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Abstract— This paper deals with a quantized version of a
consensus dynamics in continuous-time, which is motivated
by opinion dynamics applications. Under the assumption of
all-to-all communication, we show existence and completeness
of solutions, we characterize the equilibria, and we prove
asymptotical convergence to a state of quantized consensus. For
almost all initial conditions, the consensus value differs from the
initial average by at most the quantizer precision. Furthermore,
we discuss the implications of more general assumptions on the
communication graph.

I. INTRODUCTION

Consensus dynamics have the goal to steer a group of

agents to a common value while only allowing each agent

to use information from its immediate neighbors. In the last

few years, the effects of quantization in consensus dynamics

have attracted the interest of a large number of researchers.

Indeed, quantization can be due to coarse sensing capabili-

ties, to digital communication over band-limited communi-

cation channels, or to limited precision in computation. As

a consequence of this variety of applications, a wide range

of quantized consensus systems has been studied: without

attempting to be exhaustive, we only mention here some

of the early works [1], [2], [3], [4], [5] and some of the

most recent developments [6], [7], [8], [9], [10], [11], [12],

[13], [14]. Due to the discontinuous nature of the resulting

dynamics, convergence results have only been obtained in

few cases, sometimes under restrictive assumptions about the

topology of the network that describes the communication

among the agents. Instead, the most common approach is

to compare the quantized dynamics with a corresponding

non-quantized dynamics. Quantization induces a deviation

between the two: this deviation can be estimated, as a

function of the quantizer and of the topology, and can often

be made small by suitable design choices.

In this work we consider one specific continuous-time

dynamics involving quantization, where the agents can only

access a quantized version of the other agents’ states, but can

access their own state with unlimited precision. We restrict

our attention to the case of all-to-all communication, which is

amenable to a complete analysis. We characterize the behav-

ior of Carathéodory solutions: we prove their existence and

completeness, we describe their equilibria (which coincide

with quantized consensus states), and we prove that they
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converge to an equilibrium that is close to the initial average

of the states. Additionally, we provide some preliminary

results about the more general case when communication

is described by a weighted graph. In general, the limit

behavior substantially differs from a consensus: a precise

characterization will be the topic of future work.

A quantized consensus dynamics with perfect knowledge

of the internal states has been briefly considered, in a

discrete-time setting, in one of the earliest works on quan-

tized consensus [15]. In that paper, the authors are seeking

an algorithm achieving consensus at the average of the

initial values of the agents, in spite of the constraint of

using quantized communication. In order to reach that goal,

they recommend to use the quantized internal state in the

feedback loop, in place of the non-quantized one, because

this choice guarantees the preservation of the average state

during the dynamics. Instead, using infinite precision for

the internal state prevents this preservation. Because of this

drawback, subsequent works aiming at average consensus

have used quantized internal states [16], [17]. On the con-

trary, the dynamics with perfect knowledge of the internal

states has not been studied much and its qualitative analysis

remains open. Indeed, this dynamics is hardly appealing from

an engineering perspective. Instead, the motivation for its

study comes from social science applications of consensus-

seeking systems, which are receiving increasing interest in

our community [18], [19], [20], [21]. In these applications,

the agents are interpreted as individuals and the states as

opinions on some topic: the consensus system describes the

effect of interactions between individuals that communicate

among them and are influenced by others’ opinions. In such

context, quantization can arise as a mismatch between perfect

self-awareness and imperfect communication, due to limited

verbalization capabilities. A similar tension arises between

personal attitudes and displayed actions, which typically

feature a limited number of options. These phenomena have

been observed by many researchers and incorporated in a few

models of opinion dynamics: relevant examples range from

sociology [22] and behavioral sciences [23] to physics [24]

and auction theory [25]. In these contexts, it is natural to

assume that the opinions of the individuals do not depend

on their own displayed (thus, quantized) opinions, but instead

on the real ones.

Paper structure: The dynamics with all-to-all communi-

cation is defined in Section II and studied in Section III. Next,

in Section IV we elaborate on the case when communication

is restricted to certain neighbors. Final remarks are given in

Section V.
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II. QUANTIZED ALL-TO-ALL COMMUNICATION

We consider a set of agents, indexed in I = {1, . . . , N}:

each of them has a time-dependent real-valued state xi(t)
that obeys the following dynamics

ẋi(t) =
∑

j 6=i

[q(xj(t))− xi(t)], i ∈ I, (1)

where q : R → Z is defined as q(t) = ⌊t + 1
2⌋ and is

represented in Figure 1. Note that in the above model agent

j influences agent i through q(xj(t)), i.e., a quantization of

its state.
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Fig. 1. The uniform quantizer q.

Due to quantization, the right-hand side of (1) is discon-

tinuous. Classical solutions of (1) may not exist, thus we

consider Carathéodory solutions, i.e. solutions to the integral

equation

xi(t) = x0i +

∫ t

0

∑

j 6=i

[q(xj(s)) − xi(s)]ds.

Other types of generalized solutions may be chosen in

order to deal with discontinuities in the system [26]. For

example, in [27] a quantized consensus problem was studied

using Krasovskii solutions. Often, the choice of generalized

solutions as Krasovskii solutions and Filippov solutions is

forced by the non-existence of more classical solutions. As

we show in the next section, here Carathéodory solutions

have good properties and thus can be successfully used. From

now on we simply write solutions to mean Carathéodory

solutions.

III. ANALYSIS OF THE ALL-TO-ALL DYNAMICS

A. Basic properties

System (1) can be equivalently described by the equation

ẋ = f(x) (2)

where f : RN → R
N is a discontinuous vector field given

by fi(x) =
∑

j 6=i[q(xj)− xi]. If we define

q(x) = (
∑

j 6=1 q(xj), ...,
∑

j 6=N q(xj))
T =

= (
∑N

j=1 q(xj)− q(x1), ...,
∑N

j=1 q(xj)− q(xN ))T ,

and we observe that for every k ∈ Z
N the function q is

constant on each set

Sk = {x ∈ R
N : ki −

1

2
≤ xi < ki +

1

2
, i = 1, ..., N}.

Then, the discontinuous vector field can be written as

f(x) = q(x) − (N − 1)x. (3)

This fact makes evident that in each set Sk trajectories are

lines segments. Moreover, the formula (3) is useful in the

proof of the following basic properties of the solutions.

Proposition 1 (Properties of solutions):

(i) (Existence) For any initial condition there exists a

solution of (1).

(ii) (Invariant manifolds) Let sij(x) = xi − xj and Sij =
{x ∈ R

N : sij(x) = 0}. If x is a solution of (1) such

that x(t0) ∈ Sij , then x(t) ∈ Sij for all t ≥ t0.

(iii) (Order preservation) If xi(t0) ≤ xj(t0) for some t0 ∈ R

then xi(t) ≤ xj(t) for all t ≥ t0.

(iv) (Boundedness) For any solution x of (1), there exist

m,M ∈ R such that m ≤ x(t) ≤ M for all t ≥ t0.

(v) (Completeness) Any solution starting at t0 ∈ R is

defined on the set [t0,+∞).
Proof: (i) First of all, we remark that the righthand

side of (1) is continuous at any point in the interior of Sk

for any k ∈ Z
N , then local solutions with initial conditions

in R
N\∪k∈ZN ∂Sk do exist, where ∂Sk denotes the border of

Sk. Then, we consider initial conditions on ∪k∈ZN∂Sk. For

any x0 ∈ R
N we denote by I(x0) the subset of {1, ..., N}

of the indices i such that x0i = ki +
1
2 for some ki ∈ Z and

by M be the cardinality of I(x0).
We first consider initial conditions x0 such that I(x0) =

{i}, i.e. x0i = ki +
1
2 for some ki ∈ Z and x0j 6= h+ 1

2 for

any j 6= i and any h ∈ Z. Let us denote

si(x) = xi − ki −
1

2
,

S+
i = {x ∈ R

N : xi − ki −
1

2
≥ 0},

S−
i = {x ∈ R

N : xi − ki −
1

2
< 0},

f |S−

i
(x0) = lim

x∈S
−

i
,x→x0

f(x).

We have that

a(x0) = ∇si(x0) · f |S+
i
(x0) = ∇si(x0) · f |S−

i
(x0)

=
∑

j 6=i(q(x0j)− ki −
1
2 ).

If a(x0) < 0 there is a solution starting at x0 which satisfies

the equations ẋ = f |S−

i
(x) and stays in S−

i in an interval

of the form (t0, t0 + ǫ) for some ǫ > 0. If a(x0) ≥ 0 there

is a solution starting at x0 which satisfies the equation ẋ =
f |S+

i
(x) and stays in S+

i in an interval of the form (t0, t0+ǫ)

for some ǫ > 0. Note in particular that if a(x0) = 0 the

vector field f |S+
i

is tangent to S+
i in a neighborhood of x0.

We now consider initial conditions x0 such that 1 <
M ≤ N . The vector field f has 2M limit values at x0

corresponding to the 2M sectors defined by the inqualities

xi − ki −
1
2 ≥ 0 and xi − ki −

1
2 < 0. We describe

these sectors by means of vectors Q ∈ {0, 1}N ⊂ R
N . Let

H(t) = 1 if t ≥ 0 and H(t) = 0 if t < 0. We define

Qi = H(xi − ki −
1
2 ) if i ∈ I(x0) and Qi = 0 if i /∈ I(x0).
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Let fQ = limx→x0,x∈Q f(x). We want to prove that there

exists Q such that H((fQ)i) = Qi for all i ∈ I(x0), that is,

that at x0 the vector field fQ points inside the sector Q.

Preliminarily, note that the ith component of fQ can be

written as

(fQ)i =
∑

j 6=i q(xj)− (N − 1)xi

=
∑

j 6=i(kj +Qj)− (N − 1)(ki +
1
2 )

=
∑

j kj −Nki −
N−1
2 +

∑

j 6=i Qj .

Now, we start by considering the sector Q1 such that (Q1)i =
0 for all i ∈ I(x0). If H((fQ1)i) = 0 for all i ∈ I(x0), we

have finished. Otherwise, there exists i ∈ I(x0) such that

H((fQ1)i) = 1. Assume without loss of generality that such

i is 1, i.e. H((fQ1)1) = 1. Since (fQ1)1 =
∑

j kj −Nki −
N−1
2 > 0, then also for all Q 6= Q1 we have (fQ)1 =

∑

j kj −Nki −
N−1
2 +

∑

j 6=i Qj > 0 and thus H((fQ)1) =
1. We then examine only those Q such that H(Q1) = 1.

In particular the next Q we consider, that we call Q2, is

such that H((Q2)1) = 1 and H((Q2)i) = 0 for all other

i ∈ I(x0). If H((fQ2)i) = 0 for all i ∈ I(x0), then we have

finished. Otherwise, there exists i ∈ I(x0) \ {1} such that

H((fQ1)i) = 1. Assume that such i is 2, i.e. H((fQ2)2) = 1.

Then for all Q 6= Q1, Q2 we have H((fQ)2) = 1. We can

then restrict our attention to those Q such that H(Q1) =
H(Q2) = 1, and so forth. By proceeding in this way, in M
step at most we find the sector Q with the desired property.

As already mentioned, the meaning of the condition

H((fQ)i) = Qi for all i is that the vector field fQ(x0) is

directed inside Q. Then, there exist a solution ϕ of (1), and

t0 ∈ R, ǫ > 0 such that ϕ(t0) = x0 and ϕ̇(t) = fQ(ϕ(t))
for almost every t ∈ (t0, t0 + ǫ). Let us denote by Ĩ(x0)
the subset of I(x0) such that (fQ(x0))i = 0 if i ∈ Ĩ(x0).
There exists a neighborhood of x0 –denoted by N(x0)–
such that the vector field fQ is tangent to [∩i∈Ĩ(x0)

{xi =

ki +
1
2}] ∩N(x0) ∩Q.

(ii) Assume that the claim is not true, i.e., that for some

pair (i, j) and for some solution x of (1) such that x(t0) ∈
Sij , one has sij(x(t

∗)) > 0 for some t∗ > t0. This implies

–by the absolute continuity of Carathéodory solutions– that

there exists some positive measure set I ⊂ (t0, t
∗) such that

sij(x(t)) > 0 and d
dt
sij(x(t)) > 0 for all t ∈ I . On the

other hand for almost all t ∈ I ,

d
dt
sij(x(t)) =

= ∇sij(x(t)) · ẋ(t)
= ∇sij(x(t)) · f(x(t)) = ei · f − ej · f
=

∑

h 6=i[q(xh(t))− xi(t)]−
∑

h 6=j [q(xh(t)) − xj(t)]

= −[q(xi(t))− q(xj(t))]− (N − 1)[xi(t)− xj(t)] < 0,

which gives a contradiction.

(iii) This is an immediate consequence of the previous

statement. Assume first that xi(t0) < xj(t0) and xi(t
∗) >

xj(t
∗) for some t∗ > t0. Then there exist t̄ ∈ (t0, t

∗) such

that xi(t̄) = xj(t̄) and t∗ > t0 such that xi(t
∗) > xj(t

∗),
which contradicts (ii). In the case xi(t0) = xj(t0) and

xi(t
∗) > xj(t

∗) for some t∗ > t0 the contradiction with

(ii) is immediate.

✻
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Fig. 2. Non-uniqueness of the solution through the point (1/2, 1/2).

(iv) Let x(t) be any solution of (1). Assume that

x1(t0) ≤ x2(t0) ≤ .... ≤ xN (t0). By (iii) x1(t) =
min{x1(t), ..., xN (t)} and xN (t) = max{x1(t), ..., xN (t)}
for all t ≥ t0. Let us point the attention on xN (t). Note that

at any time t such that q(xN (t)) ≤ xN (t) ≤ q(xN (t)) + 1
2 ,

one has ẋN (t) =
∑

j 6=N q(xj(t)) − xN (t) ≤ 0, then,

if q(xN (t0)) ≤ xN (t0) ≤ q(xN (t0)) +
1
2 , one gets that

xN (t) ≤ xN (t0) for all t ≥ t0.

On the other hand if q(xN (t)) − 1
2 ≤ xN (t) < q(xN (t))

for some time t, then ẋN (t) can be positive, depending on

x1(t), ..., xN−1(t). Nethertheless, if xN (t) increases, it can

not overcome q(xN (t)) because if at some time t̄, one has

xN (t̄) > q(xN (t̄)) then ẋN (t̄) ≤ 0. Finally in this case

xN (t) ≤ q(xN (t0)) for all t ≥ t0. Since x1(t) can be

analogously treated we get that the solution x(t) is bounded.

(v) Local existence and boundedness of solutions imply

that all solutions with initial condition at t0 ∈ R are defined

on [t0,+∞).

In general uniqueness of solutions is not guaranteed, as

shown in the following example illustrated in Figure 2.

Example 1 (Multiple solutions): Consider system (1) with

N = 2 and initial condition (x1(0), x2(0)) = (1/2, 1/2).
There are two solutions issuing from this point, whose

trajectories are the line segments joining the initial condition

with the equilibria (0, 0) and (1, 1).

B. Equilibria

We now describe the equilibria of the vector field f(x),
which are states of quantized consensus.

Proposition 2 (Equilibria): The set of equilibria of (1) is

E = {x ∈ Z
N : ∃h ∈ Z such that xi = h ∀i = 1, ..., N}.

Proof: Clearly, any point of E is an equilibrium of (1).

Let now x∗ be an equilibrium of (1). This means that

x∗ =
1

N − 1
q(x∗).

Let k ∈ Z
N be such that x∗ belongs to Sk and let Q =

∑N

j=1 kj . One has

ki −
1

2
≤ x∗

i =
Q− ki
N − 1

< ki +
1

2
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and by multiplying by N − 1 , for all i = 1, . . . , N , we get

(N − 1)

(

ki −
1

2

)

≤ Q− ki < (N − 1)

(

ki +
1

2

)

.

which implies

Q

N
−

N − 1

2N
< ki ≤

Q

N
+

N − 1

2N
.

Since ki ∈ Z and there is a unique integer number in

the interval
(

Q
N

− N−1
2N , Q

N
+ N−1

2N

]

, this implies that k1 =

... = kn. This means that if x∗ is an equilibrium then

x∗ ∈ S(h,...,h) for some h ∈ Z. In this case f(x∗)i =
(N − 1)h − (N − 1)x∗

i for all i = 1, ..., N , and finally

x∗
i = h for all i = 1, ..., N .

Remark 1 (Local stability): Note that equilibria are Lya-

punov stable and locally asymptotically stable. In fact for

any equilibrium x∗ there exists a neighborhood where the

vector field is given by f(x) = −(N − 1)(x− x∗).
Remark 2 (Finite-time exit): From the proof of the previ-

ous proposition it follows that in each Sk with k 6= (h, ..., h)
for any h ∈ Z, trajectories are lines segments that are

solutions to a vector field whose equilibrium is out of Sk.

This consideration implies that all solutions to (1) escape

from every set Sk with k 6= (h, ..., h) in finite time. On the

other hand, once inside some S(h,h,...,h), the equilibrium is

reached in “infinite” time.

C. Convergence to consensus

We now prove that each solution converges to an equilib-

rium, that is, to consensus at a common integer value. The

convergence is illustrated in Figure 3.

Proposition 3 (Convergence to consensus): Any solution

to (1) converges to a point in E.

Proof: Let x be any solution of (1) and, without loss

of generality, assume that x1(t0) ≤ · · · ≤ xN (t0). By order

preservation we have x1(t) ≤ ... ≤ xN (t) for all t ≥ t0 and

xN (t) − x1(t) ≥ 0 for all t ≥ t0. We prove that xN (t) −
x1(t) → 0 as t → +∞. In fact

d
dt
(xN (t)− x1(t)) =
=

∑

h 6=N [q(xh(t)) − xN (t)]−
∑

h 6=1[q(xh(t))− x1(t)]

= −[q(xN )− q(x1)]− (N − 1)(xN − x1)

and then

0 ≤ xN (t)− x1(t) ≤ (xN (t0)− x1(t0))e
−(N−1)(t−t0) → 0

as t → +∞ and dist(x(t), S) → 0 as t → +∞, where

S = {x ∈ R
N : x1 = ... = xN}.

We now distinguish two cases. If x(t) is in the interior of

S(h,...,h) for some t and some h ∈ Z, then

ẋ(t) = f(x(t)) = −(N − 1)(x(t) − (h, ..., h)T )

and x(t) → (h, ..., h)T as t → +∞. Otherwise, x(t) →
(h+ 1

2 , ..., h+
1
2 )

T for some h ∈ Z. In this case, x(t) actually

reaches (h+ 1
2 , ..., h+

1
2 )

T in finite time, because each Sk is

crossed in finite time, as observed in Remark 2; afterwards,

x(t) converges either to (h, ..., h) or to (h + 1, ..., h + 1).
Note that in general convergence is not in finite time.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

x

t

Fig. 3. Simulation of (1) for N = 20 from random initial conditions in
[0, 30], showing convergence of the states to the consensus value h = 16.

D. Average (almost) preservation

In general, solutions to (1) do not preserve the average

of the states. However, the following result shows that the

deviation from the average is bounded by the precision of

the quantizer, with the possible exception of solutions that

originate from a negligible set of initial conditions. This

result is illustrated by simulations in Figure 4.

Proposition 4 (Consensus value): Let x0 ∈ R
N , K ∈ Z

be such that

K <
(x0)1 + ...+ (x0)N

N
< (K + 1)

and let φx0 be any solution of (1) such that φx0(t0) = x0.

For almost all x0 ∈ R
N , φx0(t) tends either to (K, ...,K)

or to (K + 1, ...,K + 1).
Proof: Let us first remark that the sets

∆K = {x ∈ R
N : x1 + ...+ xN = KN},K ∈ Z

are weakly invariant. In fact the vector 1 = (1, ..., 1) is

normal to ∆K and 1 · f |Sk
= 0 if

f |Sk
= (

∑

j 6=i

kj − (N − 1)xi)i.

Since solutions starting in the interior of Sk are locally

unique, solutions that do not converge either to (K, ...,K)
or to (K +1, ...,K +1) must cross ∂Sk ∩ (∆K ∪∆K+1) at

some time. We prove that the set of initial conditions, whose

corresponding solutions reach ∂Sk∩ (∆K ∪∆K+1) at some

time, has zero measure.

Fix any k ∈ Z
N ,K ∈ Z an consider the set ∂Sk ∩∆K .

This is the intersection of the boundary of a hypercube with

a hyperplane, and has dimension at most (N − 2). For any

point x̄ ∈ ∂Sk ∩∆K , the vector field has a finite number of

limit values corresponding to the indices l ∈ Nk ⊂ Z
N

such that Sl ∩ Sk 6= ∅. Then, a finite number of local

backward solutions of (1) through x̄ can exist. Let φl be

such solutions. The set Gl = ∪x̄∈∂Sk∩∆K
{x ∈ R

N : x =
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Fig. 4. Sample evolutions of 1

N

∑
i
xi(t) −

1

N

∑
i
xi(0) for the

dynamics (1) with random initial conditions and N = 20.

φl(t) ∈ Sl, t ∈ (−∞, t̄), φl(t̄) = x̄} is then a (N − 1)-
dimensional differential manifold and has null measure.

Moreover cl(Gl) ∩
(

∪k∈ZN ∂Sk

)

is a (N − 2)-dimensional

manifold. We can then consider solutions in neighboring

hypercubes that can reach point in cl(Gl) ∩
(

∪k∈ZN ∂Sk

)

and repeat considerations analogous to those already done. In

this way it results that the set of points that can reach some

point in some ∂Sk∩∆K is the union of a denumerable union

of null-measure sets and then has null measure.

IV. NON-COMPLETE GRAPHS

In the previous two sections we have defined and studied

a system achieving consensus in case quantized states can

be communicated. This system requires all-to-all communi-

cation and can thus be seen as a dynamics on a complete

graph. However, the engineering and social applications

would suggest to consider more general assumptions on the

available communication. If the links between the agents

are described by a non-complete undirected graph, such an

extended model is then

ẋi(t) =
∑

j 6=i

aij [q(xj(t))− xi(t)], i ∈ I, (4)

where aijs are the entries of the symmetric adjacency matrix

A ∈ {0, 1}N×N encoding the graph topology (aij = 0 if j
does not influence i). We will denote to the right-hand side

of (4) as f̄(x).
Some of our results about (1) carry on to (4): Carathéodory

solutions exist from every initial conditions and they all are

bounded and complete. Moreover, simulations suggest that

the average of the states is only slightly perturbed during the

evolution; some examples are provided in Figure 5. Beyond

these basic facts, however, the dynamics are very different

from the complete graph. Indeed, they do not preserve the

order between solutions and –more important– solutions

to (4) can converge to points that are not consensus. This

fact can be observed in the simulation of Figure 6, as well

as in simple examples.

Example 2 (Non-consensus in line graphs): We consider

N = 4 agents whose communications are described by a

line graph, that is, such as their states evolve according to

ẋ1 = q(x2)− x1,

ẋi = q(xi−1) + q(xi+1)− 2xi i ∈ {2, . . . , N − 1}, (5)

ẋN = q(xN−1)− xN .

If we take the initial condition (0, 0.49, 0.51, 1), then the

corresponding Carathéodory solution tends to the point x∗ =
(0, 0.5, 0.5, 1), showing no consensus in the limit, but a

clusterization of opinions instead.

Interestingly, the limit point x∗ in Example 2 is such that

f̄(x∗) 6= 0 and nevertheless it is attractive for the dynamics:

this pathological behavior is allowed by the discountinuity

of the vector field f̄(x). At a closer look, however, we can

observe the following fact: x∗ is not an equilibrium, that is,

f̄(x∗) 6= 0, but f̄ |S[0,0,1,1]
(x∗) = 0 and x∗ belongs to the

topological closure of S[0,0,1,1]. Hence, solutions that start

in a given quantization bin Sk can converge to points that

are not equilibria of the piecewise-defined f̄(x), but are both

equilibria of the “piece” f̄ |Sk
(x) and accumulation points of

Sk. Whether this property is shared by all attractors of (4)

is currently an open question.

Furthermore, the following construction –which is a gen-

eralization of Example 2– shows that these pathological

attractors can be significantly far from consensus.

Example 3 (Linear disagreement): Let ℓ be a positive in-

teger, N = 2ℓ + 2, and ε > 0 a small number. Assume

interactions as in (5). Then, any initial condition in the form

[0,
1

2
− ε,

1

2
+ ε, . . . , ℓ−

1

2
− ε, ℓ−

1

2
+ ε, ℓ]

(modulo translations by an integer) converges to a point x
such that maxi xi −mini xi =

N−2
2 .

Hence, the distance from consensus can grow linearly in the

number of agents.

These preliminary observations lead us to two comments.

First, it is plain that the analysis of (4) is not an immediate

extension of the analysis for the complete graph, in view of

the complexity of its set of attractors. Second, the signifi-

cant disagreement that characterizes some of such attractors

discourages any attempt to simplify the problem by proving

that the quantized dynamics is “close” to the corresponding

unquantized consensus system.

V. FUTURE WORK

From the mathematical perspective, the natural prosecu-

tion of this work is the thorough analysis of the general

model presented in Section IV, including a proof of conver-

gence and the characterization of the limit points. On this

matter, we note that the attractors highlighted in Example 2

are equilibria for a suitable convexification of the vector field.

It is then a natural question whether solutions according to

Krasovskii or Filippov are useful in this context.

From the perspective of the social science applications,

we recall a key question in the opinion dynamics literature:

identifying the causes of the persistence of disagreement in
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Fig. 5. Sample evolutions of 1

N

∑
i
xi(t) −

1

N

∑
i
xi(0) for the

dynamics (5) with random initial conditions and N = 20.
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Fig. 6. Simulation of (5) for N = 20 from random initial conditions in
[0, 30], showing convergence to a non-consensus state.

social networks, in spite of the imitative forces that tend to

bring opinions closer to each other. Different answers have

already been given, including bounded confidence [28] and

the presence of stubborn agents in the network [19]. Our

model suggests that limited verbalization can be another

cause of persistent disagreement. Consequently, our work

motivates further studies on the interplay between discrete

and continuous variables in opinion dynamics.
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