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Regularized system identification using orthonormal basidunctions

Tianshi Chen and Lennart Ljung

Abstract— Most of existing results on regularized system
identification focus on regularized impulse response estias

tion. Since the impulse response model is a special case of

orthonormal basis functions, it is interesting to consider if
it is possible to tackle the regularized system identificatin
using more compact orthonormal basis functions. In this pagr,
we explore two possibilities. First, we construct reproduing
kernel Hilbert space of impulse responses by orthonormal bsis
functions and then use the induced reproducing kernel for tle
regularized impulse response estimation. Second, we extéthe
regularization method from impulse response estimation tahe
more general orthonormal basis functions estimation. For bth
cases, the poles of the basis functions are treated as hyper-
parameters and estimated by empirical Bayes method. Then we
further show that the former is a special case of the latter, ad
more specifically, the former is equivalent to ridge regressn
of the coefficients of the orthonormal basis functions.

. INTRODUCTION

with 6 = [b1,"' 2 ony f1, -+ ,fnf]T andn = np + nf.
As long as a model structur@(q, ) is chosen, ML/PEM
minimizes the prediction error to get the model estimate
N
0 = arg min t) — G(q, 0)u(t))?.
g ;(y() (g, 0)u(t))
Since the disturbance(t) in (@) is modeled as a stochastic
process, the estimatéis a random variable. Lej denote
the impulse response 6#(q, é). Then the mean square error
(MSE) E(||§ — ¢°|12) tells the quality of the estimaté For
the chosen model structui@(q,9), a key issue to reduce
the MSE is to find the “right” model complexity: it shall be
parsimonious but capable to describe the data. Traditignal
it is suggested to use the model structure selection aiteri
like AIC, BIC, to find a suitablen, the dimension off.
However, this way may not work well for short and noisy

(4)

In this paper, we consider the system identification protfiata records.
lem of linear discrete-time, time-invariant and causal-sys 'N€ model structure[]3) has a very general form and

tems, which is described as follows:

y(t):go*u(t)—i—v(t), t:L"'aN

1)

wheret = 1,---, N are time indices at which the mea-

sured inputu(t) and outputy(¢) are collected, and uniform
sampling is used and the sampling interf@al= 1, v(t) is

the disturbance and for convenience assumed to be a zero

mean white Gaussian nois¢”(t) with t = 1,2,--- , is the
impulse response;” * u(t) is the convolution ofg°(¢) and
u(t) evaluated at the time The goal is to estimatg’(¢) as
well as possible based on the collected datét), u(t)} Y ;.

includes many widely used model structures as special
cases. One attractive class of model structures among many
others is the linear-in-parameter model structures whah ¢
considerably simplify the optimization ifl(4). The most vel
known instance is perhaps the finite impulse response (FIR)
model structure

G(g,0)=> grq™* 0=1[01,- 9" ®)
k=1

However, the FIR model is often criticized for its large
variance error when high order FIR models have to be used
to describe “slow” systems with either slow dynamics or with

The traditional method to this problem is the maximunhigh sampling rate. A more compact model structure is the

likelihood/prediction error method (ML/PEM), see e.g],[1

[2]. Sincewv(t) is white, PEM first postulates the so-called

output error (OE) model structui@(q, 6) with 8 € R™:
y(t) = Glq,0)u(t) + v(t), )

whereq is the forward-shift operator angh(t) = u(t + 1)
and

(@) =big "+ +bn,g ™

(@) =14 fig "+ -+ fo,qa ™
(3
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linear combination of basis functions:

G(qae) = ngﬁk(q)79 = [gla' o ag’ﬂufla' o afnf]T
k=1

(6)

wheren =m +ny and Fy(q) = ¢*"*/F(q), k=1,---,m

are pre-specified basis functions. The model strucfdred$) h
attracted a lot of interests in the last two decades, see e.g.
[3] and the references therein. Two widely known special
cases of((b) are the Laguerre model [4] and the Kautz model
[5]. The Laguerre model takes the form

e 1—a%) (1—aq\"!
G0 =0 =, (q_a> (7)
la| < 1

0= [917" ! ag’maa]Ta

where a is pole of the Laguerre model and has to be
pre-specified according to the priori information on the
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time constant of the underlying system [5]. Since the basis 2) how to tune the hyper-paramete?

functions have infinite impulse responses, there is oftgror 1), it is worth to note [7, Theorem 1] that the optimal
no problem of describing “slow” systems with relativelyreqularization matrix in the sense of minimizing the MSE

small number of basis functions ifil (6). While the use ofnatrix of 9 with respect td), (the true value of) exists and
orthonormal basis function§](6) has been discussed a lgikes the form oK °Pt — 0067 . While it cannot be applied

still open problems are in practice, it gives a guideline to design the regularizati
1) how to choose suitable poles for the basis function?matrix: let it mimic the behavior oK P!, Apparently, if
2) how many basis functions shall be used? some prior information is known fofy, it shall be used in

There is another way to reduce the MSE, i.e, by usinfe design of a suitable kernel functidn(c).
regularization. However, this way has not been investijate For 2), the current most effective method is to embed
rigorously in system identification until the seminal wo64.[ the regularization in the Bayesian framework and invoke
Instead of trimming the model complexity 6f(¢, 6) in terms the empirical Bayes method, i.e., the marginal likelihood
of n, it was suggested to use a well-tuned regularizatiofaximization. Assumé ~ N(0,K(a)). Then we estimate
to regularize the impulse response to reduce the MSE [7}. by maximizing
Since then the followup results in [8], [7], [9], [10], [11]
and the recent survey paper [12] show that the regularized
high order FIR model (or high order ARX model) can = argmin Y (®nK (a)®%
lead to good model estimates in terms of accuracy and o o1 T 9
robustness. In this paper, we will make use of orthonormal ~ + ¢ 1v)™ Y +logdet(®nK(a)®y +0ly)  (10)
basis functions for the regularized system identificatiod a A Regularized impulse response estimation
we will consider two cases. First, we construct reproducing . . L :
kernel Hilbert space of impulse responses by orthonorm IFor regularized impulse response estimation, we consider

basis functions and then use the induced reproducing kernel, model [[5) withn = co. The system[(2) can then be

for the regularized impulse response estimation. Secon\éf“tten as a linear regression modEl (8) with tita row

we extend the regularization method from impulse responﬁ)f Y,V and @y _being y(i), v(i) and o(i) = [u((i —

DRI ] —_ T 1
estimation to the more general orthonormal basis functionsse)t’ o zélrLcE(Zan doi))[] Wh?r? t]hTeeu[réli(r:ovSvg \/I\?epg;(zs:r;e
estimation. For both cases, the poles of the basis functio ' — 91,92, '

are treated as hyper-parameters and estimated by empiri%as method to estimate the impulse response. The remaining

Bayes method. Then we further show that the former is ISSue is the design of a suitable kernel functfot). Several

special case of the latter, and more specifically, the form choices have been suggested in [6], [8], [7]. For example,

is equivalent to ridge regression of the coefficients of th?f:ﬁe diagonal-correlated (DC) kernel and its special cdwe, t
uned-correlated (TC) kernel are defined as:

orthonormal basis functions.
DC K%k, j;a) = AFHD2plR=il o — [ X o] (12)
TC K'(k,j;a) = cmin(A\, M), a = [¢ N|T (12)

& = argmax p(Yy|a)

Il. REGULARIZED LEAST SQUARES METHOD

Consider a linear regression model
Y = ®nl 4V, ®) where the TC I_<ernel has also been introduced as the_first-
NN N order stable spline (SS) kernel, see [13], [14] for disaussi

whereYy € RY is the data®y € RV*" is the regression In practice, we however cannot handle infinite impulse re-
matrix, # € R" is the parameter to be estimated, drig is Sponse and we have to truncate the infinite impulse response
the disturbance and assumed to be white Gaussian disttibute a finite one, i.e., the FIR model. In this case, we refer this
as N(0,02Iy) with Iy being the N-dimensional identity method as the regularized FIR model method in [7].
matrix. We estimate) by minimizing the regularized least

squares (RLS) criterion I1l. REGULARIZED IMPULSE RESPONSE ESTIMATION

WITH KERNEL STRUCTURE CONSTRUCTED BY
0 = argmin || Yy — ONO||Z + 207K ()0 (9a) ORTHONORMAL BASIS FUNCTIONS

= K(a)% (@ xK ()8 + 0%Iy) " Yy. (9b) In the following, we consider a differen_t kerne_l which is
constructed by use of the orthonormal basis functions. igefo
Here, K (a) = o is called theregularizationmatrix (also proceeding to the details, recall that the RLS criterior) (9a
often called the kernel matrix) and defined through the Kern¢or regularized impulse response estimation has a function
function K (k, j; o) asKy j(a) = K(k,j;a), wherea is a  estimation interpretation. The RLE{9a) is equivalent to

vector of tuning parameters and called hyper-parameter. N

There are two key |ss.ues: - b= arg min Z (1) — 9 % u(t)]? + 02H19||§-LK(Q)
1) how to parameterize the kernel functidi(k, j; «) VEHK (o) s
which is often simply written ad((«) below? (13)

WhenK («) is singular, [3h) has to be interpreted in the way discussewhe_reﬂ(t> = 0, with 6, being the_tth element o) E R is
in [9, Remark 2.1]. the impulse response, afdy . is the reproducing kernel



Hilbert space (RKHS) induced by the kerd€[«). Then the Setting in the following
RLS estimate is also the function estimate that minimizes m i
(I3) within the RKHSH k(o). This implies that when we Bii1(e™) = H —r - DAl (18)
trim the kernelK (a), we equivalently trim the function space oo L~ ame™ ay

where we search for the impulse response.

The above observation gives us another idea to design t
kernel structure: we can first construct a RKHS space 6
suitable impulse responses and this space then uniquely de- =~ = 1 — Bpy1(€) By (e®”)
termines a reproducing kernel accordingMoore-Aronszajn Freq(€ )=

Theorem, see e.g., [15]. Note that looking for a RKHS

. . 2 . hich is also known as the Christoffel-Darboux (C-D) for-
space of impulse responses in time domain is equivalent .
: ) . ula, see e.g., [18, Theorem 3.1]. The C-D formula is useful
looking for a RKHS space of transfer functions in frequenc

; ) e ) . o simplify the construction of the kernel matrix (i.e., the
domain. In system identification community, the idea o plify (

S . . regularization matrix).
approximating or expressing the transfer function of the 9 )
underlying system by expanding it in terms of orthogonaB. The Laguerre kernel

basis functions have been well studied, see e.g., [3], [16], The simplest case of OB kernelS119) is perhaps the case
[17], [18], [19] and the references therein. It is natural tQyheren,; = ¢ fori = 0,1,--- ,m with a € R and|a| < 1.
ask if the space spanned by orthogonal basis functions coyfhis case, the OB kernd[{1L9) becomes
be a candidate for our use. To answer this question, we _
have to check if this space is a RKHS, and if it is, what its _, o, 1=Bus1 (™) By (™) £
R . Kleg ( W eiw ) _ 1—ei(w—w’) )
reproducing kernel is. Fortunately, there are standardarss freq (m 4 1) L=e w— W
to these questions. [1—ae™|?
(20)

A. Tr_ansferfunction_ space spanned by the orthonormal basj$ich we will refer below as thém + 1)th order Laguerre
functions on the unit circle [20], [18] kernel. This is because it is the reproducing kernel of the
Following [20], let{a; }2, with |ax| < 1 be an arbitrary RKHS space spanned by the first + 1 Laguerre rational
sequence of complex numbers which may appear as numbbgsis function of [{[7) in the frequency domain. For the

of finite or even infinite multiplicity. Given{a;}%2,, a Laguerre kerne[(20), there is only one hyper-paramsttre
system of functiong ¢y (e™”)}72, is defined as real pole of the Laguerre basis functions, which is convenie

to estimate for the hyper-parameter estimation.
sofe) = VL1000

here same as beforé‘%| = @—7' = —1 for oy, = 0. Then
e kernel[(Il7) has a simplified expression [20, Lemma 5]

(19)

1 — eilw—w’)

C. Regularized frequency response estimation

1 — agew ’
j— - Since OB kernels are defined in frequency domain, one
. VI— g ap — e . . i~
P () = _|a7| il _e . M =1,2,--- may wonder if it is possible to work in frequency domain
’ 1 —ajew 1 — e i’ T ; : : - i
J k=0 k k directly without going back to the time domain. The answer

) (14) s affirmative. Recently, we have derived the dual of the reg-
wherea; means the complex conjugate @f, w € [-7 7),  ylarized impulse response estimation in frequency domain,
and ‘Z—j‘ = o] = —1for a; = 0. Such a system is called j.e., the regularized frequency response estimation, Z&f |
the Malmquist systemit is well-known that the Malmquist for details. By using the implementation in [21], we can

system is orthonormal on the unit circle in the sense that derive the regularized frequency response with OB kernels.

1 (7 L ———— 0 k+#j IV. REGULARIZED ORTHONORMAL BASIS FUNCTIONS
- w (ptw d — 6 R g 15 .
o /_W Or ()95 (€™ )dw = Oy, { 1 ok=y @9 ESTIMATION

We are interested in the space spanned by a subset of thdt iS worth to note that the hyper-parameters of OB kernels
Malmquist system[{34). It can be shown see e.g., [18] thdL9) are{ax};, which are the poles of the basis functions.

the space spanned By (e7), d1(€7), - - , (™)} with So tuning OB kernels is equivalent to tuning the location
the inner product defined as of the poles of its underlying basis functions. This finding
motivates another way of using orthonormal basis functions
(f,q) = 1 " (eiW)de (16) for regularized system identification:
21 ) o 1) formulate the orthonormal basis functions based model

as a linear regression model;

is a RKHS space with the reproducing kernel ) i
2) treat the poles of the orthonormal basis functions as

iy o e hyper-parameters and design a suitable kernel for the
ob w tw'\ w iw’
Kfreq(e™, ™) = Z Pr(e™)pr(e™) (17) coefficients of the orthonormal basis functions;
k=0 3) estimate the hyper-parameter by empirical Bayes
which we will refer below as thémn+1)th order orthonormal method and then obtain the regularized orthonormal

basis (OB) kernel in frequency domain. basis functions by using RLS method.



We first formulate [(R) with the linear combination of For more general orthonormal basis functions, we can
orthonormal basis functiongl(6) as a linear regression inodalways first try the SS, TC and DC kerneldifl24) is assumed.
If they do not work so well, we shall spend more efforts
= nggpk *u(t) +v(t) (21) on investigating the prior knowledge or assumption on the
coefficients of orthonormal basis functions and design a
fsuitable kernel structure accordingly.
Now it remains to estimate the hyper-parameters: the pole
p of the orthonormal basis functions and the hyper-parameter
k=1,---m depend orp. a used to parameterize the kernel structure. Asséme

The feature of OB kernels that their hyper-parameters ar%/ (0,K()). Then from [2B) we have
poles of the basis functions motivates to treat poles of the 4 — argmaxp(YN p, a)
basis functions as hyper-parameters and estimate theneby th
empirical Bayes method. It should be noted that this idea has = arg%nol} Y (®n(p)K ()@ (p)"

also been figured out independently by Darwish, Toth, and 9 1 —_—
Van den Hof in [22]. For now we assume thatis known o"In)" Yy +logdet(Pn (p)K () (p)" + 0 IN)

and then we can estimageby minimizing the RLS criterion  Finally, solving [22) or[(2B) by replacing « with p, & yields

whereg = [g1,- -~ ,gm]T, ¢r(t) is the impulse response o
Fi.(q) in (). Let p be the vector consisting of all poles of
Fi(q) =0,k =1,---,m. Then the impulse responsg (¢),

N the regularized orthonormal basis function estimate.
g:argminzw ng@k*u ®)? +o?g"K(a) g
g = V. REGULARIZED IMPULSE RESPONSE ESTIMATION WITH
(22) THE OB KERNEL IS A SPECIAL CASE OF REGULARIZED
. ORTHONORMAL BASIS FUNCTIONS ESTIMATION
= argmin [[Yy — n(p)gl3 + g K(a)™ (23)

In this section, we show that the regularized impulse
whereK («) is the regularization matrix on the coefficientsresponse estimation with the OB kerrfell(17) is a special case
{gx}}>, of the orthonormal basis functions, addy(p) is of the regularized orthonormal basis functions estimation
the regression matrix that can be formed in a natural wayMore specifically, it is equivalent to ridge regression of th
As discussed in Sectidnl ll, it is a key issue to design eoefficients of the orthonormal basis functions, see €8], [
suitable kernel structure, which relies on the prior knalgie To show this, it is more convenient to go back to time
that we know about the coefficients of the orthonormafiomain. For the orthonormal basis functiofis (e’)}2.,
basis functions. Apparently, this issue depends on what frequency domain, we can define their correspondents
orthonormal basis functions we use. For illustration, wegyy(t)}72, in time domain. Herey(t) is the impulse
consider the Laguerre modél (7) as an example below. response of;(e*“) and moreover, we have
The assumptions on the Laguerre coefficidnts) and B )
the converger?ce property of L?iguerre modeT{| e}kh(;W@st (7 $r(e™) = Flon(t)},  wu(t) = F{or(e™)}  (26)
converges as — oo has been discussed, see e.g., [4]. It isyhere 7 and F~! denote the discrete time Fourier transform
suggested in [4] to assume the absolute convergence of ¢y its inverse transform, respectively.
sum of the Laguerre coefficientg,. };2,, i.e., Then it is straightforward to verify by using_(15) and
Cauchy’s integral formula thafyy(t)}32, are orthonormal
Z lgk| < o0 (24) in the sense that

If we treat {g;x}3°, as the impulse response of a linear D or(t)p;(t) = 6k y = { (1) Zij (27)
system, then the above assumption (24) says nothing but the

linear system is stable. This observation implies that #re k Moreover, the space spanned Byo(t), ©1(t), -, om(t)}
nels introduced for regularized impulse response estimati with the inner product

the SS, TC and DC kernels can be candidates to regularize o

the Laguerre coefficientSg } 72 ;. _

Remark 4.1:As pointed out in [4], the convergence rate i) Zf(t)h(t) (28)
of the Laguerre mode[7) can be slow, e.g., if the system
has poles close to the unit circle or has high resonant poles
In this case, one can try the adapted DC kernel as follows:

Kk, j) = eA(k + j)pl* 7, (25)

where \() is a nonnegative function such that-) decays which we will refer below as thém + 1)th order OB kernel
slower than the exponential function add®é is a valid in time domain. Apparently, the OB kernd[ {29) in time
kernel. Or one can choose to use the other regularize®main and the OB kerne[ (L7) in frequency domam are
orthonormal basis functions, such as the Kautz model in [3lated through Fourier transform, e. g{freq( el eiw') =

to handle the case where the system has high resonant polE$F{ K., (¢, t')}}.

a RKHS space with the reproducing kernel

Ko (t, Z o ()pr(t (29)



Now consider[(TI13) with the kernél’(«) replaced by the
OB kernel [29). The RKHS () becomes

span ofg(t), 1(t), -+, em(t)

= {0@)0(t) =D _ grer(t), g €R}  (30)
k=1

Hi(a) =

and moreover,

191300, = D 90 (31)
k=1

Therefore, [(IB) is equivalent to

N m
§= argmginz ly(t) — ngsﬁk xu(t))® +°[gl5 (32)
=1 k=1

where the regularizatiofig||2 is a ridge regression af.
We have the following interesting observations:

2)

3)

kernel [12) and the diagonal (DI) kern&l(k, j; o) =
diaga, a?,--- ,a™) are used to regularize the La-
guerre coefficients. The results are represented as
RLAG-TC and RLAG-DI, respectively.

LS-LAG : the Laguerre basis function estimation with
least squares method. The estimate of the pole of
the Laguerre model is obtained from RLAG-TC and
then the least squares method is used to estimate the
Laguerre coefficients without regularization.
RFIR-TC,RFIR-LAG : the regularized impulse re-
sponse estimation. The order of the FIR modél (5) is
chosen to be 125 and the unknown input are set to zero
when forming the regression matrix. The TC kernel
(@I2) and the Laguerre kernél {20) are used to regular-
ize the impulse response coefficients. The results are
represented as RFIR-TC and RFIR-LAG, respectively.
As shown in Sectiof V, RFIR-LAG is equivalent to
regularized Laguerre basis functions estimation with

1) The regularized impulse response estimation with the
OB kernel [29) (equivalently[{17)) is equivalent to a
ridge regression of the coefficients of the orthonormdE. Model fit

basis functions[(32), which is a special case of the To measure the performance of the examined methods,
regularized orthonormal basis functions estimation (22y€ compare the impulse response of the estimated model
with the regularization matris (c) = I,.. with that of the true system: we g}, andg; to denote the

. ) kth coefficient of the former and the latter impulse response,
2) For the Laguerre kernd[{R0), the ridge regressigift, respectively. Then the model fit is defined ag P
i.e., the kernelK (k, j;a) = ady; cannot guarantee

the a_b_solute convergence of the sum of Laguerre mode‘I/V 100 1- 5 lgh — gkl vz o 1 % o
coefficients, i.e.,[{24). Since the kern&l(k, j;a) = - 125 |99 — goJ2 DT k_lg"’
ady,; does not reflect our prior knowledge, it is not B (33)
a good kernel and the regularized impulse response . i
estimation with the OB kerne[{29) will not work well P- Simulation result

for high order OB kernel. This claim will be verified The average model fit over the corresponding data collec-
by numerical simulations shortly. tions are shown in the table below.

the scaled identity kerndk (k, j; o) = ady ;.

VI. NUMERICAL SIMULATION LS-LAG s1D1 S1D2 S2D1 S2D2
A. Data-bank m =10 80.2 70.2 73.6 59.5
For this preliminary work, we use a portion of the data- m=20 88.8 68.6 82.1 6.3
bank in [7, Section 2], which consists of 4 data collections: m =30 90.0 62.8 84.0 38.1
e S1D1: fast systems, data sets wifti = 500, SNR=10 m=40 887 566 841 4.9
« $2D1: slow systems, data sets wiffi = 500, SNR=10 RFIR-TC sS1D1 s1D2 S2D1 S2D2
. S1D2: fast systems, data sets wifti = 375, SNR=1 n=125 914 761 812 66.1
o S2D2: slow systems, data sets wiffi = 375, SNR=1 RFIR-LAG sS1D1 S1D2 S2D1 S2D2
Each collection contains 250 randomly generated 30th order m = 10 80.1 69.6 72.0 60.6
discrete-time systems and data sets. The fast systems have m = 20 88.3 68.5 80.4 61.3
all poles inside the circle with center at the origin and wadi m = 30 89.1 647 825 599
0.95 and the slow systems have at least one pole outside this m = 40 881 626 831 584
circle. The signal to noise ratio (SNR) is defined as the ratio RLAG-TC s1D1 sS1D2 sS2D1 S2D2
of the variance of the noise-free output over the variance of m =10 80.2 71.3 72.9 63.0
the white Gaussian noise. In all cases the input is Gaussian m =20 89.2 75.3 81.9 67.8
random signal with unit variance. For more details regaydin m =30 91.3 76.1 85.2 69.2
the data bank, see [7, Section 2]. m = 40 91.8 76.3 86.8 70.1
B. Examined methods RLAG-DI s1D1 S1D2 S2D1 S2D2
We examine three methods: m=10 804 718 732 640
. m = 20 89.2 757 823 68.6
1) RLAG-TC,RLAG-DI : the regularized Laguerre ba- _
. ; o . m = 30 91.2 76.0 859 69.7
sis functions estimation. The Laguerre model with m = 40 91.6 761 86.8 700

ordersm = 10,20,30,40 are considered. The TC
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