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Absolute stability attracted much attention in the 1960s. Several stability conditions for loops with slope-
restricted nonlinearities were developed. Results such as the Circle Criterion and the Popov Criterion
form part of the core curriculum for students of control. Moreover, the equivalence of results obtained by
different techniques, specifically Lyapunov and Popov's stability theories, led to one of the most

For Lurye systems this work culminated in the class of multipliers proposed by O'Shea in 1966 and
formalized by Zames and Falb in 1968. The superiority of this class was quickly and widely accepted.
Nevertheless the result was ahead of its time as graphical techniques were preferred in the absence of
readily available computer optimization. Its first systematic use as a stability criterion came 20 years after
the initial proposal of the class. A further 20 years have been required to develop a proper understanding
of the different techniques that can be used. In this long gestation some significant knowledge has been
overlooked or forgotten. Most significantly, O'Shea's contribution and insight is no longer acknowledged;
his papers are barely cited despite his original parameterization of the class.

This tutorial paper aims to provide a clear and comprehensive introduction to the topic from a user's
viewpoint. We review the main results: the stability theory, the properties of the multipliers (including
their phase properties, phase-equivalence results and the issues associated with causality), and convex
searches. For clarity of exposition we restrict our attention to continuous time multipliers for single-input
single-output results. Nevertheless we include several recent significant developments by the authors
and others. We illustrate all these topics using an example proposed by O'Shea himself.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.
1. Introduction

A feedback interconnection of a linear system and a static
nonlinearity is said to be absolutely stable if the interconnection is
stable (in some sense) for every nonlinearity in a given class. The
theory of absolute stability has occupied an important portion of
the control theory literature due to its relevance to a variety of
practical control/systems engineering problems. The absolute
stability problem can be studied, broadly, from either the per-
spective of internal stability, or from that of input–output stability.
The former, and perhaps more common, approach typically
involves the search for the parameters of a proposed Lyapunov
function which can be used to guarantee asymptotic stability of
lished by Elsevier Ltd. All rights re

ster.ac.uk (J. Carrasco),
ter.ac.uk (W.P. Heath).

, Zames–Falb multipliers for
//dx.doi.org/10.1016/j.ejcon.
the origin for as large a class of nonlinearities as possible. The
latter approach involves the use of transfer functions called mul-
tipliers. In their classical interpretation they are used to translate
one nonlinear passivity-type problem into another linear, easier to
solve, passivity-type problem. The aim, again, is to choose a mul-
tiplier within a predefined class of multipliers which allows input–
output stability to be guaranteed for as large a class of non-
linearities as possible. In this paper, attention is focused on input–
output stability from the perspective of passivity and in particular
on the properties of the so-called Zames–Falb multipliers.

The multiplier approach attracted much attention from the
control community in the 1960s. One reason for this was, without
the computing power of today, researchers were able to glean a
great deal about the absolute stability of a system purely from the
properties of the linear part. In an early paper the concept of
multiplier was used by Brockett and Willems [9] and the idea
developed rapidly from this (see [58]). Despite this early promise
and flurry of activity, probably the most widely known absolute
served.
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stability tools today are the Circle and Popov Criteria (see [79,38])
which have become standard, in part due to their simplicity and in
part due to their graphical interpretations. However, when a
tighter description of the nonlinearity is available, these criteria
are well-known to be conservative. In such cases, the use of more
general multiplier methods can be useful and, in particular, the so-
called Zames–Falb multipliers can often be used to improve pre-
dictions made about stability and performance of the inte-
rconnection.

Despite their moniker, Zames–Falb multipliers were actually dis-
covered by O'Shea (his portrait is shown in Fig. 1) in [59,60]. While the
treatment of O'Shea [59] was restricted to causal multipliers, the aim
of [60] was to extend this definition to noncausal multipliers: “this
modification allows greater freedom in the phase variation of GðjωÞ
þ1=k outside of the 7901 band”. There were several correspondence
items discussing these [88,85,23]. A rigorous and correct treatment
was first given in the much-cited paper by Zames and Falb [89]. The
contribution of O'Shea was fully acknowledged by all concerned at the
time. As an example, Desoer and Vidyasagar [22] state that the “idea
of using noncausal multipliers is due to O'Shea.”
Fig. 1. R.P. O'Shea, reproduced with kind permission of [71].

Fig. 2. Internal model control where the plant dynamics are assumed known save
for an additive uncertainty.
However, the class of multipliers aroused little further interest
for 20 years, until the proposal of Safonov and Wyetzner [65] for
computer-aided search and the illustration by Megretski and
Rantzer [54] of multiplier analysis embedded within the frame-
work of IQCs. In these and subsequent papers the pioneering work
of O'Shea was largely overlooked. The terminology “Zames–Falb
multiplier” appears to have been coined by Chen and Wen [18,19]
in their proposal for a convex search. This development, while
rightly acknowledging the important work of Zames and Falb, has
had an unfortunate consequence. Zames and Falb [89] focus on the
relation of the nonlinearity to the monotone and bounded static
nonlinearity; O'Shea's insights into the phase properties of the
multipliers have been largely forgotten (with one notable excep-
tion: the discussion of Megretski [51] on phase limitation).

In this tutorial paper we re-examine Zames–Falb multipliers
and, in particular, use an example of O'Shea [60] to discuss the
phase properties of the Zames–Falb multipliers and how they can
be used advantageously in the study of the absolute stability
problem.
Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
European Journal of Control (2016), http://dx.doi.org/10.1016/j.ejcon.
The remainder of the paper is structured as follows. In Section 2
we provide a brief motivating example explaining the significance of
Zames–Falb multipliers, and in Section 3 we review the basics of the
absolute stability problem and some approaches to its solution. In
Section 4 we address at length an example previously discussed by
O'Shea [60]. In particular we discuss how a number of input–output
stability methods can be used for analysis. This section includes a
comprehensive treatment of the application of a multiplier originally
proposed by O'Shea. In Section 5 further properties of Zames–Falb
multipliers are discussed and in Section 6 a brief review of start-of-
the-art computational searches is given. Further developments of
Zames–Falb multipliers are discussed in Section 7 and open questions
considered in Section 8. Finally in Section 9 we conclude and point to
some other recent developments in the use of Zames–Falb multipliers.
While we emphasise the tutorial aspect of this overview, some
mathematical formalism and machinery is inevitable; this is given in
the appendix.
2. Motivating example
Remark 1. Several concepts in this section are formally defined in
Section 3 and/or the Appendix.

Since saturation is a memoryless and slope restricted non-
linearity, the Zames–Falb multipliers can be used to study the
stability/robust stability of systems involving saturation [34]. We
shall illustrate such analysis with an anti-windup example [39]
where robust stability is to be established [73,55]. UðsÞ and YðsÞ are
the Laplace transform of the plant's input and output, respectively.

Consider a plant with additive uncertainty

YðsÞ ¼ GðsÞþ1
γ
Δ

� �
UðsÞ; ð1Þ

where GðsÞ is the nominal SISO transfer function and Δ represents
additive uncertainty with, for any bounded signal u,

JΔuJ2r JuJ2: ð2Þ
In the case where Δ is restricted to be a linear time invariant (LTI)
system we may write this as the familiar H1 norm condition

JΔJ1r1: ð3Þ
Suppose the controller has the internal model control structure
given by

UðsÞ ¼ �Q ðsÞ YðsÞ�GðsÞUðsÞð Þ: ð4Þ
and illustrated in Fig. 2.

The robustness of such controllers is discussed at length by
Morari and Zafiriou [56]. Briefly, if both G and Q are stable, then it
follows from a small gain argument that the loop is stable pro-
vided

JQ J1oγ: ð5Þ
Suppose now there is saturation in the loop, as in Fig. 3. Since the
saturation operator is in series with Δ, a similar small gain argu-
ment [73] says that the loop remains stable provided (5) is
absolute stability: From O'Shea's contribution to convex searches,
2015.10.003i

http://dx.doi.org/10.1016/j.ejcon.2015.10.003
http://dx.doi.org/10.1016/j.ejcon.2015.10.003
http://dx.doi.org/10.1016/j.ejcon.2015.10.003


J. Carrasco et al. / European Journal of Control ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
satisfied. In other words, the antiwindup scheme preserves the
robustness (to additive uncertainty) of the loop without sat-
uration.

But the antiwindup scheme of Fig. 3 can be notoriously slug-
gish. To improve matters, one suggestion in the literature [90] is
the scheme of Fig. 4 with
Fig. 3. Internal model control with saturation.

Fig. 4. The antiwindup scheme of Zheng et al. [90].

Fig. 5. Lurye system. Both G and ϕ are assumed to be causal.
QbðsÞ ¼
Q ð1Þ
Q ðsÞ �1; ð6Þ

so that

Q ðsÞ ¼ ð1þQbðsÞÞ�1Q ð1Þ: ð7Þ

This often has much better performance, but there is no longer an
a priori guarantee of stability. In our example we consider a case
where the Zames–Falb multipliers can be used to establish such
stability.

Suppose G is first order with a delay (a standard model in the
process industries):

GðsÞ ¼ e� sd b
sþa

: ð8Þ

A natural choice for Q is then:

Q ðsÞ ¼ c
b
sþa
sþc

: ð9Þ

In the unconstrained (saturation � identity) case, robust stability
is established via (5) which in this case reduces to

max
c
b
;
a
b

� �
oγ: ð10Þ

In the constrained (saturation ≢ identity) case, establishing
robust stability is much more difficult. However the constrained
loop is stable [55] provided there exists a multiplier (of some
form) M such that

1�Qn

bM
n�MQb�M�MnþMnMQ ð1Þ2=γ2o0; ð11Þ

at all frequencies. It may not be possible to satisfy this inequality
with a constant M (and it cannot be satisfied with constant M if
JQ J1-γ), but for our example, it is straightforward to check that
the inequality is satisfied if we choose

MðsÞ ¼ sþa
sþc

: ð12Þ

It transpires that this belongs to the class of first order Zames–Falb
multipliers provided 0oao2c. In this case the robust stability of
the constrained loop is established using a Zames–Falb multiplier.
Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
European Journal of Control (2016), http://dx.doi.org/10.1016/j.ejcon.
3. Preliminaries

In an early paper, Brockett and Willems [9] use the concept of a
multiplier. The aim of its use is to reduce the conservatism of the
open loop approach which is used to analyse the stability of the
problem. The advantage of this approach is that the condition to
be tested will only depend on the linear system G and the max-
imum slope of the nonlinearity k.
3.1. The Lurye problem

The Lurye problem consists of finding conditions on the linear
system G such that the feedback interconnection between G and
any nonlinearity ϕ that belong to some class of nonlinearities is
stable. As stability must be ensured for the whole class, the
adjective absolute is added, and this problem is also known as the
absolute stability problem (see [47] for an overview).

The feedback interconnection in Fig. 5 is defined by
u1 ¼ r1�ϕu2;

u2 ¼ r2þGu1:

(
ð13Þ

It is usual, although not necessary, to assume that G is strictly
proper. This is enough to ensure the feedback between G and any
slope-restricted nonlinearity is well-posed (i.e. that u1 and u2 are
uniquely defined given r1 and r2, all on the extended spaces
defined in the appendix). The system is said to be input/output
stable if for any r1AL2, r2AL2 we also have u1AL2 and u2AL2.

In this paper we consider the class of static nonlinearities with
slope less than or equal to k. With an abuse of notation we use ϕ to
denote both the memoryless operator ðϕ : L2e-L2eÞ and its
associated nonlinear function ϕ : R-R.

Definition 1. A static nonlinearity ϕ is said to be slope restricted
ϕAS½0; k� if for any real number x and y we have

0rϕðxÞ�ϕðyÞ
x�y

rk: ð14Þ

The Linear Time Invariant (LTI) system G is given by

_x ¼ AxþBu; ð15Þ
y¼ CxþDu; ð16Þ
and its transfer function is GðsÞ ¼ CðsI�AÞ�1BþD. Henceforth, we
will no longer distinguish between LTI operators and their transfer
functions. The Rosenbrock system matrix

ð17Þ

will be used as shorthand. Gn denotes the adjoint of G and it is
given by GnðsÞ ¼ G0ð�sÞ:
absolute stability: From O'Shea's contribution to convex searches,
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Fig. 6. Loop transformation. If the map ~ϕ from ~u2 ¼ u2�y2=k to y2 is passive, then
it suffices for stability to test whether ~G ¼ Gþ1=k is strictly input passive, where
~y1 ¼ y1þu1=k.

Fig. 7. Multiplier theory. If the map S1 ¼ ϕM�1 is passive then it suffices for sta-
bility to test whether S2 ¼MG is strictly input passive.
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We assume G is stable (i.e. A is Hurwitz); hence we may assume
r1 ¼ 0 without loss of generality. If G is unstable, the loop would be
unstable with ϕ being the zero operator.

3.2. The Nyquist value and the Kalman conjecture

The class of slope restricted nonlinearities ϕAS½0; k� includes
the linear gains τk with τA ½0;1�. This provides some insight to the
absolute stability problem. In particular it is necessary for absolute
stability that the Lurye system be stable with any such linear gain.
The Nyquist value kN is the maximum value of k for which this
holds:

Definition 2 (Nyquist value). Let GARH1 with Rosenbrock sys-
tem matrix (17). The Nyquist value is given by

kN ¼ sup k40 : A�τBCkð1þτkDÞ�1is Hurwitz for all τA ½0;1�
n o

:

ð18Þ

It is tautologous to say that for absolute stability we require
kokN . As a result, the inverse of the linear system ð1þτkGÞ needs
to be bounded for all τA ½0;1�. This fact implies that for absolute
stability to hold the phase of the system ð1þkGÞ must be within
the interval ð�1801;1801Þ.

Kalman [35] made the conjecture that consideration of feed-
back with linear gain was also sufficient for absolute stability:

Kalman Conjecture [35]. Let ϕ be a memoryless nonlinearity
slope-restricted on SA ½0; k�. Then, the Lurye system in Fig. 5 is
asymptotically stable if A�τBCkð1þτkDÞ�1 is Hurwitz for all
τA ½0;1�.

The conjecture has played an important part in the develop-
ment of the absolute stability of feedback systems containing
slope-restricted nonlinearities. It is true for first, second and third-
order continuous-time systems [8]. Thus we know a priori that a
third order system is absolutely stable provided ϕAS½0; kNÞ and we
can benchmark a test for stability by seeking the maximum slope
value and comparing with this upper bound (e.g. [65,16]). But the
conjecture is false in general and the fourth-order counter-
examples proposed more than 40 years ago [26,60,82,46] can also
be used as benchmarks as they can be very challenging for stability
tests. We illustrate such a benchmark in this paper.

3.3. Passivity, loop transformations and multipliers

Passivity theory provides an important stability test for closed-loop
systems. Conditions for stability are simplified since one element of
the Lurye system (13) is LTI and stable. We can assume that r1 ¼ 0
without loss of generality. It is sufficient for closed-loop stability that
ϕ be passive and G be strictly input passive (SIP). A stable operator
ϕ : L2-L2 is said to be passive2 if there exists some βr0 such that

〈ϕu;u〉Zβ for all uAL2:

A stable LTI system G is SIP [10] if and only if there is a δ40 such that

RefGðjωÞgZδ for all ω:

If the nonlinearity ϕ is sector bounded on the interval ½0; k� then
the map from ~u2 ¼ u2�y2=k to y2 is passive. But the system shown in
Fig. 6 is stable if and only if our original Lurye system is stable. Hence,
via a loop transformation argument, it is sufficient for stability for G
þ1=k to be SIP. This is the Circle Criterion.

Similarly, suppose M (a “multiplier”) is a biproper transfer
function whose zeros and poles are all in the left half plane. Then
2 General definitions of passivity are given by [10,38].

Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
European Journal of Control (2016), http://dx.doi.org/10.1016/j.ejcon.
the system shown in Fig. 7 is stable if and only if our original Lurye
system is stable. If ϕM�1 is passive, then it suffices for stability
that MG be SIP.
3.4. Zames–Falb theorem

O'Shea [59,60] proposed a set of multipliers appropriate for slope-
restricted nonlinearities. This included an extension to noncausal
multipliers. The machinery was formalized by Zames and Falb [89] in
their seminal paper.

Theorem 1 (Zames et al. [89]). Consider the feedback system in Fig. 5
with GARH1 , and a slope-restricted nonlinearity ϕAS½0; k�. Assume
that the feedback interconnection is well-posed. Then suppose that
there exists a convolution operator M : L2ð�1;1Þ-L2 ð�1;1Þ
whose impulse response is of the form

mðtÞ ¼ δðtÞ�
X1
i ¼ 1

hiδðt�tiÞ�hðtÞ; ð19Þ

where δ is the Dirac delta function andX1
i ¼ 1

jhi jo1; hAL1; and tiAR 8 iAN: ð20Þ

Assume that:

(i)

JhJ1þ
X1
i ¼ 1

jhi jo1; ð21Þ
absolute stability: From O'Shea's contribution to convex searches,
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(

Fig. 8. Combination of the loop transformation in Fig. 6, multiplier approach in
Fig. 7, and factorization M ¼MaMc . All LTI blocks are in H1 . The structure is used to
justify noncausal multipliers.
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(ii) either hðtÞZ0 for all tAR and hiZ0 for all iAN, or ϕ is odd;
and

iii) there exists δ40 such that

Re MðjωÞð1þkGðjωÞÞ� �
Zδ 8ωAR: ð22Þ

Then the feedback interconnection (13) is L2-stable. □

The corresponding class of multipliers is known as the class of
Zames–Falb multipliers.

Definition 3. The class of Zames–Falb multipliers M is given by all
transfer functions MAL1 whose inverse Laplace transform3 is
given by

mðtÞ ¼ δðtÞ�
X1
i ¼ 1

hiδðt�tiÞ�hðtÞ; ð23Þ

where

JhJ1þ
X1
i ¼ 1

jhi jo1: ð24Þ

This class class will be used for slope-restricted and odd non-
linearities. If the nonlinearity is non-odd, only a subclass of mul-
tiplier can be used.

Definition 4. The class of positive Zames–Falb multipliers Mþ is
given by all transfer function MAM such that the inverse Laplace
transform (23) satisfies that L�1ð1�MÞ ¼ hðtÞZ0 for all tAR and
hiZ0 for all iAN.

Although such definitions may appear formidable at first sight,
it is usual to consider only subclasses. Most searches are restricted
to rational Zames–Falb multipliers (the class RM), where hi ¼ 0
for all i and MARL1. An exception is the search of [65] where
instead hðtÞ ¼ 0 for all t, so the multiplier is a sum of delayed
impulses.

In addition, if M is a Zames–Falb multiplier we can always find
a factorization M¼MaMc where Mc;M

�1
c AH1 and Ma;M

�1
a AH�

1 ,
i.e. Mn

a; ðMn

aÞ�1AH1. This is the cornerstone of [89] to formalize
the use of the class of multiplier proposed by [60]. In the jargon,
this factorization is referred to as a canonical factorization (see
[13], and the references therein).

It is emphasized that the causality assumption of the real sys-
tems G and ϕ is not required on the multiplier, since it is just a
mathematical “device”. Hence M is not required to be causal. It is
required to be bounded in the sense that its impulse response has
finite L1-norm (24). In particular this ensures that M can be fac-
torized into a causal and bounded operator Mc and an anticausal
and bounded operator Ma. For LTI systems, the use of the bilateral
Laplace transform leads to duality properties.4 Loosely speaking, if
a system is assumed to be causal, MAH�

1 means that the impulse
response of the system is unbounded; if a system is assumed to be
bounded, MAH�

1 means that the impulse response mðtÞ is zero for
all t40.

It can be shown that the L1 norm condition (21) on M and the
slope-restriction on ϕ ensures

〈y2;M ~u2〉Z0: ð25Þ
This guarantees the block S2 in Fig. 7 to be positive. Similarly, the
phase property on MðGþ1=kÞ (22) ensures
〈M ~y1;u1Þ〉Z0: ð26Þ
3 Since m : R-R, the bilateral Laplace transform is required.
4 It also leads to intrinsic difficulties [29].

Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
European Journal of Control (2016), http://dx.doi.org/10.1016/j.ejcon.
Nevertheless, stability cannot be ensured since M is not causal.
Zames and Falb used the canonical factorization M¼MaMc to
show stability. The properties of the inner product in Eqs. (25) and
(26) mean we can write

〈Mn

ay2;Mc ~u〉Z0; and 〈Mc ~y1;M
n

au1Þ〉Z0: ð27Þ
As a result, both the blocks S1 and S2 in Fig. 8 are stable and
positive, and hence passive. Therefore, the feedback interconnec-
tion between S1 and S2 is stable (by passivity) and equivalent to
our original Lurye problem.
4. O'Shea's example

Our standard problem is the Lurye problem (13) depicted in
Fig. 5. The nonlinearity ϕ from u2 to y2 is static and slope-
restricted to the interval S½0; k�.

Brockett and Willems [9] suggested plants with the structure

GðsÞ ¼ s2

s4þas3þbs2þcsþd
; ð28Þ

would be challenging to analyse. O'Shea [60] chose a subclass of
the form

GðsÞ ¼ s2

ðs2þ2ζsþ1Þ2
; ð29Þ

where the symmetry aids both intuitive understanding and the
ability to find solutions by hand. The symmetry is given by
GðjωÞ ¼ Gnðjω�1Þ. This turns out to be a challenging feature for
several classes of multipliers.

If the nonlinearity ϕ is replaced with a linear gain k, then the
loop is stable for all k and for all 0oζr1; i.e. the Nyquist value is
infinite when ζ is in this range (the phase never drops below
�1801, see Fig. 12). But if ϕ is a saturation block in series with a
gain k, then it is possible to find values of k and ζ that are
apparently unstable. For example, Fig. 9 shows the result gener-
ated in Simulink when ζ ¼ 0:1 and k¼ 2000. Such phenomena
were first observed by Fitts [26], and have attracted much atten-
tion as counterexamples to the Kalman conjecture. Barabanov [8]
questioned the validity of Fitts’ original counterexample; this has
led to considerable discussion [45,43,46]. O'Shea [61] showed that
such loops could be guaranteed stable for all k40 provided
1=2oζr1. For most of our discussion we will fix ζ ¼ 0:6. Fig. 10
shows such stable behavior generated in Simulink when ζ ¼ 0:6
and k¼ 2000.

In the following subsections, we will consider how various
standard criteria can be used to judge stability. In particular we
will be able to associate a particular range of k for each criterion
where stability can be guaranteed.
absolute stability: From O'Shea's contribution to convex searches,
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Fig. 9. Simulated values for signals y1 and y2 when k¼ 2000 and ζ ¼ 0:1. The loop is
apparently unstable.

Fig. 10. Simulated values for signals y1 and y2 when k¼ 2000 and ζ ¼ 0:6. The loop
is apparently stable, and O'Shea's analysis proves it to be.
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4.1. Passivity

In our problem the nonlinearity ϕ from u2 to y2 is passive. It
would therefore suffice for the phase of G to lie on the interval
ð�901; þ901Þ. However G is not passive; its phase approaches þ
1801 at low frequency and �1801 at high frequency (Fig. 12).
Hence the passivity theorem cannot be used directly to establish
stability for any k40.
Fig. 12. Nyquist plot of G when ζ ¼ 0:6. The plot never encircles the �1 point, so
the Nyquist value is infinite. The phase drops from þ1801 to �1801, so G is not
passive. The Nyquist plot of G is always to the right of �0:0868, so the Circle Cri-
terion confirms stability for ko1=0:0868.
4.2. Small gain theorem

The L2 gain of the nonlinearity from u2 to y2 is k. That is to say,
for any u2AL2, we must have Jy2 J2rkJu2 J2. It follows by the
small gain theorem that the loop is guaranteed stable provided

kJGJ1o1:

The H1 norm of G is JGJ1 ¼ 0:6944 (see Fig. 11). Hence we may
conclude the loop is stable for

ko 1
0:6944

¼ 1:44:
Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
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4.3. Circle Criterion

Although the passivity theorem cannot be invoked directly, it
can be used indirectly. The nonlinearity ϕ is sector bounded; it
follows we can use a loop transformation and apply the Circle
Criterion (Fig. 6). It is thus sufficient for Gþ1=k to be SIP for sta-
bility. For our example we find (Fig. 12)

Re GðjωÞ� �
4�0:0868 for all ω:

It follows that the loop is stable provided

ko 1
0:0868

¼ 11:52:

4.4. Popov Criterion

For the Popov Criterion we test whether MðGþ1=kÞ is SIP
where M is a Popov multiplier of the form

MðsÞ ¼ 1þηs with ηAR: ð30Þ
This is a standard and well-known result, although the case with
ηo0 is often ignored [38,80]. In fact it can be derived as a cor-
ollary of the Zames–Falb theorem [9,14].
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Fig. 13. Popov plot for G when ζ¼ 0:6.

Fig. 14. Phase of 1þ15GðjωÞ. There are value of ωo1 where the phase is greater
than þ901 and values of ω41 where the phase is less than �901.

Fig. 15. In blue, phase of ð1þ0:2jωÞð1þ15GðjωÞÞ. In green, the phase of ð1þ0:2jωÞ.
The multiplier raises the phase at all frequencies. (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 16. Phase of MðjωÞðGðjωÞþ1=kÞ with k¼ 2000 and p¼ 0:001. The phase is
always between �901 and þ901.
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One might naïvely expect the Popov Criterion to offer an
improvement over the Circle Criterion. However for this example
the symmetry of G ensures this is not the case. The Popov plot in
Fig. 13 provides a result no better than the Circle Criterion and
shows that the implicit Popov multiplier is 1þ0s, since the dashed
line is vertical. The reason is simple: suppose k411:52 (the
maximum k for which the Circle Criterion guarantees stability).
There is a frequency interval where the phase of 1þkGðjωÞ is
greater than þ901 and a frequency interval where it is less than
�901. See Fig. 14 for the case k¼ 15. Any Popov multiplier that
raises the phase at high frequency (i.e. with positive coefficient)
cannot reduce the phase at low frequency. Conversely, any Popov
multiplier that reduces the phase at low frequency cannot raise
the phase at high frequency. In brief, if k411:52 and given some
ηAR, there must exist some frequency ω where

∠ ð1þηjωÞð1þkGðjωÞ� ��� ��4901:

A typical result with η positive is shown in Fig. 15; a negative η
would result in a similar but opposite effect.

In the 1960s and 1970s, several other frequency domain con-
ditions based on stability multipliers were tested using graphical
interpretations; see [58] as a classical textbook on this topic and
Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
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Section 3.4.1 in [7] for a recent overview. In particular, Table 3.1 in
[7] can be used to show that the symmetry of the phase prevents
other classes of multipliers, such as the Yakubovich multipliers
[87], the RL multipliers [9] or the RC multipliers [9], from
improving on the Circle Criterion for this example. Similarly the
Off-axis Circle Criterion [20] uses either RL or RC multipliers. Note
that Park [62] provides a convex search for the Yakubovich
multipliers.

4.5. O'Shea's multiplier

O'Shea [60] proposed the multiplier

MðsÞ ¼ ðsþ1Þð�sþpÞ
�sþ1

; ð31Þ

with p40 sufficiently small. This is sufficient to ensure the phase
of MðGþ1=kÞ lies above �901 and below þ901 as in see Fig. 16.
This in turn is sufficient for stability even though the multiplier has
a pole in the right half plane, i.e. the multiplier is noncausal.
absolute stability: From O'Shea's contribution to convex searches,
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In particular, the existence of O'Shea's multiplier M with the
property that MðGþ1=kÞ has phase on the interval ð�901;901Þ
guarantees the existence of a Zames–Falb multiplier (Definition 3)
satisfying the conditions of the Zames–Falb theorem (Theorem 1).
Hence the existence of O'Shea's multiplier is sufficient for stability.

The multiplier M suggested by O'Shea (31) itself is not within
the class of Zames–Falb multipliers M. We can write

1
2�p

MðsÞ ¼MZF ðsÞþηs; ð32Þ

with

MZF ðsÞ ¼ 1�2�2p
2�p

1
�sþ1

and η¼ 1
2�p

:

Since MZFAMa we can write M as the sum of a Zames–Falb
multiplier and a Popov term ηs. We require a phase-equivalence
result [14]: if MðGþ1=kÞ has phase in ð�901; þ901Þ and M can be
writtenMðsÞ ¼MZF ðsÞþηs with MZFAM, then there exists a phase-
equivalent MPEAM such that MPEðGþ1=kÞ has phase in
ð�901; þ901Þ. In this case, such a MPE can be constructed as fol-
lows. Put q¼ ð2�2pÞ=ð2�pÞ and choose ρ40 such that qo1�ρ,
for example ρ¼ p=ð4�2pÞ. We can then write

1
2�p

MðsÞ ¼ 1� q
�sþ1

þηs¼ 1�ρ� q
�sþ1

� �
þρ 1þη

ρ
s

� �
;

Then we can write

MPEðsÞ ¼ 1�ρ� q
�sþ1

� �
þρ

1þηs=ρ
1þεs

� �
;

for ε40 sufficiently small. The phases of MðGþ1=kÞ and MPEðGþ
1=kÞ are compared in Fig. 17.

In short, the noncausal multiplier (31) can be used to guarantee
the absolute stability of our example for any positive k provided
p40 is chosen sufficiently small. A similar analysis guarantees
stability for any positive k provided the damping ratio ζ40:5. A
formal proof requires the concept of phase-equivalence [14,15]
which we discuss further in the next section.
Fig. 17. Phases of MðjωÞðGðjωÞþ1=kÞ and MPEðjωÞðGðjωÞþ1=kÞ where M is O'Shea's
multiplier and MPE is a phase-equivalent Zames–Falb multiplier. The parameter ε is
chosen as 10�4. As O'Shea's multiplier includes a Popov term (with positive
parameter η) the corresponding phase tends to þ901 at high frequency, while that
for MPE tends to 0°.
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5. Further properties

The class of Zames–Falb multiplier is one of the possible classes
that have been proposed for analyzing the stability of the Lurye
system (13). The aims of this section are to discuss the phase
properties of the Zames–Falb multipliers and the equivalence
between different classes of multipliers, where it will be shown
that phase is a key factor.

5.1. Positivity

One trivial property of the multiplier is that it must be a
positive system. By definition, a multiplier is required to preserve
the positivity of the class of nonlinearities. As mentioned by Car-
rasco et al. [13], when a scaled identity is within the class of
nonlinearities, then the multiplier itself needs to be positive.
Referring to Fig. 8, this can easily be seen because

〈Mn

a
~ϕ ~u2;Mc ~u2〉¼ 〈 ~ϕ ~u2;MaMc|fflfflffl{zfflfflffl}

¼ M

~u2〉Z0;

where ~u2 ¼ u2�y2=k. Thus if we consider the particular case ~ϕ ~u2

¼ k ~u2 with k40, then

〈 ~ϕ ~u2;M ~u2〉¼ 〈k ~u2;M ~u2〉Z0;

and hence

〈 ~u2;M ~u2〉Z0;

for all ~u2AL2.
The phase of the multiplier is required to be within the interval

½�901;901�. However, we cannot consider this as a limitation of
the multiplier as the phase of ð1þkGÞ must belong to the interval
ð�1801;1801Þ to satisfy the necessity of the Kalman Conjecture.

In the Nyquist diagram, we can find further restrictions on the
Nyquist plot of the multiplier MAM. In particular, we can use L1

norm properties to ensure that the Nyquist plot belongs to a circle
with center ð1;0Þ and radius 1 [66]; see Fig. 18. Loosely speaking, it
is due to the fact that the L1 norm of a system is always greater
than its H1 norm. See [79] for further details.

5.2. Noncausal multipliers

Undoubtedly, O’Shea's main contribution to multiplier theory
was the introduction of noncausal multipliers (see [22, p. 227]).
The motivation was to increase the flexibility of the phase of the
multiplier. In this section, we demonstrate this concept. An ana-
lytic result can be obtained for rational first order Zames–Falb
multipliers.
Fig. 18. Allowed region for the Nyquist plot of Zames–Falb multipliers (see further
details in [12]).
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Lemma 1. Given ϵ40, there exists a first-order causal Zames–Falb
multiplier such that its phase is 901�ϵ at some frequency. However, if
Mc is a causal rational first-order Zames–Falb multiplier, then
∠McðjωÞ4�arcsinð1=3Þ for all ωAR.

Lemma 2. Given ϵ40, there exists an anticausal first-order Zames–
Falb multiplier such that its phase is �90○þϵ at some frequency.
However, if Mac is an anticausal rational first-order Zames–Falb
multiplier, then ∠MacðjωÞoarcsinð1=3Þ for all ωAR.

The proofs of these results are straightforward, but they show
the significant reduction on the selection of the phase of the
multiplier if we limit ourselves solely to causal or anticausal
multipliers for a fixed order (see Fig. 19). However, it can be easily
shown that a causal multiplier can reach any phase by considering
an infinite dimensional multiplier.
Fig. 19. A first-order multiplier cannot reach a phase below �191. A symmetric
figure can be drawn for anticausal multipliers.

Fig. 20. Megretski's phase limitation for Zames–Falb multipliers. If the phase of a
multiplier is above tan �1ρ for a range of frequencies ða; bÞ, then the multiplier
cannot reach a phase below � tan �1ρ over the range of frequencies ðra; rbÞ.
Lemma 3. Given θAð�90○;90○Þ, there exist causal or anticausal
Zames–Falb multipliers with phase θ.

Once again the result is trivial by using the multiplier MðsÞ ¼ 1þ
z1e7 s. Hence one could be tempted to think that there is no phase
limitation if the order is infinite.
5.3. Phase limitations of Zames–Falb multipliers

It has been established that the conditions on the Zames–Falb
multiplier require some limitation in the selection of the phase.5

The lack of such limitation would imply that we can make any
biproper plant appear passive if its phase is within the interval
ð�180○;180○Þ; hence the Kalman conjecture would be true. As the
Kalman conjecture is known to be false, the L1 condition on the
multiplier must have an interpretation as a phase limitation. One
such characterization of a limitation is given in [52] (see Fig. 20).

Lemma 4 (Megretski [52]). Let b4a40, r4b=a be real numbers.
Let

ρ¼ ρða;b; rÞ ¼ supt40
jψ ðtÞj
ϕðtÞ ;
5 For a further discussion on the phase of Zames–Falb multipliers see [27].
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where

ψ ðtÞ ¼ � cos ðrbtÞ
rt

þr cos ðrbtÞ
t

�r cos ðratÞ
t

þ cos ðratÞ
rt

;

and

ϕðtÞ ¼ ðrþ1Þðb�aÞþr sin ðatÞ
t

�r sin ðbtÞ
t

þ sin ðratÞ
rt

þ sin ðratÞ
rt

;

Then ρo1 and there exist no multiplier MðsÞAMþ such that6

∠ðMðjωÞÞ4 tan �1ρ;ωA ½a; b�
and

∠ðMðjωÞÞo� tan �1ρ;ωA ½a; b�
Remark 2. A symmetric result, i.e. negative phase at low fre-
quency and positive phase at high frequency, can be straightfor-
wardly developed.

If it has been shown that there is no limitation in the phase of a
causal or anticausal multiplier, Megretski's result shows that there
is a limitation based on the rate of change of the phase. It can be
easily shown with O’Shea's example. Let us consider k¼1; then
the required phase properties of the multiplier are presented in
Table 1.

As O’Shea [60] mentions, the proposed multiplier ensures sta-
bility for any gain for ζ40:5. For ζo0:5, the problem remains
unsolved, and searches can be tested with this example. However,
Fig. 9 shows that no multiplier can ensure stability for large k
when ζ ¼ 0:1. So the limiting factor for the phase of multiplier is
not the phase itself, but how fast it changes. So, for ζ ¼ 0:5 there
exists a multiplier able to change its phase from �791 up to 791 in
two decades; but for ζ ¼ 0:1, there is no Zames–Falb multiplier
which can change its phase form �881 up to 881 in two decades,
preserving the properties for the rest of frequencies.

The analysis of Megretski [52] is not definitive. It is clear that
restrictions to subclasses of Zames–Falb multipliers, such as the
causal multipliers, impose further limitations in phase. However
no analytic result has yet been provided. Fig. 21 shows the phase of
two causal but irrational multipliers. Their phase spans the inter-
val ð�901; þ901Þ with very fast transitions from �901 up to þ901
but slow transitions from þ901 down to �901.
6 The original result is given for all the Zames–Falb multipliers. However, it
holds only if hðtÞZ0 for all t.
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Table 1
Phase properties of a multiplier in order to show that O'Shea example is stable for
any slope.

ζ �1oωo10�1 10�1oωo101 101oωo1

0.9 ð�901; �701Þ ð�701;701Þ ð701;901Þ
0.7 ð�901; �741Þ ð�741;741Þ ð741;901Þ
0.5 ð�901; �791Þ ð�791;791Þ ð791;901Þ
0.3 ð�901; �831Þ ð�831;831Þ ð831;901Þ
0.1 ð�901; �881Þ ð�881;881Þ ð881;901Þ

Fig. 21. Phase of the multiplier 17e� s .
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5.4. Equivalences

The first equivalence result between classes of multiplier was
given by Falb and Zames [24]. In this paper, they show that given
any RL and RC multiplier (for definitions, see [24,9]), a Zames–Falb
multiplier with the same phase can be found. Then it is no longer
important that the class of Zames–Falb multipliers does not
include some RL and RC multipliers, since we can always find a
“substitute” in the class.

A formal definition is required. However, we need to limit our
set of interest. It is a key step in order to be able to establish formal
substitution and equivalence results. As we have mentioned, the
necessity of the Kalman conjecture is required in order to ensure
absolute stability; hence we will restrict our attention to plants
where this property is required.

Definition 5. The set SR is given by the plants ~G ¼ 1þkG with the
following properties:

� 1þkG is stable.
� ð1þτkGÞ�1 is stable for any τA ½0;1�.

Loosely speaking, given some plant G and maximum slope k,
then ð1þkGÞ∉SR, the existence of a Zames–Falb multiplier such
that ð1þkGÞM is positive can be dismissed. Once we have intro-
duced this class of LTI systems, then formal definitions can be
given.

Definition 6 (Phase-substitute). Let Ma and Mb be two multipliers
and bGASR. The multiplier Mb is a phase-substitute of the
Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
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multiplier Ma when

Re MaðjωÞbGðjωÞ
n o

Zδ1 8ωAR;

for some δ140 implies

Re MbðjωÞbGðjωÞ
n o

Zδ2 8ωAR;

for some δ240.

This property has already been used in Section 4.5, and the
phase-substitution of multipliers with the addition of the Popov
term has been explained. Another simple but insightful equiva-
lence is described as follows:

Definition 7 (Park's multipliers [62]). The class of Park's multi-
pliers is defined as follows:

MPðsÞ ¼ 1þ bs
�s2þa2

; ð33Þ

for any two scalars a and b.

It is straightforward to show that Park's multipliers can be
linked with the class developed by Yakubovich [87]. However, a
more detailed analysis will show that we can find a Zames–Falb
multiplier with the same phase properties.

Firstly, let us find the zeros of a Park multiplier. If b40, then
the zeros will be labelled as follows:

z1 ¼
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a2

p
2

;

z2 ¼
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a2

p
2

;

whereas if bo0 we will use

z1 ¼
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a2

p
2

;

z2 ¼
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a2

p
2

:

This ensures that j z1 jo j z2 j . Note that z1z2o0.
Secondly, the phase of MPðjωÞ is given by the phase of its zeros,

since the phase of its poles cancels out, i.e.

∠ðMPðjωÞÞ ¼ ∠ðjω�z1Þþ∠ðjω�z2Þ: ð34Þ
Finally, the zero with larger absolute value, z2 can be trans-

formed into a pole reflected in the imaginary axis since
∠ðjω�z2Þ ¼ �∠ðjωþz2Þ. As a result, the phase of any Park multi-
plier is given by

∠ðMPðjωÞÞ ¼ ∠ðjω�z1Þ�∠ðjωþz2Þ ¼ ∠
jω�z1
jωþz2

� �
: ð35Þ

So we have found a phase-substitute multiplier that can be
rewritten as follows:

MðsÞ ¼ s�z1
sþz2

¼ 1�z2þz1
sþz2

: ð36Þ

Then, we can check that MAM since

JmJ1 ¼
z2þz1
z2

o1; ð37Þ

where m is the inverse Laplace transform of

z2þz1
sþz2

and we have used that z1z2o0 and j z1 jo j z2 j .
This example and the previous example illustrate the concept

of phase-substitution. Using this concept, it can be shown that a
search over the whole class of Zames–Falb multipliers would be
enough to obtain the best possible result compared with any other
class of multipliers in the literature [14]. Nevertheless the
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significant difficulties in obtaining a convex search over the whole
class of Zames–Falb multipliers mean that the parameterizations
of other classes of multipliers may still be useful. We discuss
searches in the following section.
6. Convex searches

Section 4 has illustrated how various stability tests can be
used to find the maximum slope of the nonlinearity ϕ for
which stability is guaranteed. This, and other sections, have
also illustrated how the selection of an appropriate Zames–Falb
multiplier can enable more accurate statements regarding the
absolute stability of a Lurye system to be made. Using an
example from O’Shea [60] it has been shown that how the
selection of such a multiplier may be achieved for a relatively
simple system. For more complex systems, it is somewhat more
difficult to choose the most “appropriate” Zames–Falb multi-
plier because the set of such multipliers is extremely large and,
in fact, infinite dimensional. Typically, we would like to choose
a multiplier which allows us to make the least conservative
statements about, for example:

1. the size of slope for which stability is guaranteed;
2. the L2 gain from a given input to a given output [71,53].

Choosing such a multiplier which either maximizes the slope size
or minimizes the L2 gain is not trivial. In this section, several
automated searches for rational ðMARMÞ multipliers are intro-
duced. The searches described are based on Chen and Wen [18,19],
which is similar to that implemented in the IQC toolbox [53,36,21],
and also more recent approaches of the authors e.g., [74,16]. The
technique of Safonov and Wyetzner [65] and Gapski and Geromel
[28], which has recently been updated in [17], is briefly discussed
in Section 6.7.

6.1. Linear search in k

Modern searches for multipliers are somewhat different to
classical graphical criteria (see [58]). In graphical criteria with
simple multipliers (e.g. Circle, Popov), kmax is found directly via a
plot of GðjωÞ, even though an auxiliary multiplier is implicit (see
Fig. 13).

The search for more sophisticated multipliers requires a dif-
ferent approach. In this case, a linear search over k is carried out.
Given a value kf, then a search over M is carried out to find a
suitable multiplier for ~G ¼ Gþ1=kf , i.e. we search for a multiplier
MAM such that

RefMðjωÞð1=kþGðjωÞÞgZ0; ð38Þ
for all ω40. If the search is successful, the multiplier found is
suitable for any kokf , i.e.

RefMðjωÞð1=kþGðjωÞÞg ¼ RefMðjωÞ=kgþRefMðjωÞGðjωÞg
ZRefMðjωÞ=kf gþRefMðjωÞGðjωÞg
40 8ωAR; ð39Þ

where we have used that RefMðjωÞg40; hence we can increase kf.
If the search is unsuccessful, we reduce kf until a successful search
is obtained.

Before computational methods were available attempts were
made to interpret the Zames–Falb multipliers graphically e.g.,
[27,48]. It must be highlighted that these geometrical methods
also require a linear search. In this tutorial, we focus on the
development of convex searches, but Section 3.4.1 of Altshuller [6]
provides an overview of such graphical methods (see [5] for an
example).
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6.2. Time and frequency domain conditions

Recall that the system in Fig. 5 is absolutely stable if there exists
a multiplier M¼ 1�HARM which satisfies the following
conditions:

1. a frequency domain condition

Re MðjωÞ 1þkGðjωÞð Þ� �
Z0 8ωAR; ð40Þ

2. a time domain condition

JhJ1r1: ð41Þ

A central issue, which will recur throughout this section, is that
of combining, in an efficient and tractable manner, these two
conditions. In particular, it is generally difficult to provide a fre-
quency domain characterization of the L1 norm, although, as
discussed in Section 5, the L1 norm requirement appears to place a
limit on the rate-of-change of phase of the multiplier [52].

A result which we shall invoke several times in this section is
the so-called Positive Real Lemma given below. This can be inter-
preted as a special case of the KYP lemma [63].

Lemma 5 (Rantzer [63]). Let GðsÞ be a transfer function with
Rosenbrock matrix (17) such that detðjωI�AÞa0 for all ωAR.

1. GðjωÞ⋆þGðjωÞZ0 8ωAR;

if and only if ðA;BÞ is controllable and there exists a P ¼ P0 such that

A0PþPA PB�C0

⋆ �D�D0

" #
r0:

2. GðjωÞ⋆þGðjωÞ40 8ωAR;

if and only if there exists a P ¼ P0 such that

A0PþPA PB�C0

⋆ �D�D0

" #
o0:

The Positive Real Lemma provides a connection between positive
realness in the frequency domain and a matrix inequality. It is of
central importance in casting conditions involving Zames–Falb
multipliers as LMI's.
6.3. Preliminary manipulations
The main goal of this section is to translate the positive real
condition (40) and the L1 condition (41) into tractable, automated
searches. Two approaches to this will be described, but both ways
share some initial manipulation which will be covered here.
Assume first that HðsÞ has state-space realization

ð42Þ
absolute stability: From O'Shea's contribution to convex searches,
2015.10.003i

http://dx.doi.org/10.1016/j.ejcon.2015.10.003
http://dx.doi.org/10.1016/j.ejcon.2015.10.003
http://dx.doi.org/10.1016/j.ejcon.2015.10.003
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where the matrices are to be determined.7 Here
and elsewhere G has the following state-space realization:

ð43Þ

Given these two state-space realizations, it then follows that

ð44Þ

where

ð45Þ

Our objective then becomes a search, over the multiplier state-
space matrices , in order to maximize the scalar k
which represents the slope restriction of our nonlinearity. Invok-
ing Lemma 5 now shows that the positive real condition (40) can,
equivalently, be expressed as a search over real symmetric
matrices P such that the following matrix inequality is satisfied

A0
IPþPAI PBI�C 0

I

⋆ �DI�D0
I

" #
o0: ð46Þ

Using the realization (45), this inequality can be written as

ð47Þ
Note that because the matrices ðAI ;BI ;CI ;DIÞ are affine functions of
multiplier matrices this matrix inequality is

nonlinear, due to products of and P, and therefore not
amenable to efficient solution. While this section does not seem to
have eased the difficulty of the search for Zames–Falb multipliers,
it transpires that the inequality (47) is a useful stepping stone
towards a convex search. The following two sections will show
two different approaches for simplifying this inequality and
imposing the L1 bounds (41).

6.4. Structured multipliers

The problems with searches for multipliers as they stand are
two-fold: the troublesome L1 condition (41) and the nonlinear
matrix inequality (47) that arises as a result of the positive real
condition (40). The approach advocated by [18,19] (see also
[32,53]) is to structure the multipliers in such a way that (i) L1

norm bounds may easily be obtained and (ii) the nonlinear matrix
inequality (47) becomes a linear matrix inequality. The approach
described here follows [18]. The first observation to make is that if
a transfer function, HðsÞ, is given a first order structure, it is easy to
calculate its L1 norm as illustrated below.

Example 1 (A first order multiplier). Let

HðsÞ ¼ κ
sþa

; then JhJ1 ¼
κ
a
:

Thus the L1 bound is simply κ=ao1. For fixed a this is simply a
linear inequality in κ and the associated state-space matrices are
7 Color highlights when these matrices are considered as variables, other
variables within LMI's are typed in bold.
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Notice that, under the assumption that a is constant, three of the
four state-space matrices are constant, which means that
inequality (47) is actually linear. Therefore, with this structure of
multiplier we have obtained a linear inequality for the L1 norm
and a linear matrix inequality for the positive real condition: a
tractable search.

The basic approach by [18] is to extrapolate from the above
example. By restricting attention to a sub-class of Zames–Falb
multipliers, the L1 norm conditions become simple linear
inequalities. Also, because this ensures that matrices AH and BH are
constant, the nonlinear matrix inequality (47) becomes linear.

6.4.1. A class of causal positive multipliers
In order to describe the work of [18] concisely, we first consider

the following sub-class of Zames–Falb multipliers:

RMþ c ¼ MðsÞ ¼ 1�Hþ cðsÞ
� � ð48Þ

where hþ cðtÞ ¼ L�1fHþ cðsÞg is such that hþ cðtÞ ¼ 0 8 to0 and
hþ cðtÞZ0 8 tZ0. In other words, the multiplier is assumed
causal and the impulse response hþ cðtÞ is positive. An example of
such a function is shown in Fig. 22. These assumptions will be
relaxed in subsequent sections.

This representation of the multiplier has several advantages:
firstly it significantly reduces the complexity of the L1 inequality,
viz:

JhJ1 ¼
Z 1

�1
jhþ cðtÞj dt

¼
Z 1

0
jhþ cðtÞj dt ðcausalityÞ

¼
Z 1

0
hþ cðtÞ dt ðpositivityÞ

o1:

In this case, the following theorem can be used for approximating
such functions:

Theorem 2 (On approximation in L1½0;1Þ, Szegö [69]). For any
hðtÞZ0AL1½0;1Þ and any ϵ40 there exists κþ c

i and N such thatZ 1

0
hðtÞ�

XN
i ¼ 0

κþ c
i e� t ti

�����
�����dtoϵ:

The implications of this are the following: by choosing N large
enough, hþ cðtÞ can be arbitrarily well approximated by a sum of
orthogonal functions. This means that, for hþ cðtÞ, we can always
find a phase equivalent multiplier represented by a sum of first
order functions. In addition, with this approximation, the L1 norm
can be calculated explicitly and the L1 constraints are linear
absolute stability: From O'Shea's contribution to convex searches,
2015.10.003i

http://dx.doi.org/10.1016/j.ejcon.2015.10.003
http://dx.doi.org/10.1016/j.ejcon.2015.10.003
http://dx.doi.org/10.1016/j.ejcon.2015.10.003


J. Carrasco et al. / European Journal of Control ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 13
inequalities in κþ c
i :

Jhþ c J1 ¼
XN
i ¼ 0

ðκþ c
i Þi! )

XN
i ¼ 0

ðκþ c
i Þi!o1: ð49Þ

The above follows from considering the Laplace Transform of e� t ti

for iA 0;1;…;Nf g, i.e.

ð50Þ

The main issue in the application of this result is the require-
ment that hþ cðtÞZ0 for all tZ0. To guarantee this, note that hþ c

ðtÞ is given by

hþ cðtÞ ¼
XN
i ¼ 0

κþ c
i e� t ti ð51Þ

for some N and for some κþ c
i to be chosen. Then hþ cðtÞZ0 for all

tZ0 if

XN
i ¼ 0

κþ c
i tiZ0 8 tZ0: ð52Þ

Chen and Wen [19] have shown that this time-domain condition is
equivalent toPN

i ¼ 0 κ
þ c
i ð�1Þis2i

ð1þsÞNð1�sÞN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sþ cðsÞ

Z0 8s¼ jω: ð53Þ

A state-space realization of Sþ cðsÞcan then be given as

ð54Þ

where the structure of the above state-space matrices is given by
[19]. In particular Cþ c and Dþ c are structured affine functions of
the κþ c

i . Then applying Lemma 5 to inequality (54) we obtain the
matrix inequality

A0
þ cXþ cþXþ cAþ c Xþ cBþ cþCþ c

⋆ Dþ cþD0
þ c

" #
r0; ð55Þ

for some Xþ c ¼X0
þ c . Noting that Aþ c and Bþ c are constant, and

that Cþ cðκþ c
i Þ and Dþ cðκþ c

i Þ are affine functions of κþ c
i , we have an

LMI in Xþ c, and structured Cþ cðκþ c
i Þ and Dþ cðκþ c

i Þ. Thus letting
HðsÞ ¼Hþ cðsÞ, inequality (47) can be expressed as the following
Fig. 23. A noncausal multiplier with positive impulse response.
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inequality.

ð56Þ
For a fixed k, inequality equations (54), (56) and (51) form a

system of linear matrix inequalities. Thus, in this case, the search
for a multiplier becomes an LMI problem.

6.4.2. Noncausal multipliers
A restriction in the results derived so far is that we have

assumed the multiplier, MðsÞ is causal, that is hðtÞ ¼ 0 8 to0. As
explained earlier in the paper, this may cause some conservatism.
However, this assumption can be removed relatively easily by
structuring hðtÞ as the sum of a causal part and an anticausal part,
viz,

hðtÞ ¼ hþ cðtÞþhþaðtÞ ð57Þ
where hþ cAL1½0;1Þ and hþaAL1ð�1;0�. An example of such an
hðtÞ is shown in Fig. 23. A similar approximation to that given in
Theorem 2 can then be used to approximate the anti-causal part of
hðtÞ as

hþaðtÞ �
XN
i ¼ 0

κþa
i etti; ð58Þ

which is again a sum of orthogonal terms. Recalling the approx-
imation (52) for the causal part of hþ ðtÞ, the L1 constraint (41) can
again be replaced by the linear inequality

JhJ1 ¼
XN
i ¼ 0

κþ c
i þð�1Þiκþa

i

� �
i!o1; ð59Þ

which is a linear inequality in κþ c
i and κþa

i . In the same way as
before if we assign

ð60Þ

where Aþa and Bþa are constant, and Cþaðκþa
i Þ and Dþaðκþa

i Þ are
affine functions of κþa

i .Then following a similar line of reasoning
to that in Eqs. (53)–(54), it follows that hþaðtÞZ0 providing there
exists a symmetric matrix Xþa satisfying the LMI:

A0
þaXþaþXþaAþa XþaBþaþCþa

⋆ DþaþD0
þa

" #
r0;

In this case, a state-space realization for HðsÞ is given by

This realization can then be used to obtain an LMI from (47).

6.4.3. Non-positive multipliers
Previously it was assumed that hðtÞ ¼ hþ ðtÞZ0 8 t. This

assumption can be relaxed by assuming hðtÞ is the difference
between two positive impulse responses

hðtÞ ¼ hþ ðtÞ�h� ðtÞ hþ ðtÞ;h� ðtÞZ0 8 t ð61Þ
From this it follows that a bound on the L1 norm is given by

JhJ1r Jhþ J1þjh� J1: ð62Þ
Because both hþ ðtÞ and h� ðtÞ are assumed positive for all t,
arguments mirroring those in the two above subsections can be
used to derive LMI conditions for both the strict positive real
condition (47) and the guarantees of positivity. The L1 constraint
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can again be simplified to the inequalityXN
i ¼ 0

ðκþ c
i þð�1Þiκþa

i þκ� c
i þð�1Þiκ�a

i Þi!o1; ð63Þ

which is linear in κþ c
i , κþa

i , κ� c
i and κ�a

i : we have a system of
LMI's as before.

6.4.4. Remarks on the structured approach
There are two main criticisms which could be levelled at the

fixed structure approach.
Complexity/conservatism of approximation: In common with all

Zames–Falb multiplier searches, the approach of [18] searches over
only a subset of these multipliers, namely over the set

RMN ¼ MðsÞ ¼ 1�HðsÞ : hðtÞ ¼
XN
i ¼ 0

κþ c
i e� t tiþκþa

i ettiþκ� c
i e� t tiþκ�a

i etti
( )

�RM:

ð64Þ
The order of the multiplier is proportional to 4N in this case,

where N is a free parameter indicating the accuracy of the
approximation: large N will imply that RMN is in some sense a
denser approximation of RM, but large N implies a large com-
putational burden as the larger number of states imply numerous
LMI variables. In short: there is a clear trade-off between con-
servatism and computational efficiency, and the choice of the
integer N may be problem-dependent. In particular, as N increases,
the problem becomes ill-conditioned.

The decomposition hðtÞ ¼ hþ ðtÞ�h� ðtÞ: Although this decom-
position is not conservative when N approaches infinity (see [78]),
for finite values of N it may introduce some conservatism, since a
triangular inequality is used to bound the L1-norm. This is con-
firmed by numerical results [15]. In particular, if hðtÞ changes sign
(see Fig. 24) a nonsmooth function must be approximated with
smooth functions, which is only possible if N approaches infinity.
As previously mentioned, the problem becomes ill-conditioned as
N increases; hence this decomposition may be conservative in
practice.

6.5. Plant-order multipliers

An issue with the structured multipliers introduced in the fore-
going section is that the conservatism is heavily dependent on the
choice of N which determines the order of the multiplier. Indeed, for
certain choices of multiplier a very large Nwould need to be chosen in
order to reduce the conservatism to acceptable levels. In addition,
although there is a clear trade-off between computational require-
ments and conservatism, the choice of N for a particular problem is by
no means obvious.

For this reason, in a series of papers [74,75,71,12,76,16] the authors
have developed an alternative method for searching for multipliers
based on a change of variables similar to that used in H1 controller
design [67]. The main idea is that, if the multiplier is unstructured, but
Fig. 24. Smooth hðtÞ difficult to decompose as smooth hþ ðtÞ and h� ðtÞ.
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its order is the same as the plant, then a change of variables may be
used to “linearize” some of the resulting matrix inequalities. The
approach also uses a pseudo-LMI approach in order to bound the L1

norm of the transfer function HðsÞ; the approach is conservative but it
can be easily accommodated in the plant-order approach. The
restriction of attention to plant order multipliers, RMPO �RM
obviously introduces some conservatism a priori but the resulting
search procedure is, with a slight caveat, entirely systematic.

6.5.1. Causal plant order multipliers
In this section we restrict ourselves to causal plant order

multipliers

RMPO ¼ MðsÞ ¼ 1�HðsÞ : HðsÞARH1
� �

; ð65Þ
and where degðHðsÞÞ ¼ degðGðsÞÞ ¼ np. The assumption that HA
RH1 implies that the matrix AH is Hurwitz, but no structure is
imposed. This absence of structure in the multiplier is required for
the change of variables proposed later, but it also means that
calculating Jhj 1 accurately is generally difficult. Instead, a con-
venient upper bound from the literature will be used.

Theorem 3 (Scherer et al. [67] and Abedor et al. [1]). Let HARH1.
Then

JhJ1rξ if (Y¼ Y040; μ40; λ40 s:t:

ð66Þ

ð67Þ

It is emphasized that Theorem 3 gives only an upper bound on
the L1 norm, JhJ1rξ; it may be extremely conservative. Another
issue with Theorem 3 is that the two matrix inequalities are “not
quite” LMIs due to the presence of the free scalar λ40. The con-
sequence of this is that the plant order searches proposed here will
take the form of LMI's plus a line search, which is computationally
cumbersome compared to an LMI, but relatively easy – and
entirely systematic – to implement.

The first step in obtaining convenient plant-order multiplier
searches is the partitioning of the matrix P¼ P0 in the positive real
condition (47). It is assumed that P40 and therefore that its
inverse Q �1 ¼ P exists. This allows one to write

Q11 Q12

Q 0
12 Q22

" #
P11 P12

P0
12 P22

" #
¼ I 0

0 I

� �
; ð68Þ

where each of the sub-matrices, Pij;Q ijARn�n. Based on this par-
titioning, the following matrices are defined:

Π1≔
Q11 I

Q 0
12 0

" #
; Π2≔

I 0
P11 P12

" #
: ð69Þ

Using the congruence transformation diagðΠ1; IÞ and noting that
Π1P¼Π2, the positive real condition (47) is equivalent to

Π0
1AIΠ0

2þΠ2AIΠ1 Π2BI�Π0
1CI

⋆ �DI�D0
I

" #
o0: ð70Þ

After some algebra, it can be deduced that this inequality is
equivalent to

S11ApþA0
pS11 S11ApþA0

pP11þkC0
pB

0
HþA0

H S11BpþC0
H�kC0

pð1�DHÞ
⋆ P11ApþA0

pP11þkðBHþC0
pBHÞ P11BpþBHðkDpþ1Þ�kC0

pð1�DHÞ0
⋆ ⋆ �ðkDpþ1Þ0ð1�DHÞð1�DHÞ0ðkDpþ1Þ

2664
3775o0

ð71Þ
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which is an LMI in P11; S1140, AH;BH ;CH;DH for fixed k, where
S11 ¼Q �1

11 and

ð72Þ

ð73Þ

ð74Þ

ð75Þ

A similar congruence transformation can be applied to the L1

inequality equations (66) and (67) in order to arrive at expressions
in the new coordinates ðAH;BH;CH;DHÞ. In order for this to work,
the choice Y ¼ P22 in inequality equations (66) and (67) is made.
With this choice, the congruence transformation diagðQ12; IÞ is
applied to inequality (66) and the congruence transformation diag
ðQ �1

11 Q12; I; IÞ is made to inequality (67). Under these congruence
transformations, inequality equations (66) and (67) then become
equivalent to

�AH�A0
HþλðP11�S11Þ BH

⋆ �μ

" #
o0; ð76Þ

λðP11�S11Þ 0 C0
H

⋆ 1�μ D0
H

⋆ ⋆ 1

264
37540: ð77Þ

Together, for fixed k, inequalities equations (71), (76) and (77)
form a system of linear matrix inequalities plus a line search over
λ40. This problem can be solved relatively easily using modern
software and the multiplier can be recovered by using Eqs. (72)–
(75).

6.5.2. Anticausal multipliers
A key restriction so far is that MðsÞðHðsÞÞ is assumed causal.

Similar results but with MðsÞ assumed anticausal can be obtained
with the aid of the following result.

Theorem 4 (Carrasco et al. [16]). Let HARH�
1 . Then

JhJ1rξ if (Y¼ Y0o0; μ40; λ40 s:t:

ð78Þ

ð79Þ

The consequence of Yo0 is that when applying the KYP (Lemma 5),
for nonsingularity of P to be guaranteed (as we need to use Q ¼ P�1),
instead of stipulating P40, instead it is stipulated that Po0. Using a
similar reasoning to before, it then follows that the positive real
condition is satisfied if the matrix inequality (71) is satisfied. Simi-
larly, invoking Theorem 4 and applying similar reasoning to the
causal case, the L1 inequalities become the following:

�AH�A0
H�λðP11�S11Þ BH

⋆ �μ

" #
o0; ð80Þ

�λðP11�S11Þ 0 C0
H

⋆ 1�μ D0
H

⋆ ⋆ 1

264
375Z0: ð81Þ

Together inequality equations (71), (80) and (81) form a system of
LMI's plus a line search over λ40. This set of LMI's is similar to the
Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
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causal result given earlier but, since it results in the return of antic-
ausal multipliers can sometimes yield much less conservative results.

6.5.3. Including Popov multipliers
Popov multipliers are not bounded on the imaginary axis and

so, strictly speaking, do not belong to the class of Zames–Falb
multipliers. However, following arguments given in Section 4 (see
[14]), they can be considered as anticausal relaxations in the case
of causal Zames–Falb multipliers; or, as causal relaxations in the
case of anticausal multipliers. Space prohibits a full discussion, but
it suffices to say that they are useful in the plant-order searches
proposed earlier (see [71,76]).

6.5.4. Remarks on the plant-order approach
The plant order approach is a systematic search for Zames–Falb

multipliers, but the nature of the approach is inherently restric-
tive: the order is fixed a priori, the manner of including the L1

constraint has several sources of conservatism and, excluding the
Popov terms, the multiplier returned is either causal or anticausal.
A common criticism of multiplier techniques is the poor scaling of
dynamic multiplier searches with problem complexity. The plant
order approach described here also suffers from that due to the
inclusion of the line search over λ, and, to a lesser extent, due to
the full-block nature of the matrix variables in the LMIs. Another
subtle issue with the plant order approach is that, as described
here, it is only applicable to the case of ϕ being odd. This is not the
case with the structured approach of [19] or the approach using
irrational multipliers [17].

6.6. Application of search techniques to O'Shea's example

This section illustrates the application of the search techniques
described to O'Shea's example. The Zames–Falb searches are
compared to the well-known Circle Criterion, Park's Criterion [62]
and also the non-rational Zames–Falb searches of [17], which have
not been described in detail in the paper. The Zames–Falb searches
used are the causal [74] and anticausal plant-order searches [16]
described in Section 6.5, these same searches with the addition of
Popov multipliers [71,76,16], and the structured searches of [18]
from Section 6.4. The plant-order searches were performed by
solving the LMI's given earlier together with a 100 element line
search over logarithmically spaced λ. The Chen and Wen search is
performed with a 18th order multiplier, comprising a 9th order
causal and a 9th order anticausal part. Results are tested using the
IQC toolbox [36].

The results of the various searches are shown in Table 2 for
O'Shea's example using a variety of damping ratios, ζ. For all ζ, the
Nyquist Value is infinite. As mentioned earlier, due to the sym-
metry in the example, Park's Criterion cannot out-perform the
Circle Criterion, leading to identical maximum slope predictions
from both criteria. Safonov and Chang's method gives the greatest
slope value for ζ ¼ 0:6, but for the remaining ζ gives values similar
to Park/Circle. The remaining Zames–Falb searches all do better
than Park for all values of ζ and, perhaps not surprisingly given the
phase symmetry of the problem, the causal and anticausal plant
searches provide exactly the same slope values in all cases.

The structured search of Chen and Wen deserves some expla-
nation: the performance of this technique is highly dependent on
multiplier order. For ζA ½0:2;0:6� with a 18th order multiplier,
Chen and Wen's method took a similar computation time com-
pared with other methods but provided significantly greater slope
values. For higher order multipliers, the results deteriorate. This is
likely to be due to numerical issues associated with the factorials
in the basis representation. For ζo0:05, Chen and Wen's method
provided more conservative estimates of slope size, irrespective of
multiplier order, than the plant order search. For low order
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Table 2
Maximum slope sizes predicted by search methods for various damping ratios in O’Shea's example. When ζ40:5 the maximum possible gain is infinite. The Nyquist value is
infinity for all values of ζ.

ζ Max slope for guaranteed stability

Circle Park [62] Plant order Zames–Falb searches Safonov Structured ZF

Causal CausalþPop. Anticausal AnticausalþPop. 18th order
Turner et al. [74] Turner and Kerr [71] Carrasco et al. [16] Carrasco et al. [16] Chang et al. [17] Chen and Wen [18]

0.6 11.52 11.52 19.9351 23.6229 19.9351 23.6229 399.6129 45.0599
0.55 9.6799 9.6799 17.1323 19.9064 17.1323 19.9064 9.6800 37.5353
0.5 8 8 14.5146 16.5478 14.5146 16.5478 8.0000 32.1810
0.45 6.48 6.48 12.0855 13.5025 12.0855 13.5025 6.4800 27.1045
0.4 5.12 5.12 9.849 10.7913 9.849 10.7913 5.1200 21.9573
0.35 3.92 3.92 7.8131 8.3913 7.8131 8.3913 3.9200 15.9843
0.3 2.88 2.88 5.9839 6.3238 5.9839 6.3238 2.8800 11.0796
0.25 2 2 4.352 4.5276 4.352 4.5276 2.0000 6.7336

0.05 0.08 0.08 0.2156 0.2165 0.2156 0.2165 0.0086 0.1916
0.01 0.0032 0.0032 0.0088 0.0088 0.0088 0.0088 0.0032 0.0034
0.005 0.0008 0.0008 0.0022 0.0022 0.0022 0.0022 0.0008 0.0007

8 Code is available on http://www.michaelwchang.com/zf/
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multipliers this is due to the restricted bases ð1=ðs71ÞNÞ used,
while for high order multipliers numerical issues again become
significant.

This suggests that results can be improved by a better selection
of poles and this is indeed the case. Note that the IQC-toolbox can
be used as a manual search tool by choosing an adequate location
of the poles, hence the multiplier is given by

MðsÞ ¼ 1�
XN
i ¼ 0

κci
ðsþpcÞiþ1þ

XN
i ¼ 0

κai
ðs�paÞiþ1

 !
ð82Þ

for some selection pc40 and pa40. For a discussion in the
selection of these values, see [32]. An inexperienced user may
perform the search using a swap over these two values or a Monte
Carlo approach. However performance then depends on the user's
ability. For example, when ζ40:5, experienced users will under-
stand that the phase of this plant requires a selection of the poles
that concurs with the solution proposed by O'Shea: a very fast
causal pole and an anticausal pole at �1. It does not seem sur-
prising as O'Shea proposed such solution by hand 50 years ago.

O'Shea's example illustrates clearly the complexities in finding
the “best” multiplier, and the current lack of a complete and
tractable method.

6.7. Safonov's search

It is the first tractable search proposed in the literature, Safonov
and Wyetzner [65] proposed a search where the parametrization
of the multiplier contained irrational terms, i.e.

mðtÞ ¼ δðtÞ�
XN
i ¼ 1

ziδðt�tiÞ:

The main advantage of this search is the simplicity to test the
time domain condition. However, it is not possible to check the
frequency domain condition in a convex manner. The lack of an
LMI implementation reduces the usefulness of this search since it
cannot straightforwardly be combined with other classes of
multiplier.

Originally, the impulses where equally distributed over a range
of times resulting in a large optimization problem. To reduce the
computational burden, Gapski and Geromel [28] reduced the size
of the optimization by proposing an iterative method where the
position of a new impulse δðt�tNþ1Þ is obtained if the search with
N impulses fails. Recently, a new sub-algorithm has been proposed
to improve this selection of the new impulse [17]. In Table 2, we
Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
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have used the code developed by Chang and Safonov.8 The results
for ζ40:55 are very good, but this search is not able to improve
Circle criterion results for ζo0:5. Once again, anti-symmetry of
the phase of ð1þkGÞ is a possible explanation. The search for the
new tNþ1 is designed to correct only one region of frequencies
where there is a lack of positivity. So it is possible this the selected
exponential for the multiplier is only able to “fix” one of both
regions where there is lack of positivity. Note that as ζ approaches
zero, non-positive regions are closer each other.
7. Further developments

7.1. The IQC framework

We have framed our discussion in terms of passivity rather
than IQCs (integral quadratic constraints) [54] which provided a
new framework for multiplier theory. Whereas passivity, dis-
sipativity, and Lyapunov theories can be used in any nonlinear
interconnection, the IQC framework restricts its attention to the
Lurye system. It therefore provides a natural framework in which
to work with Lurye problems in general, and Zames–Falb multi-
pliers in particular. Although Megretski and Rantzer [54] provide a
self-contained frequency domain result, the IQC framework was
developed in a combination of frequency and time domains by
Yakubovich [87]. A natural extension of the original IQC frame-
work to obtain stability conditions including Zames–Falb multi-
pliers using convolution results in [23] has been developed in
Altshuller et al. [4] and Altshuller [7].

Furthermore IQC theory provides not only self-contained sta-
bility results, but also computational tools to test stability condi-
tions. For example, the search of Chen and Wen [18,19] is encap-
sulated within the IQC-β toolbox [36,53]. The IQC framework is
especially useful if there is more than one nonlinearity or uncer-
tainty in a feedback loop (e.g. [34]); the motivating example of
Section 2 is most naturally expressed in the IQC framework.

Zames–Falb multipliers were used as an illustrative example by
Megretski and Rantzer [54]. This sparked renewed interest in their
properties and applications. It is therefore worth asking what
advantages the IQC framework offers over and above the user-
friendliness noted above. IQC theory dispenses with the require-
ment that multipliers can be factorized, and this is often claimed
absolute stability: From O'Shea's contribution to convex searches,
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as an advantage over classical methods [54]. But the requirement
that the Zames–Falb multipliers must be factorizable is no
restriction on their generality [89]. It turns out that this is also the
case whenever multipliers are used for a class of nonlinearities
that includes a finite gain [13]. On the other hand the IQC frame-
work allows additional properties of the nonlinearities to be
included in the analysis (for example [71] include a tighter sector
condition); to the best of the authors' knowledge the results of
such analysis cannot be obtained via classical techniques.

The relation between passivity theory and the IQC theorem is
explored by Carrasco et al. [13]. The relation between dissipativity
(and hence Lyapunov methods) and the IQC theorem is beginning
to be understood [86,77,68,11].

7.2. MIMO nonlinearities

Similarly, our treatment has been restricted to SISO systems
with slope restricted nonlinearities. The generalization of the
Zames–Falb theorem to MIMO nonlinearities is discussed by
Safonov and Kulkarni [66]. In particular, it is necessary that the
nonlinearity can be expressed as the derivative of a convex
potential function. This condition is natural for SISO nonlinearities,
but may be restrictive in the MIMO case. In fact the condition was
recognized in the classical literature [83]. It can be shown that the
quadratic program used in input-constrained model predictive
control satisfies the conditions for Zames–Falb multipliers [31].
Often attention is limited to diagonal nonlinearities; if the non-
linearities are repeated then the symmetry may be usefully
exploited [21,40,72]. More generally, it is possible to construct
specific multipliers appropriate for nonlinearities with repeated
blocks [49].

7.3. Discrete-time multipliers

O'Shea also pioneered the equivalent multipliers for use with
discrete-time systems [61]. Formal treatments can be found by
[84] and [82]; their MIMO extension and necessity properties are
given by Willems and Brockett [40] and Willems [49]. The
discrete-time counterpart to the search for causal multipliers of
Turner et al. [74] (and the anti-causal search of [16]) is developed
by Ahmad et al. [2]. A search for a first-order FIR Zames–Falb
multiplier is presented by Ahmad et al. [3]. A generalization to FIR
Zames–Falb multipliers is presented by Wang et al. [81]. This
approach appears highly promising, as it seems to combine the
best aspects of the searches of Chen and Wen [18] and Safonov and
Wyetzner [65]. To analyse the effectiveness of this method, the
discrete counterpart of Lemma 4 by Megretski has been developed
by Wang et al. [80]. An interesting application has been given in
[44], where analysis and design of optimization algorithms have
been carried out using Zames–Falb multipliers.

7.4. Different nonlinearities

Both Rantzer [64] and Materassi and Salapaka [51] allow
relaxations on the condition of the nonlinearity. The nonlinearity
considered in [64] is a perturbation of a nominal odd saturation
function, while that considered by Materassi and Salapaka [51] is
some perturbation of a more general nominal odd nonlinearity. In
both cases positivity is preserved by further limiting the L1 norm
condition. The multipliers of Rantzer [64] can be shown to be
applicable to a wider class of nonlinearity [42,41].

8. Open questions

Although there have been many recent advances in Zames–Falb
multiplier theory, some questions are still open even for SISO
Please cite this article as: J. Carrasco, et al., Zames–Falb multipliers for
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systems in continuous-time. Here we provide some of these open
questions.

Complete search: Different searches have been proposed in the
literature. Results in this paper and comparisons by Carrasco et al.
[15] show that no complete tractable search can be found in the
literature. Advantages and drawbacks of each technique have been
mentioned in Section 6. The development of a complete and
tractable search remains an open challenge.

Instability criteria: Currently, searches are tested using only the
Nyquist value as an upper bound. However, it is well known that
this is not a tight bound for fourth-order systems or higher order.
For O'Shea's example small values of ζ produce unstable behavior.
The maximum slope for searches decreases significantly as ζ
approaches zero, though the Nyquist value remains infinity. In
discrete-time, second-order counterexamples to the Kalman con-
jecture are given by Heath et al. [30], so the Nyquist values is only
tight in general for first order systems. Tractable instability criteria
must be developed to be able to understand the real conserva-
tiveness of the classes of multipliers and searches over these
classes. Existence of limit cycles for this particular problem is
discussed by Leonov and Kuznetsov [46], whereas general results
are also available in the literature (e.g. [50]).

Dual problem: The dual problem in robustness analysis has
been proposed by Jönsson [32] and Jönsson and Rantzer [33]. The
limitations given by Megretski [52] provide a method to find when
a Zames–Falb multiplier cannot be found. However, it is not
understood how to use these limitations to discard the existence
of a Zames–Falb multiplier suitable for a plant G and slope k.

Stability conjecture: Related with the two previous questions,
we can state the following conjecture:

Conjecture 1. Suppose we have a stable plant G and a constant k
okN such that there is no Zames–Falb multiplier M satisfying

RefMðjωÞð1þkGðjωÞÞgZδ

for any δ40. Then there exists a slope-restricted nonlinearity ϕAS½
0; k� such that the feedback interconnection between G and ϕ is not
L2-stable.

Completeness: In discrete-time, the Zames–Falb multipliers are
the only multipliers that can preserve the positivity of monotone
and bounded nonlinearities [83,40,49]. In continuous time other
multipliers, such as Popov multipliers, can also preserve the
positivity of the nonlinearity yet are not themselves Zames–Falb
multipliers. Nevertheless, all other classes of multipliers in the
literature have been shown to be phase-equivalent to Zames–Falb
multipliers [14,15]. It is an open question whether any possible
class of multipliers preserving the positivity of monotone and
bounded nonlinearities is phase-contained in the class of Zames–
Falb multipliers.

Synthesis: The use of multipliers for synthesis has already been
proposed by Veenman and Scherer [78]. Moreover, Zames–Falb
multipliers have been already used in synthesis techniques [57,37].
The development of a convex synthesis technique using the
Zames–Falb multipliers for anti-windup design is still open.

Local stability: The use of input–output stability criteria pro-
vides many advantages. However, open-loop unstable systems
only can be locally stable in closed-loop. The use of IQCs for local
stability has been considered by Fang et al. [25]. However, it is
unknown whether multiplier theory has any role in the analysis of
local stability.
9. Conclusion

This tutorial has attempted to provide a coherent introduction
to the topic of Zames–Falb multipliers. We have shown a
absolute stability: From O'Shea's contribution to convex searches,
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motivating example for using Zames–Falb multipliers in the
robustness analysis of antiwindup. Their definitions, phase prop-
erties, and searches have been presented.

We have devoted a significant part of the paper to describing
O'Shea's contribution, most notably O'Shea's observation that
noncausal multipliers provide significant advantages over causal
multipliers, in particular with respect to their phase properties.
We have also shown, using O'Shea's original set of examples, the
complexity in multiplier searches: for some ðζ40:5Þ, a manual
search remains best; while for others ðζo0:5Þ the best achievable
slope remains unknown and for different values of ζ different
automated searches appear better.
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Appendix A. Further notation

This appendix provides some technicalities about common
notation in multiplier theory that has been used tacitly in the
main text.

A.1. Signal spaces

Let L2ð�1;1Þ be the Hilbert space of all square integrable and
Lebesgue measurable functions (usually signals) f : ð�1;1Þ-R

with inner product defined as

〈f ; g〉¼
Z 1

�1
f ðtÞgðtÞ dt; ðA:1Þ

and norm defined as J f J2 ¼ 〈f ; f 〉1=2, for f ; gAL2ð�1;1Þ. The
function f AL2ð�1;1Þ belongs to the subspace L2½0;1Þ if f ðtÞ ¼ 0
for all to0 and the subspace L2ð�1;0� if f ðtÞ ¼ 0 for all t40. For
brevity we often use f AL2 as shorthand for f AL2½0;1Þ. A trun-
cation of the function f at T is given by f T ðtÞ ¼ f ðtÞ; 8 trT and
f T ðtÞ ¼ 0; 8 t4T . The function f belongs to the extended space L2e

½0;1Þ if f T AL2½0;1Þ for all T40.
Let L1ð�1;1Þ be the space of all absolutely integrable and

Lebesgue measurable functions (usually impulse responses of LTI
systems) f : ð�1;1Þ-R with norm

J f J1 ¼
Z 1

�1
j f ðtÞj dt: ðA:2Þ

The function f AL1ð�1;1Þ belongs to the subspace L1½0;1Þ if f
ðtÞ ¼ 0 for all to0 and the subspace L1ð�1;0� if f ðtÞ ¼ 0 for all
t40. For brevity we often use f AL1 as shorthand for
f AL1½�1;1Þ.

A.2. System spaces

The space L1ðRL1Þ is the space of (real rational) transfer
functions, GðsÞ, bounded and analytic on the imaginary axis. The
L1-norm is defined as

JGJ1 ¼ sup
ωA ð�1;1Þ

jGðjωÞj

The space H1ðRH1Þ is the space of (real rational) transfer
functions analytic in the closed right half plane. The space
H�

1ðRH�
1Þ is the space of (real rational) transfer functions analytic

in the closed left half plane.
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It can be shown, for GARH1, that

JGJ1 ¼ sup
wAL2 ½0;1Þ;wa0

JGwJ2
JwJ2

ðA:3Þ

A system G is said to be causal if ðGuÞT ¼ ðGuT ÞT for any T40. A
formal definition of anticausal system would require a different
truncation, but an LTI operator is anticausal if its adjoint is causal.
If an LTI operator has a bounded impulse response hðtÞ, i.e. hAL1,
its transfer function belongs to H1ðH�

1Þ if and only if hðtÞ ¼ 0 for all
to0ðt40Þ, i.e. the LTI operator is causal (anticausal).

A.3. Nonlinearities

A nonlinearity ϕ : L2e½0;1Þ-L2e½0;1Þ is said to be memory-
less if there exists N : R-R such ðϕvÞðtÞ ¼NðvðtÞÞ for all tAR. We
assume that Nð0Þ ¼ 0. Moreover, ϕ is slope-restricted in the
interval S½0; k�, if

0rNðx1Þ�Nðx2Þ
x1�x2

rk ðA:4Þ

for all x1ax2. The nonlinearity ϕ is said to be odd if NðxÞ ¼ �Nð
�xÞ for all xAR. Let ΦðkÞ be the class of slope-restricted non-
linearities with slope within the interval S½0; k�. Our prime exam-
ple is a saturation function, which is slope-restricted to the
interval S½0;1�. A saturation function in series with a linear gain k is
a memoryless nonlinearity slope-restricted to the interval S½0; k�. It
is odd if the absolute value of the upper bound is equal to the
absolute value of the lower bound.
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