is shown to have dbkéra
structure, making the reduced-order models hard to ireerpiProperties in the scope of model reduction through clusgeri
and potentially irrelevant for the design of distributecheo  Finally, it will be shown that the reduced-order networked
trollers. This paper therefore deals with the developméat o System obtained by the clustering of subsystems preserves
dedicated reduction procedure for networked systemsdbas®&/nchronization (i.e., the convergence of trajectorieshef
on the clustering of subsystems. subsystems to each other) of the original networked system.

Despite the large interest in networked systems, the reduc- 1 he remainder of this paper is organized as follows. After
tion of such systems has not received much attention in ti§€fining the problem in Sectign Il, the edge Laplacian and its
literature. An exception is given by the work in [10], whererelation to synchronization is discussed in Secfioh IlleTh
a method for the clustering of subsystems is developed, copltstering-based model reduction procedure is introduced
sidering subsystems that have scalar first-order dynarics.in Section[IV' and illustrated by means of an example in
different perspective is taken in [14], where networks efid SectiorlV. Finally, conclusions are stated in Secfioh VI.
tical linear (higher-order) subsystems are considerefl.4h Notation.The field of real numbers is denoted By Given
reduction is performed on the basis of these subsystems orflymatrix X' € R™*™, its entry in row: and columnj is
thus leaving the interconnection structure untoucheds It denoted agX);;. The identity matrix of size: is denoted as
noted that such reduction techniques for networked systerfis Wheread,, denotes the vector of all ones of lengthThe

can be considered as a structure-preserving model reduct®H0Scriptn is omitted when no confusion arises. Moreover,
technique [17]. e; denotes the-th column of,,. Finally, X ® Y denotes the

In the current paper, networks of identical linear subKronecker product of the matricés andY’, whose definition

systems are considered. However, rather than performif§d properties can be found in, e.g., [4].
reduction of the individual subsystems, reduction is actde Il. PROBLEM SETTING

by clustering neighbouring subsystems. This thus esdigntia A network of identical subsysters,; is considered, of
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with z; € R™, v;,2; € R™ andi € {1,2,...,7}. The right- The underlying undirected grapfi, thus has an edge be-
most representation iri](1) is a so-called port-Hamiltoniatween vertices andj if at least one of the weights;; and
form [20], [18], in which@ = Q™ = 0 characterizes the wj; is strictly positive, i.e., if there exists at least one diesl
energy stored ir¥; asV(z;) = %x?@xz Next,J = —JT edge betweeri and j. Then, by exploiting the incidence
is a skew-symmetric matrix anll = RT 3= 0 represents any matrix £ € R™"*" (with elements in{0, 41} and wheren,
internal dissipation. It is well-known that such a system iss the number of edges i€,) of an arbitrary orientation of

passive (see, e.g., [20] for a definition of passivity). Gy, the matrixL as in [4) can be factorized as follows.
The subsystemX; as in [1) are interconnected as Lemma 1:Consider the matrix as in [4) and leZ be an
i m oriented incidence matrix of the underlying undirectedpira
Vi = D je g Wia (25 = 20) + 25 Gigus) @ Gu. Then, L can be factored as

whereu; € R™, j € {1,2,...,m} are the external inputs I— pET 6
to the networked system. Iri](2), the weighis; € R - ’ ©)

satisfyingw;; > 0 represent the strength of the diffusive\yhere F has the same structure & In particular, let the
coupling between the subsystems, whergas: R describe ;_th column of E be given as:; — ¢;, i.e., characterizing the
the distribution and strength of the external inputs ambngdgqge connecting verticesand j. Then, thel-th column of

the subsystems. Similarly, external outputs are given by g given asw,je; — wjie;, With w;; the weights as in{2).

S L 3 Proof: It is noted that the matri¥. as in [4) can be
Yi 2321 ij 2] 3) . . . .
. ' o written as the sum of matrices characterizing each edge in
with y; € R™, i € {1,2,...,p}. After defining L as Gy individually, leading toZ = 3~ ; . ., Li;. Here,
— Wi ) { 7& j7 T
L) = 7’ S 4 Lij = (wije; —wjiej)(e; —€5) 7, )
s e @ ) = s = e =€)

and collecting the parametegs; andh,; asG = {g;;} and such that choosing the columns &f and E as (w;;e; —

H = {hy;}, respectively, the networked system given By (1).7:% ) ande; — ¢;, respectively, leads t6](6). "
@) and [B) can be written as The eigenvalues of. can be related to graph-theoretical

. properties by exploiting the notion of a directed rooted
5. {iﬂ =({I®A-L®BC)z+ (G B)u, (5) spanning tree, which is defined as follows (see [8], [16]).

y=(H®C)x
wherez™ = [2T 2T ... 2T ], uT = [« uF ... «T ] and Definition 2: A graph 7 is said to be a directed rooted
yT = [yT yF yT] " " spanning tree if it is a directed tree connecting all vesgtice
Yy |

The objective of this paper is to obtain a reduced-orddP€ 9raph, where every vertex, except the single root vertex
version of the networked systeffil (5) through the clusteriny@S €xactly one incoming directed edge.
of neighbouring subsystems, essentially creating a nesv-int he following result can be found in [16], [13].
connection structure of the foril(2). A cluster is represgnt _ Lemma 2:Consider the matrix, as in [3) withw;; > 0.
by a single subsystem, approximating the dynamics of 'gl_hen,L has at Igast one zero eigenvalue and all nonzero
group of neighbouring subsystems in the original networke@igenvalues are in the open right-half plane. Moreover,
system. Consequently, the resulting reduced-order nkggor has exactly one zero el_genvalue if and only |f_the associated
system is easy to interpret. Furthermore, this reducedrorgdr@Ph G contains a directed rooted spanning tree as a
networked system should preserve synchronization priegert Subgraph. o _ _
(i.e., the convergence of subsystem trajectories to edmrjot NOW, the property of containing a directed rooted spanning
of the original system. Moreover, the input-output behavioll®® as a subgraph can be related to the maffiin the
of the reduced-order system should provide a good approf@ctorization[(6) when the underlying undirected graftis

imation of that of the original networked system. a tree, as stated in the following lemma. .
Lemma 3:Let the graphG characterized by as in [4)
Ill. EDGE LAPLACIAN AND SYNCHRONIZATION be such that the underlying undirected graghis a tree.

The interconnectio{2) of the subsystems as characteriz€éden,rank F = 7 — 1 if and only if G contains a directed
by L as in [4) can be associated to a directed gr@ph  rooted spanning tree as a subgraph.
(V,€) (see, e.g, [8], [13] for details on graph theory). Here,  Proof: First, it is noted that, agj, is a tree, it has
V ={1,2,...,7} represents the set of vertices characteriza — 1 edges and® € R™*("~1) (see also the definition of
ing the subsystems ar®iC V x V gives the set of directed F in the statement of Lemnid 1). Consequently, the rank of
edges (or arcs) satisfying, j) € £ if and only if w;; > 0. F is at mostn — 1. Assume, for the sake of establishing a
Besides this directed gragh an undirected version of the contradiction, thatank F' = i — ¢ with ¢ > 1. Then, by the
same graph is introduced as follows. rank-nullity theorem, the null space @™ has dimension
Definition 1: Let G be a directed graph with vertex sgt c. If V € R™"¥¢ is a basis for this null space, it satisfies
and (directed) edge sét Then, the undirected gragh, = FTV = 0. Evaluation of the produd™L = VTFET =0
(V, &) with (¢,7) € & if and only if w;; +wj; > 0 is said implies thatV is also in the null space of™, such that
to be the underlying undirected graph. rank L < i —c¢ < n — 1. However, that contradicts the



assumption of the existence of a directed rooted spannimghere the factorizatioh = FET and the definition ofe as
tree as a subgraph via Lemia 2, such thatkk ¥ =7 — 1.  in (@) is used. Motivated by its role in the dynamiCs (5), the
To prove the converse, assume thatk 7 = n— 1. Also, matrix Le might be thought of as the (directed and weighted)
asG, is a treerank E = n— 1. Then,L = FET represents edge Laplacian for the grapfi. The edge Laplacian for
a full-rank factorization (see [9]) andank L. = 7 — 1. unweighted and undirected graphs is studied in [21]. <
Consequently, by Lemmi 27 contains a directed rooted The edge Laplaciaih,, as introduced in Lemnid 4, can be

spanning tree as a subgraph. B exploited to study synchronization of the networked system
In the remainder of the paper, networks with a tre& as in [3), as stated in the following theorem.
structure will be considered. Theorem 5:Consider the networked systeB as in [5)
Assumption 1.The interconnection structure characterwith passive subsystem®; as in [1). Moreover, let the
ized by L as in [4) is such that: interconnection structure characterizedibgs in [4) be such
1) the underlying undirected gragh is a tree, i.e.ie = that Assumptiofill holds. Then, any trajectorysdfor u = 0
n—1; satisfies (for alki, j € V)
2) the gra contains a directed rooted spanning tree
: as agsurk;zgaph. P ’ }iggo (xi(t) - (t)) =0. (12)

Here, it is remarked neither of these items implies the other  poot: |n order to prove the theorem, it is remarked that

Under Assumption{i]l, the following lemma holds. . synchronization as if_(12) can be equivalently characteriz
Lemma 4:Let the interconnection structure characterlzeq,y asymptotic stability of the edge dynamics as [l (11)
by L as in [3) satisfy Assumptiof]1 and consider it "~ (. Therefore, asymptotic stability of the edge
factorization [6). Then, the matrix dynamics[(Il) will be shown by introduction of the candidate
Le=ETF, (8) Lyapunov function

which will be referred to as thedge Laplacian has all V(ze) = g (K ® Q)ae, (13)

eigenvalues in the open right-half plane. Moreover, these T ) . .
eigenvalues equal the nonzero eigenvalues .of whereQ = @ ~ 0 is the energy function of the passive

. - .
Proof: To prove this lemma, introduce the matfikas Subsystems as iri](1). The matrix = K= - 0 in (13)
T will be specified later. It is noted that, as bofki and

T — [VT] 9) @ are symmetric positive definite, their Kronecker product
I K ®(Q is symmetric positive definite as well. The time-

where v is the left eigenvector for the zero eigenvalue oflifferentiation of [18) along the trajectories bf{11) for= 0,
L, ie,vTL = 0. By the second item of Assumptidd 1 hereby using properties of the Kronecker product as well as
and Lemma R, this eigenvalue has multiplicity one, sucH = —J" leads to
that v is unique (up to scaling). Also, by exploiting Perron- - o7 T T
Frobenius theory (see, e.g., [9]), it can be shown that aIY(xe) - IeT (_2KT® QRC?F_ (Le K + KLe) ® 07 C) e,
elements ofv are nonnegative (and = 0). It is therefore < (IOCT)((—Le K — KLe) ® I)(IRC)ze, (14)
assumed that is scaled such that'1 = 1. As each column
of E has only zero elements except for the pair—1), v
is linearly independent of the columns &f and T as in
(9) is nonsingular. Thus, its inverse exists. In particuitais
given asT~! = [1 F(ETF)~!]. Then, the application of

where the propertyz = RT = 0 is used to obtain the latter
inequality. As Assumptiohl1 guarantees thale is Hurwitz
(through Lemm&l4), there exists a matfix= KT = 0 such
that LI K + K Le = oI for somea > 0. Then, [1#%) satisfies

the similarity transformatiod” to L as in [4) leads to V(xe) < —azT (I ® CTYI ® C)ae, (15)
TLT ! = 0 2 — (00 . (10) and asymptotic stability of the edge dynamitcs] (11) follows
0F F 0 Le

. _ . from observability of the subsystends; (through minimal-
By Assumptior]l and Lemmid Z, contains only a single ity) and LaSalle’s invariance principle (see, e.g., [18])m
zero eigenvalue, which is isolated from the matkixin the

representation (10). Consequently contains all non-zero IV. M ODEL REDUCTION THROUGH CLUSTERING
eigenvalues of_, which are in the open right-half plane by o -
Lemmal2. m A. Edge controllability and observability

Remark 1: The matrixLe in (8) is directly related to the ~ The reduction of the networked syste¥h as in [3) will
dynamics on the edges of the networked systédm (5). To shdve performed by clustering adjacent vertices (subsystems)
this, the edge coordinates = (ET ® I,,)x are introduced, To identify the vertices to be clustered, the importance of
representing the difference between the state componéntstlee edges connecting vertices will be analyzed. There#, th
two neighboring subsystems. By exploiting the networkeddge systeris introduced as

dynamics|[(b), it is readily shown that satisfies e = (1® A= Le® BC)wo+ (Ge® Blu

C'Ce = (Iﬁfl XA — Le ® BO)CCE + (ETG ® B)U, (11) Ee : { Ye — (He ® O)xe, (16)



with ze = (ET® 1)z € R"!, Ge = ETG and He = which is of the same form as this Lyapunov equation.
HF(ETF)~!. Also, it is convenient to introduce a different Consequently, ifA < 0, the matrixII° ® Q! satisfies the

realization of [I6), leading to thdual edge systeras corresponding Lyapunov inequality and the desired result
. follows [5]. The substitution of the relations for the syste
= [I®A—-L®BC Gi® B . . : " .
NS {gny _ EH ® )z € Jor + (G Ju (17)  matrices as in{1) iM(22), hereby exploiting propertieshe t
€ f " Kronecker product [4], leads to
with 2t = (ETF)™' @ Iae, Gt = (ETF)~'Ge and Hy = . .
win o = (B @ e G = (BRE) " Ge and B = fo ) — (Lefi® + TOLY — GoG) @ BT, (23)
Motivated by the well-known reduction method of bal-114, by recalling thatie — ETG and that [IB) holds, it
anced truncation [15], the importance of edges will b?oIIOV\;s that A < 0 provineg the theorem .
characterized through their controllability and obseilitgb Remark 2'F?or;1 20)120), it is clea.r that the tightest
properties, motivating the following definition. bound is obtained when the solutiof§ of (8) anII® of
Definition 3: '_I'_he matrl_cesPe and @y are said _t_o be the_ (I9) are minimized in some sense. A suitable heuristic is the
edge controllability Gramian and edge observability Giami minimization of the trace ofI® and II° <

of the systemX as in [B) if they are the controllability

Gramian of X as in [I6) and the observability Gramianp, One-step reduction by clustering
of X as in [AT), respectively.

As the edge Gramians in Definitidd 3 do not necessarily
allows for an insightful characterization of the importanc 1I¢ = diag{n$, 75, ..., e}, (24)

of individual edges, the following matrices are introduced. ~6 o o o

_ Definition 4: The matricesP, = II°® Q! and Qs = II® = diag{m?, m3, ... 75}, (25)
II°®Q are, respectively, said to be a generalized edgghere the ordering$r® > =<, , 72, | is assumed. It is noted
controllability Gramian and a generalized edge obseritgbil that this can always be achieved by a suitable permutation of
Gramian for the networked systefhas in [5) if the matrices the edge numbers. AS® andII° characterize the controlla-
II¢ >= 0 andII® = 0 are diagonal and satisfy the inequalitieshility and observability properties of edges, respecyiviie

The matricedI¢ andTI° as in Definition % are written as

R ~ e o . o :
Ll + LT — ETGGTE 5 0, (18) productsmir? provide a character_lzatlon of_ the importance

Teo o T of each edge. Consequently, the final edge in the edge system
LeIlU +1Le — " H HE 7 0. (19) is assumed to be the least important.

The introduction of the generalized edge Gramians allows fo Assuming that the verticesandj associated to the least
the interpretation of controllability and observablityoper- important edge are numberedas- 77 — 1 and j = 7 (this

ties on the basis of the interconnection topology only, thu&an again be achieved by a suitable permutation of vertex
providing a suitable basis for a reduction procedure basé@mbers), the projection matrices

on clustering of vertices (i.e., subsystems). In partiGutze

I 0
(structured) generalized edge Gramians provide an upper V_ (I)(l) W |0 —vu (26)
bound on the real Gramians, as formalized next. B 01 ’ o 0 Wit |

Theorem 6:Consider the networked systek as in [3) wijtwji

satisfying Assumptiori]1 and assume that the generalizegle introduced. Then, the approximation of the statef
edge controllability Gramian and generalized edge obsery: as in [5) ast ~ (V ® I)¢ and projection of the resulting

ab|l|ty Gramian as in Def|n|t|OE]4 exist. Then, they bound th@ynamics bW ® I leads to the one_step clustered System as
edge controllability Gramian and edge observability Gieami

as in Definition(B as « [E=(I®A-L®BC)Y+(G® B)u,
X4 ~ (27)
D r7c -1 Yy = (H ® C)gv
Or<T°® Q. (1) Wwith L=WTLV, G =W"G andH = HV.

In order to analyze the properties of the reduced-order

Proof:_ 'I_'he proof is inspi_red by results from _[2] (Seenetworked systeni(27), the matric&sand F as in [6) can
[11] for a similar result). In particular, the controllaityicase o partitioned according to the clustered vertices i — 1
will be proven, as the observability case follows similarlyandj — 7 and the corresponding edge- e as

First, it is remarked tha®. is asymptotically stable, as

follows from Assumptiorill and Theorel 5. As a result, Eoo 0 Foo 0
the edge controllability Gramiaf®, can be obtained as the E=|Eog Eq|, F=|FoFy]|. (28)
unigue solution of a Lyapunov equation, see, e.g., [1]. Now, Ejo Eji Fjo Fj

consider the matrix Here, it is noted that the zero entries in bdhand F' result

A=(I®A—-Ls®BC)(II*® Q™) from the fact that the corresponding column represents the
M0 (I®A—L.® BOT edge connecting _ve_rteb'(to j. Specifically, E;; € {—1,1}
+ ( Q )( © ) andEjl = —Ly. Slmllarly, F = wijEil andFjl = wjiEjl,

+ (Ge® B)(Ge® B)", (22)  as follows from Lemmall.



Lemma 7:Let the interconnection structure characterizedvith Ee := ETF the reduced-order edge Laplacian for the
by L as in [4) satisfy Assumptiofi] 1 and consider |tsgraphg In 33), the matrices’e and He are given as
factorization [6), in whichE and F' are partitioned as in Ge = ETWT'G and He = HVF(ETF) , respectively.
(28). Moreover, letL be the reduced-order interconnectionMoreover, after expressindg (33) in new coordinates—
matrix obtained by projection using the matricgs] (26),det ((ETF)‘l ® I)&, the reduced-order dual edge systdin
be the graph om — 1 vertices it characterizes ar@, the is obtained. Similar to the high-order counterpart[in] (if),

underlying undirected graph. Then, has the same form as the reduced-order edge system (33)
1) the matrixL can be factored a = F'ET with with new external input matrixGr = (ETF)"'ETWTG
. Foo A Foo and external output matrixly = HV F.
= [E VB ], { wii gL wi ] (29) The edge systeni](5) and dual edge system (17) play a
TR0 wigtwyi O Wit crucial role in the identification of the most suitable veet

2) the underlying undirected gragh is a tree; for clustering. After introducing the partitioning
3) the graphG contains a directed rooted spanning tree Le11r Leio e
as a subgraph. = {Lem Lem] e= |:Ge2]

Proof: The first item can be proven by exploiting the. ’
factorization ofL as in [8), from which it follows that it can be shown that their reduced-order counterparts are
related to the high-order versions through (a partial) sliag
WTLV =WTFETV = (WTF)(VTE)".  (30) perturbation procedure, which will be shown to have desir-
able consequences.
Lemma 8:Consider the edge syste¥y, as in [16) and the
VTE = { Eoo O} (31) dual edge syster®; as in [17) with the partitioned matrices
Eio + Ejo 0 (34) and the reduced-order counterp&itsand 3 obtained
where it is noted that the final column contains all zerosssincafter application of the projectiof (26). Then,

H; = [ Hiy Hiz],(34)

The computation of/ T E, hereby using[(28), leads to

Ey + Ej = 0. Namely, thel-th (with [ = 7 — 1) column - 1
. . ) Le= Le11 — Le12Lg 2y Leo, 35
of E characterizes the edge that connects verticasd 7, ‘e Tall T Sel2 e &2l (35)
such thatF; € {1,-1} and E;; = —FE;. Similarly, it can Ge = Ge1 — Le12Lg 25Ge2, (36)
be shown that H; = Hy, — Hf72L;212L6721. (37)

WTF = { wi g }iﬁo " 8] (32) Proof: First, the relation[(35) will be proven. Thereto,
wijtwy; T 0T w; +w J0 it is noted thatLe can be written as
hereby using a similar argument to proof that the fina

y g 9 P = EgoFoo + 35— e (Eio+Ejo)" (wji Fio+wi; Fo), (38)

column contains all zeros. Herein, the choice of the weights®
in W as in [26) is crucial. Finally, setting’ and /" as the  which follows from the definitionLe = ETF and the
nonzero columns o™ E and W' F, respectively, proves definitions of £ and £ in 29). Next, from [8) and the

the first item in the statement of the theorem. partitioned matricesZ and F in (28) it can be concluded
To prove the second item, it is noted that the only nonzergat

elements in each column iA have values given by the pair T T T
(1,—1), which follows from the properties of the original Le 1 = Ego oo + EigFio + Ejo Lo (39)
indicence matrix? as in [28) and the definition df in @9). and that the producke 1oL 3, Le 21 reads

Next, it is clear thatt hask = n — 1 rows, corresponding ’

to the vertices of the clustered graph, and- 1 columns, Lei2LeasLeor = (EigFu + EjoFy) (Ej Fu + EjiFyi)
corresponding to the edges in the underlying undirected X (EiTlFio +E7.Tle0), (40)

graph G,. Moreover, it can be concluded fromh {31) that . L
rank £ — % — 1, such thatg, is connected. As a tree is At this point, it is recalled that théth column of F (and

the only graph that connecisvertices withk — 1 edgesgy F) represents the edge connecting verticaad j, such that
is a tree. By € {-1,1}, B = —Ey andFy = w;; By, Fji = wji Ej.

The third item can be proven using similar arguments. ﬂ'he substitution of these relations [n140) leads to

-1

can be observed thdt has the same size and structure (lnLeuLe 22Le 21 = m(wijEiO _ wjiEjO)T(Eo — Fjo),
the sense as in the statement of Lenitha 1)FadNext, it such that
follows from (32) thatrank ' = k — 1, such that the result >
follows from LemmaB. B Leu — LenLgyyLeat = EqyFoo

To obtain further properties of the one-step clustered wis T wi T
model 3 as in [2T), the corresponding edge system is T (wij‘i'wji)EiOF‘io—’— (qurwn)Ejono
considered, hereby exploiting the explicit expressionkbf + ( Wi )E-TF- + ( wji )ET (41
in (29) to definese = (ET @ I)¢, leading to oty ) Bl T3 ) BoFio- (41)

. . . It can be checked thalE- (1) equals](38), which proves the
Se: { ?e - ({® A~ Le® BO)ée + (Ge ® Blu (33) relation [35) in the statement of the lemma.
Je = (He ® C)ée, The relations[(36) and(B7) can be proven similarlym



C. Synchronization preservation and multi-step reduction (2)2 @ 3(22)
The one-step reduced-order systdhas in [2Z7) preserves
the property of synchronization, as formalized as follows. U Y

Theorem 9:Consider the nep/vorked systeB as in [B)  Fig. 1. Path graph representing a corridor and clusters edtiuction.
satisfying Assumptiofi]1 and I&f as in [2¥) be an approxi-

mation obtained by projection. Then, any trajectorybfor

u = 0 satisfies (for alk,j €V :={1,2,...,n — 1 _ _
( J { ) (representing solid elements such as walls, floor and fur-

lim (gi(t) —gj(t)) =0. (42) niture), respectively (i.e.Co > Cy). In (@4), Riy is the
free A thermal resistance between the slow and fast thermal masses
Proof: By LemmalY, the reduced-order graghchar-  in the room, wherea®,, represents the thermal resistance

acterized byl satisfies all statements of Assumptidn 1. As &f the outer walls, hereby assuming that the environmental
result, synchronization follows directly from Theoréin i temperature is constant. After choosing = [T} T%],
Up to this point, a one-step reduction has been considered. = P, and z; = 7, it is readily checked tha{(44) can
However, the results in Lemnia 8 can be shown to have thg written in the form[{1) withQ = diag{Cy,Cs}, J =0,
following important consequence.

Theorem 10:Consider the networked systel as in [5) B 1 Cy/Cp 1 1 10 45
satisfying Assumptiori]1 and the reduced-order networked™™ R, 01O [ 1 01/02] + RouC? [O O] (45)
systemX as in [2T). Assume that the generalized edge con-
troIIabiIity~GramiaanC and generalized edge observabilityand B = [C;' 0]T. In (@4), v, = P; represents the
GramianII® exist and considef (24)-(R5). Then, power associated with external influences other than that

1) ﬁg = diag{n$,..., 7S __,} is a generalized edge con- of the outside temperature, being external inputs such as

trollability Gramian for the reduced-order systeih heaters and the heat exchange with neighbouring rooms. In

2) 19 := diag{n?,...,7° _,} is a generalized edge Particular, a corridor of six rooms is considered, such that

° the coupling between the rooms is given by a path g@ph
].as in Figuré1L. The interconnection can thus be written in the
form (T), where the nonzero weights are given by the thermal

observability Gramian for the reduced-order system
Proof: The theorem can be proven by following [6
In particular, after defining the projection matrik., =

i —1
[I —Le12LgL, ], it can be applied td{18) to obtain resistances of th_e walls ag; = wji = Iy, Moreover, the
’ ’ control of the third room is of interest. Assuming that the
T.(Lell® + TI°LY — GeGE)TT temperature of this room can be influenced (e.g., through
= Lol +TISET — GCT = 0 (43) heaters) and measured, it follows tha@t = HT = e3.
- 1 1+e e 7

The parameters are taken @ = 4.35 - 10* J/K, Cy =

where [3%) is used as well ds{35) afd](36). It can be sed@m4-10% J/K, Riny = 2.0- 1073 K/IW, Roy = 23-1073 KIW
that the right-hand side of the equality [n{43) charactsiz and Rya = 16 - 1073 K/W.
a generalizedA edge controllability Gramian for the reduced At this point, it is remarked that the assumptions on the
order systen:, proving the first part of the theorem. Thenetworked systeni]5) require that the (internal) dynamfcs o
observability counterpart can be proven similarly. B each room is equal. However, the thermal resistances of the
The results in Theorem 110 show that the one-step reducells separating the rooms are part of the interconnection
order systemX as in [2T) can be characterized by thefd) and can thus vary between rooms.
relevant parts of the original generalized edge Gramians. The generalized edge Gramiat$ andII° are computed
Combined with the observation thEtsatisfies ASSUmptidﬂ 1 by So|ving [B).[@)’ hereby m|n|m|z|ng their trace. Then,
(through Lemmal7), this implies that the one-step redustiothe computation of the product$§=® shows that edgé has
can be repeatedly applied to obtain a clustered system @fe smallest influence on the input-output behavior of the
arbitrary order. Here, the preservation of synchronizei® networked system, followed by edgesnd4. Consequently,
in Theorent® remains guaranteed. a three-step reduction leads to the clusters as in Figure 1,
where it is noted that the rightmost cluster is formed in two
steps. Thus, the two leftmost rooms as well as the three

To illustrate the reduction procedure, a simplified thermajghtmost rooms are approximated as a single room each.
mOdel Of a COI’ridOI‘ Of SiX rooms iS Considered. MOtivated by-|owever, the thermal resistances between these new approx_
[12], each room is modeled as a two thermal-mass systeffated rooms and room three have been updated according

V. ILLUSTRATIVE EXAMPLE

leading to the dynamics to the projection[{26) (in three steps) to give a good repre-
C\Ti = Ri;tl (T4 — T¥) — Ry i + P, a4 sentation of the prlgmal high-order model. Consequetttly,
hi _ p—1/pi i (44)  wall thermal resistances are no longer equal throughout the
CQTQ - Rint (Tl - TQ)-

(reduced-order) interconnection topology. Finally, Figl@
Here, T} and T4 represent the (deviations from the envi-shows a comparison of the transfer functions of the original
ronmental) temperature of the fast thermal mégs(rep- networked systent as the reduced-order networked system
resenting the air in the room) and slow thermal méss 3, indicating a good approximation.



Fig. 2. Comparison of the magnitude of the frequency respémsctions
T of ¥ andT of X for the configuration in Figurg] 1.
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VI. CONCLUSIONS [21]

A clustering-based approach towards model reduction of
networks of interconnected passive subsystems is presente
in this paper, hereby exploiting controllability and obser
ability properties of the associated edge systems. The in-
tuitive approach is shown to guarantee the preservation of
synchronization properties.
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