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Regularized system identification using orthonormal basisfunctions

Tianshi Chen and Lennart Ljung

Abstract— Most of existing results on regularized system
identification focus on regularized impulse response estima-
tion. Since the impulse response model is a special case of
orthonormal basis functions, it is interesting to consider if
it is possible to tackle the regularized system identification
using more compact orthonormal basis functions. In this paper,
we explore two possibilities. First, we construct reproducing
kernel Hilbert space of impulse responses by orthonormal basis
functions and then use the induced reproducing kernel for the
regularized impulse response estimation. Second, we extend the
regularization method from impulse response estimation tothe
more general orthonormal basis functions estimation. For both
cases, the poles of the basis functions are treated as hyper-
parameters and estimated by empirical Bayes method. Then we
further show that the former is a special case of the latter, and
more specifically, the former is equivalent to ridge regression
of the coefficients of the orthonormal basis functions.

I. INTRODUCTION

In this paper, we consider the system identification prob-
lem of linear discrete-time, time-invariant and causal sys-
tems, which is described as follows:

y(t) = g0 ∗ u(t) + v(t), t = 1, · · · , N (1)

where t = 1, · · · , N are time indices at which the mea-
sured inputu(t) and outputy(t) are collected, and uniform
sampling is used and the sampling intervalTs = 1, v(t) is
the disturbance and for convenience assumed to be a zero
mean white Gaussian noise,g0(t) with t = 1, 2, · · · , is the
impulse response,g0 ∗ u(t) is the convolution ofg0(t) and
u(t) evaluated at the timet. The goal is to estimateg0(t) as
well as possible based on the collected data{y(t), u(t)}Nt=1.

The traditional method to this problem is the maximum
likelihood/prediction error method (ML/PEM), see e.g., [1],
[2]. Since v(t) is white, PEM first postulates the so-called
output error (OE) model structureG(q, θ) with θ ∈ R

n:

y(t) = G(q, θ)u(t) + v(t), (2)

whereq is the forward-shift operator andqu(t) = u(t + 1)
and

G(q, θ) =
B(q)

F (q)
,

B(q) = b1q
−1 + · · ·+ bnb

q−nb

F (q) = 1 + f1q
−1 + · · ·+ fnf

q−nf

(3)
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with θ = [b1, · · · , bnb
f1, · · · , fnf

]T and n = nb + nf .
As long as a model structureG(q, θ) is chosen, ML/PEM
minimizes the prediction error to get the model estimate

θ̂ = argmin
θ

N
∑

t=1

(y(t)−G(q, θ)u(t))2. (4)

Since the disturbancev(t) in (1) is modeled as a stochastic
process, the estimatêθ is a random variable. Let̂g denote
the impulse response ofG(q, θ̂). Then the mean square error
(MSE) E(‖ĝ − g0‖22) tells the quality of the estimatêθ. For
the chosen model structureG(q, θ), a key issue to reduce
the MSE is to find the “right” model complexity: it shall be
parsimonious but capable to describe the data. Traditionally,
it is suggested to use the model structure selection criterion,
like AIC, BIC, to find a suitablen, the dimension ofθ.
However, this way may not work well for short and noisy
data records.

The model structure (3) has a very general form and
includes many widely used model structures as special
cases. One attractive class of model structures among many
others is the linear-in-parameter model structures which can
considerably simplify the optimization in (4). The most well-
known instance is perhaps the finite impulse response (FIR)
model structure

G(q, θ) =
n
∑

k=1

gkq
−k, θ = [g1, · · · , gn]

T . (5)

However, the FIR model is often criticized for its large
variance error when high order FIR models have to be used
to describe “slow” systems with either slow dynamics or with
high sampling rate. A more compact model structure is the
linear combination of basis functions:

G(q, θ) =

m
∑

k=1

gkF̄k(q), θ = [g1, · · · , gm, f1, · · · , fnf
]T

(6)

wheren = m+ nf and F̄k(q) = qk−1/F (q), k = 1, · · · ,m
are pre-specified basis functions. The model structure (6) has
attracted a lot of interests in the last two decades, see e.g.,
[3] and the references therein. Two widely known special
cases of (6) are the Laguerre model [4] and the Kautz model
[5]. The Laguerre model takes the form

G(q, θ) =

m
∑

k=1

gk

√

(1− a2)

q − a

(

1− aq

q − a

)k−1

(7)

θ = [g1, · · · , gm, a]T , |a| < 1

where a is pole of the Laguerre model and has to be
pre-specified according to thea priori information on the
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time constant of the underlying system [5]. Since the basis
functions have infinite impulse responses, there is often
no problem of describing “slow” systems with relatively
small number of basis functions in (6). While the use of
orthonormal basis functions (6) has been discussed a lot,
still open problems are

1) how to choose suitable poles for the basis function?
2) how many basis functions shall be used?

There is another way to reduce the MSE, i.e, by using
regularization. However, this way has not been investigated
rigorously in system identification until the seminal work [6].
Instead of trimming the model complexity ofG(q, θ) in terms
of n, it was suggested to use a well-tuned regularization
to regularize the impulse response to reduce the MSE [7].
Since then the followup results in [8], [7], [9], [10], [11]
and the recent survey paper [12] show that the regularized
high order FIR model (or high order ARX model) can
lead to good model estimates in terms of accuracy and
robustness. In this paper, we will make use of orthonormal
basis functions for the regularized system identification and
we will consider two cases. First, we construct reproducing
kernel Hilbert space of impulse responses by orthonormal
basis functions and then use the induced reproducing kernel
for the regularized impulse response estimation. Second,
we extend the regularization method from impulse response
estimation to the more general orthonormal basis functions
estimation. For both cases, the poles of the basis functions
are treated as hyper-parameters and estimated by empirical
Bayes method. Then we further show that the former is a
special case of the latter, and more specifically, the former
is equivalent to ridge regression of the coefficients of the
orthonormal basis functions.

II. REGULARIZED LEAST SQUARES METHOD

Consider a linear regression model

YN = ΦNθ + VN (8)

whereYN ∈ R
N is the data,ΦN ∈ R

N×n is the regression
matrix, θ ∈ R

n is the parameter to be estimated, andVN is
the disturbance and assumed to be white Gaussian distributed
as N (0, σ2IN ) with IN being theN -dimensional identity
matrix. We estimateθ by minimizing the regularized least
squares (RLS) criterion

θ̂ = argmin
θ

‖YN − ΦNθ‖22 + σ2θT K(α)−1θ (9a)

= K(α)ΦT
N (ΦNK(α)ΦT

N + σ2IN )−1YN . (9b)

Here, K(α) � 01 is called theregularization matrix (also
often called the kernel matrix) and defined through the kernel
function K(k, j;α) as Kk,j(α) = K(k, j;α), whereα is a
vector of tuning parameters and called hyper-parameter.

There are two key issues:

1) how to parameterize the kernel functionK(k, j;α)
which is often simply written asK(α) below?

1WhenK(α) is singular, (9a) has to be interpreted in the way discussed
in [9, Remark 2.1].

2) how to tune the hyper-parameterα?

For 1), it is worth to note [7, Theorem 1] that the optimal
regularization matrix in the sense of minimizing the MSE
matrix of θ with respect toθ0 (the true value ofθ) exists and
takes the form ofKOpt = θ0θ

T
0 . While it cannot be applied

in practice, it gives a guideline to design the regularization
matrix: let it mimic the behavior ofKOpt. Apparently, if
some prior information is known forθ0, it shall be used in
the design of a suitable kernel functionK(α).

For 2), the current most effective method is to embed
the regularization in the Bayesian framework and invoke
the empirical Bayes method, i.e., the marginal likelihood
maximization. Assumeθ ∼ N (0,K(α)). Then we estimate
α by maximizing

α̂ = argmax
α

p(YN |α)

= argmin
α

Y T
N (ΦNK(α)ΦT

N

+ σ2IN )−1YN + log det(ΦNK(α)ΦT
N + σ2IN ) (10)

A. Regularized impulse response estimation

For regularized impulse response estimation, we consider
the model (5) withn = ∞. The system (2) can then be
written as a linear regression model (8) with theith row
of YN , VN and ΦN being y(i), v(i) and ϕ(i) = [u((i −
1)), · · · , u((i − ∞))]T where the unknown inputsu(t) are
set to zero, andθ = [g1, g2, · · · , ]T ∈ R

∞. So we can use the
RLS method to estimate the impulse response. The remaining
issue is the design of a suitable kernel functionK(α). Several
choices have been suggested in [6], [8], [7]. For example,
the diagonal-correlated (DC) kernel and its special case, the
tuned-correlated (TC) kernel are defined as:

DC Kdc(k, j;α) = cλ(k+j)/2ρ|k−j|, α = [c λ ρ]T (11)

TC Ktc(k, j;α) = cmin(λk, λj), α = [c λ]T (12)

where the TC kernel has also been introduced as the first-
order stable spline (SS) kernel, see [13], [14] for discussions.
In practice, we however cannot handle infinite impulse re-
sponse and we have to truncate the infinite impulse response
to a finite one, i.e., the FIR model. In this case, we refer this
method as the regularized FIR model method in [7].

III. R EGULARIZED IMPULSE RESPONSE ESTIMATION

WITH KERNEL STRUCTURE CONSTRUCTED BY

ORTHONORMAL BASIS FUNCTIONS

In the following, we consider a different kernel which is
constructed by use of the orthonormal basis functions. Before
proceeding to the details, recall that the RLS criterion (9a)
for regularized impulse response estimation has a function
estimation interpretation. The RLS (9a) is equivalent to

ϑ̂ = arg min
ϑ∈HK(α)

N
∑

t=1

|y(t)− ϑ ∗ u(t)|2 + σ2‖ϑ‖2HK(α)

(13)

whereϑ(t) = θt with θt being thetth element ofθ ∈ R
∞ is

the impulse response, andHK(α) is the reproducing kernel



Hilbert space (RKHS) induced by the kernelK(α). Then the
RLS estimate is also the function estimate that minimizes
(13) within the RKHSHK(α). This implies that when we
trim the kernelK(α), we equivalently trim the function space
where we search for the impulse response.

The above observation gives us another idea to design the
kernel structure: we can first construct a RKHS space of
suitable impulse responses and this space then uniquely de-
termines a reproducing kernel according toMoore-Aronszajn
Theorem, see e.g., [15]. Note that looking for a RKHS
space of impulse responses in time domain is equivalent to
looking for a RKHS space of transfer functions in frequency
domain. In system identification community, the idea of
approximating or expressing the transfer function of the
underlying system by expanding it in terms of orthogonal
basis functions have been well studied, see e.g., [3], [16],
[17], [18], [19] and the references therein. It is natural to
ask if the space spanned by orthogonal basis functions could
be a candidate for our use. To answer this question, we
have to check if this space is a RKHS, and if it is, what its
reproducing kernel is. Fortunately, there are standard answers
to these questions.

A. Transfer function space spanned by the orthonormal basis
functions on the unit circle [20], [18]

Following [20], let{αk}∞k=0 with |αk| < 1 be an arbitrary
sequence of complex numbers which may appear as numbers
of finite or even infinite multiplicity. Given{αk}

∞
k=0, a

system of functions{φk(e
iω)}∞k=0 is defined as

φ0(e
iω) =

√

1− |α0|2

1− α0eiω
,

φj(e
iω) =

√

1− |αj |2

1− αjeiω

j−1
∏

k=0

αk − eiω

1− αkeiω
|αk|

αk
, j = 1, 2, · · · ,

(14)
whereαj means the complex conjugate ofαj , ω ∈ [−π π),
and |αj |

αj
=

αj

|αj |
= −1 for αj = 0. Such a system is called

the Malmquist system. It is well-known that the Malmquist
system is orthonormal on the unit circle in the sense that

1

2π

∫ π

−π

φk(e
iω)φj(eiω)dω = δk,j =

{

0 k 6= j
1 k = j

(15)

We are interested in the space spanned by a subset of the
Malmquist system (14). It can be shown see e.g., [18] that
the space spanned by{φ0(e

iω), φ1(e
iω), · · · , φm(eiω)} with

the inner product defined as

〈f, g〉 =
1

2π

∫ π

−π

f(eiω)g(eiω)dω (16)

is a RKHS space with the reproducing kernel

Kob
freq(e

iω, eiω
′

) =

m
∑

k=0

φk(e
iω)φk(eiω

′) (17)

which we will refer below as the(m+1)th order orthonormal
basis (OB) kernel in frequency domain.

Setting in the following

Bm+1(e
iω) =

m
∏

k=0

αk − eiω

1− αkeiω
|αk|

αk
(18)

where same as before,|αk|
αk

= αk

|αk|
= −1 for αk = 0. Then

the kernel (17) has a simplified expression [20, Lemma 5]

Kob
freq(e

iω, eiω
′

) =
1−Bm+1(e

iω)Bm+1(eiω
′)

1− ei(ω−ω′)
(19)

which is also known as the Christoffel-Darboux (C-D) for-
mula, see e.g., [18, Theorem 3.1]. The C-D formula is useful
to simplify the construction of the kernel matrix (i.e., the
regularization matrix).

B. The Laguerre kernel

The simplest case of OB kernels (19) is perhaps the case
whereαi = a for i = 0, 1, · · · ,m with a ∈ R and |a| < 1.
In this case, the OB kernel (19) becomes

K lag
freq(e

iω , eiω
′

) =







1−Bm+1(e
iω)Bm+1(eiω

′ )

1−ei(ω−ω′) ω 6= ω′

(m+ 1) 1−a2

|1−aeiω |2 ω = ω′

(20)

which we will refer below as the(m+ 1)th order Laguerre
kernel. This is because it is the reproducing kernel of the
RKHS space spanned by the firstm + 1 Laguerre rational
basis function of (7) in the frequency domain. For the
Laguerre kernel (20), there is only one hyper-parametera, the
real pole of the Laguerre basis functions, which is convenient
to estimate for the hyper-parameter estimation.

C. Regularized frequency response estimation

Since OB kernels are defined in frequency domain, one
may wonder if it is possible to work in frequency domain
directly without going back to the time domain. The answer
is affirmative. Recently, we have derived the dual of the reg-
ularized impulse response estimation in frequency domain,
i.e., the regularized frequency response estimation, see [21]
for details. By using the implementation in [21], we can
derive the regularized frequency response with OB kernels.

IV. REGULARIZED ORTHONORMAL BASIS FUNCTIONS

ESTIMATION

It is worth to note that the hyper-parameters of OB kernels
(19) are{αk}

m
k=0 which are the poles of the basis functions.

So tuning OB kernels is equivalent to tuning the location
of the poles of its underlying basis functions. This finding
motivates another way of using orthonormal basis functions
for regularized system identification:

1) formulate the orthonormal basis functions based model
as a linear regression model;

2) treat the poles of the orthonormal basis functions as
hyper-parameters and design a suitable kernel for the
coefficients of the orthonormal basis functions;

3) estimate the hyper-parameter by empirical Bayes
method and then obtain the regularized orthonormal
basis functions by using RLS method.



We first formulate (2) with the linear combination of
orthonormal basis functions (6) as a linear regression model:

y(t) =

m
∑

k=1

gkϕk ∗ u(t) + v(t) (21)

whereg = [g1, · · · , gm]T , ϕk(t) is the impulse response of
F̄k(q) in (6). Let p be the vector consisting of all poles of
F̄k(q) = 0, k = 1, · · · ,m. Then the impulse responseϕk(t),
k = 1, · · · ,m depend onp.

The feature of OB kernels that their hyper-parameters are
poles of the basis functions motivates to treat poles of the
basis functions as hyper-parameters and estimate them by the
empirical Bayes method. It should be noted that this idea has
also been figured out independently by Darwish, Tóth, and
Van den Hof in [22]. For now we assume thatp is known
and then we can estimateg by minimizing the RLS criterion

ĝ = argmin
g

N
∑

t=1

|y(t)−
m
∑

k=1

gkϕk ∗ u(t)|
2 + σ2gTK(α)−1g

(22)

= argmin
g

‖YN − ΦN (p)g‖22 + σ2gTK(α)−1g (23)

whereK(α) is the regularization matrix on the coefficients
{gk}mk=1 of the orthonormal basis functions, andΦN (p) is
the regression matrix that can be formed in a natural way.

As discussed in Section II, it is a key issue to design a
suitable kernel structure, which relies on the prior knowledge
that we know about the coefficients of the orthonormal
basis functions. Apparently, this issue depends on what
orthonormal basis functions we use. For illustration, we
consider the Laguerre model (7) as an example below.

The assumptions on the Laguerre coefficients{gk}∞k=1 and
the convergence property of Laguerre model, i.e, how fast (7)
converges asm → ∞ has been discussed, see e.g., [4]. It is
suggested in [4] to assume the absolute convergence of the
sum of the Laguerre coefficients{gk}∞k=1, i.e.,

∞
∑

k=1

|gk| < ∞ (24)

If we treat {gk}∞k=1 as the impulse response of a linear
system, then the above assumption (24) says nothing but the
linear system is stable. This observation implies that the ker-
nels introduced for regularized impulse response estimation,
the SS, TC and DC kernels can be candidates to regularize
the Laguerre coefficients{gk}∞k=1.

Remark 4.1:As pointed out in [4], the convergence rate
of the Laguerre model (7) can be slow, e.g., if the system
has poles close to the unit circle or has high resonant poles.
In this case, one can try the adapted DC kernel as follows:

Kadc(k, j) = cλ(k + j)ρ|k−j|, (25)

whereλ(·) is a nonnegative function such thatλ(·) decays
slower than the exponential function andKadc is a valid
kernel. Or one can choose to use the other regularized
orthonormal basis functions, such as the Kautz model in [5]
to handle the case where the system has high resonant poles.

For more general orthonormal basis functions, we can
always first try the SS, TC and DC kernels if (24) is assumed.
If they do not work so well, we shall spend more efforts
on investigating the prior knowledge or assumption on the
coefficients of orthonormal basis functions and design a
suitable kernel structure accordingly.

Now it remains to estimate the hyper-parameters: the pole
p of the orthonormal basis functions and the hyper-parameter
α used to parameterize the kernel structure. Assumeθ ∼
N (0,K(α)). Then from (23) we have

p̂, α̂ = argmax
p,α

p(YN |p, α)

= argmin
p,α

Y T
N (ΦN (p)K(α)ΦN (p)T

+ σ2IN )−1YN + log det(ΦN (p)K(α)ΦN (p)T + σ2IN )

Finally, solving (22) or (23) by replacingp, α with p̂, α̂ yields
the regularized orthonormal basis function estimate.

V. REGULARIZED IMPULSE RESPONSE ESTIMATION WITH

THE OB KERNEL IS A SPECIAL CASE OF REGULARIZED

ORTHONORMAL BASIS FUNCTIONS ESTIMATION

In this section, we show that the regularized impulse
response estimation with the OB kernel (17) is a special case
of the regularized orthonormal basis functions estimation.
More specifically, it is equivalent to ridge regression of the
coefficients of the orthonormal basis functions, see e.g., [23].

To show this, it is more convenient to go back to time
domain. For the orthonormal basis functions{φk(e

iω)}∞k=0

in frequency domain, we can define their correspondents
{ϕk(t)}∞k=0 in time domain. Here,ϕk(t) is the impulse
response ofφk(e

iω) and moreover, we have

φk(e
iω) = F{ϕk(t)}, ϕk(t) = F−1{φk(e

iω)} (26)

whereF andF−1 denote the discrete time Fourier transform
and its inverse transform, respectively.

Then it is straightforward to verify by using (15) and
Cauchy’s integral formula that{ϕk(t)}∞k=0 are orthonormal
in the sense that

∞
∑

t=0

ϕk(t)ϕj(t) = δk,j =

{

0 k 6= j
1 k = j

(27)

Moreover, the space spanned by{ϕ0(t), ϕ1(t), · · · , ϕm(t)}
with the inner product

〈f, h〉 =
∞
∑

t=0

f(t)h(t) (28)

is a RKHS space with the reproducing kernel

Kob
time(t, t

′) =
m
∑

k=0

ϕk(t)ϕk(t
′) (29)

which we will refer below as the(m+1)th order OB kernel
in time domain. Apparently, the OB kernel (29) in time
domain and the OB kernel (17) in frequency domain are
related through Fourier transform, e.g.,Kob

freq(e
iω, eiω

′

) =

F{F{Kob
time(t, t

′)}}.



Now consider (13) with the kernelK(α) replaced by the
OB kernel (29). The RKHSHK(α) becomes

HK(α) = span ofϕ0(t), ϕ1(t), · · · , ϕm(t)

= {ϑ(t)|ϑ(t) =
m
∑

k=1

gkϕk(t), gk ∈ R} (30)

and moreover,

‖ϑ‖2HK(α)
=

m
∑

k=1

g2k (31)

Therefore, (13) is equivalent to

ĝ = argmin
g

N
∑

t=1

|y(t)−
m
∑

k=1

gkϕk ∗ u(t)|
2 + σ2‖g‖22 (32)

where the regularization‖g‖22 is a ridge regression ofg.
We have the following interesting observations:

1) The regularized impulse response estimation with the
OB kernel (29) (equivalently, (17)) is equivalent to a
ridge regression of the coefficients of the orthonormal
basis functions (32), which is a special case of the
regularized orthonormal basis functions estimation (22)
with the regularization matrixK(α) = Im.

2) For the Laguerre kernel (20), the ridge regression‖g‖22,
i.e., the kernelK(k, j;α) = αδk,j cannot guarantee
the absolute convergence of the sum of Laguerre model
coefficients, i.e., (24). Since the kernelK(k, j;α) =
αδk,j does not reflect our prior knowledge, it is not
a good kernel and the regularized impulse response
estimation with the OB kernel (29) will not work well
for high order OB kernel. This claim will be verified
by numerical simulations shortly.

VI. N UMERICAL SIMULATION

A. Data-bank

For this preliminary work, we use a portion of the data-
bank in [7, Section 2], which consists of 4 data collections:

• S1D1: fast systems, data sets withN = 500, SNR=10
• S2D1: slow systems, data sets withN = 500, SNR=10
• S1D2: fast systems, data sets withN = 375, SNR=1
• S2D2: slow systems, data sets withN = 375, SNR=1

Each collection contains 250 randomly generated 30th order
discrete-time systems and data sets. The fast systems have
all poles inside the circle with center at the origin and radius
0.95 and the slow systems have at least one pole outside this
circle. The signal to noise ratio (SNR) is defined as the ratio
of the variance of the noise-free output over the variance of
the white Gaussian noise. In all cases the input is Gaussian
random signal with unit variance. For more details regarding
the data bank, see [7, Section 2].

B. Examined methods

We examine three methods:
1) RLAG-TC,RLAG-DI : the regularized Laguerre ba-

sis functions estimation. The Laguerre model with
ordersm = 10, 20, 30, 40 are considered. The TC

kernel (12) and the diagonal (DI) kernelK(k, j;α) =
diag(α, α2, · · · , αm) are used to regularize the La-
guerre coefficients. The results are represented as
RLAG-TC and RLAG-DI, respectively.

2) LS-LAG : the Laguerre basis function estimation with
least squares method. The estimate of the pole of
the Laguerre model is obtained from RLAG-TC and
then the least squares method is used to estimate the
Laguerre coefficients without regularization.

3) RFIR-TC,RFIR-LAG : the regularized impulse re-
sponse estimation. The order of the FIR model (5) is
chosen to be 125 and the unknown input are set to zero
when forming the regression matrix. The TC kernel
(12) and the Laguerre kernel (20) are used to regular-
ize the impulse response coefficients. The results are
represented as RFIR-TC and RFIR-LAG, respectively.
As shown in Section V, RFIR-LAG is equivalent to
regularized Laguerre basis functions estimation with
the scaled identity kernelK(k, j;α) = αδk,j .

C. Model fit
To measure the performance of the examined methods,

we compare the impulse response of the estimated model
with that of the true system: we let̂gk andg0k to denote the
kth coefficient of the former and the latter impulse response,
respectively. Then the model fit is defined as

W = 100



1−

[

∑

125

k=1
|g0k − ĝk|

2

∑

125

k=1
|g0k − ḡ0|2

]1/2


 , ḡ
0
=

1

125

125
∑

k=1

g
0

k

(33)

D. Simulation result

The average model fit over the corresponding data collec-
tions are shown in the table below.

LS-LAG S1D1 S1D2 S2D1 S2D2

m = 10 80.2 70.2 73.6 59.5
m = 20 88.8 68.6 82.1 56.3
m = 30 90.0 62.8 84.0 38.1
m = 40 88.7 56.6 84.1 -4.9

RFIR-TC S1D1 S1D2 S2D1 S2D2

n = 125 91.4 76.1 81.2 66.1

RFIR-LAG S1D1 S1D2 S2D1 S2D2

m = 10 80.1 69.6 72.0 60.6
m = 20 88.3 68.5 80.4 61.3
m = 30 89.1 64.7 82.5 59.9
m = 40 88.1 62.6 83.1 58.4

RLAG-TC S1D1 S1D2 S2D1 S2D2

m = 10 80.2 71.3 72.9 63.0
m = 20 89.2 75.3 81.9 67.8
m = 30 91.3 76.1 85.2 69.2
m = 40 91.8 76.3 86.8 70.1

RLAG-DI S1D1 S1D2 S2D1 S2D2

m = 10 80.4 71.8 73.2 64.0
m = 20 89.2 75.7 82.3 68.6
m = 30 91.2 76.0 85.9 69.7
m = 40 91.6 76.1 86.8 70.0



E. Findings

First, RLAG can achieve comparable performance as RFIR
but with more compact model stucture in terms of the number
of basis functions. In particular, for slow systemsS2D1 and
S2D2, RLAG has clearly better performance (about 5%) than
RFIR.

Second, for RLAG, RLAG-DI has very close performance
as RLAG-TC, which is different from RFIR studied in [7]
where RFIR-DI is much worse than RFIR-TC. For RFIR, TC
kernel is clearly a better kernel than the DI kernel because on
the one hand, the impulse response is often smooth and on
the other hand, the latter does not assume smoothness. How-
ever, for RLAG, no prior knowledge regarding the Laguerre
coefficients is available except the absolute convergence of
the sum of the Laguerre coefficients (24). Both TC kernel and
DI kernel can guarantee (24). The simulation results indicate
that to assume independence between neighboring Laguerre
coefficients is not a bad choice for the tested data bank.

Third, RFIR-LAG has worse performance than RLAG.
This coincides with our observation in Section V that the
ridge regression is not a suitable regularization for Laguerre
basis functions. The influence of the unsuitable regularization
is enlarged for high order Laguerre kernels and cause larger
difference in the performance.

Fourth, RLAG has better performance than LS-LAG shows
the importance of the regularization on the Laguerre coeffi-
cients.

VII. C ONCLUSION AND FUTURE WORKS

In this preliminary work, we have explored the possi-
bilities to tackle regularized system identification problems
using orthonormal basis functions.

Interestingly, the idea of constructing kernels using or-
thonormal basis functions for regularized impulse response
estimation turns out to be a special case of the regularized
orthonormal basis functions estimation, and moreover, it
is equivalent to ridge regression of the coefficients of the
orthonormal basis functions.

The idea of regularizing the orthonormal basis functions
works fine but still requires more careful investigation. Due
to the space limitation we have mainly studied the regularized
Laguerre basis functions as an instance, but the proposed idea
applies to the more general orthonormal basis functions, e.g.,
the Kautz model. Such extensions are necessary and will be
examined in our future works because it is known that the
convergence rate of the Laguerre model is slow when the
system has poles close to the unit circle. Another interesting
topic is regarding how to design a suitable kernel for the
coefficients of the orthonormal basis functions.
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