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Predictive scheme for observer-based control of LTI systenth unknown
disturbances

V. Léchappé, E. Moulay, F. Plestan, A. Glumineau and A. Gtarie

Index Terms— Input delay, unknown disturbance, reduction ~The problem of output feedback for nonlinear systems is
method, predictive control, observation. addressed in [17] but the designed controller does notwevol
Abstract— In this work, it is shown that the results introduced  any prediction. In [18], the controller is a Truncated Potali
in [1], that hold for full state measurement, can be extended Feedback (TPF) introduced in [19].

to partial state measurement. In particular, it is proven that .
the combination of an observer with the new predictive schem To the authors knowledge, there exist only two works

of [1] leads to a better disturbance attenuation than usinghe ~COmMbining output predictive feedback and perturbatioeratt
same observer with the standard predictive scheme. Finally uation. In the discrete framework, [20] uses a disturbatee o
some simulations illustrate the results for constant and the-  server and a linear predictive feedback. In [21], a geometri
varying disturbances. approach is used to show the existence of an output preelictiv
l. INTRODUCTION feedback that minimizes the effect of the disturbance on the

system. However, they use the standard prediction so the

_ One of the first work on the control of input delay systemgjigyrhance attenuation can be improved by using the new
is the well-known Smith predictor [2]. It is a frequency

: r’[Predictive scheme proposed in [1].
domain approach for SISO and open-loop stable syste

: . ; S:This work extends the results of [1] to the systems with
In the 80s, the Finite Spectrum Assignment (FSA) [3], [4],5 i) state measurement. The combination of an observer
and the model reduction, also called Artstein reduction [5

o ith the new predictive scheme allows the design of con-
have extended Smith's work to MIMO, open-loop ur‘Stabl(i’rollers that performs a better disturbance attenuati@m th

systems. All these techniques Iegd_ to state feedback Qe standard reduction method. This extension is partigula
trollers because they use the prediction and the full stase hinteresting from a practical point of view

to be known_to compute the pr_edic_tion. Furthermore, _these The paper is organized as follows. The problem formula-
reference articles do not deal with disturbance attenmafio i, is given in Subsection I1-A and the predictive schemes

complete analysis of predictive control can be found in [6ly i )| state feedback is recalled in 11-B. The predictive

In spite of numerous works on Time Delay SysteM§chemes for partial state measurement is introduced at the
(TDS), very few articles deal with disturbance attenuationy of section I1. Section Il provides a comparison between
in presence of delay in the input even if there is a regs sandard and the new predictive schemes with partial
interest from a practical point of view. Indeed, it is reallygiate measurement. Theoretical results are illustrated by

a complex challenge even for linear systems. Some robugt, jations in Section IV. Finally, some conclusions are
control methods have been extended to input delay systems,.vn in Section V

First, sliding mode control, known for its robustness in the

delay-free case, has been adapted to input delay systeths PROBLEM STATEMENT AND PREDICTIVE APPROACHES
by using “surfaces” [7], [8] or a standard surface [9], [10].A. Problem Statement

The problem of sliding mode with relay systems is the The considered systems are LTI systems with a délay

unavoidable appantlon.of oscillations [114., control ha_\s acting on the control input and an additive disturbance
also been studied for input delay systems and a review Is

proposed in [12]. A complete analysis of this topic is also i(t) = Az(t) + Bu(t — h) +d(t)
provided by [13]. All these works consider that the whole y(t) = Cx(t) (1)
state is available for measurement. u(t) =uo(t) forallte[-h,0[

On the contrary, many works tackle the observer-based z(0) = zo

control problem but in the disturbance free case. The proble;i, z(t) € R, u(t) € R™, d(t) € R, A € R™", B ¢
of state reconstruction for system with delayed input hagnxm gnqc ¢ Rpxn.

been addressed first in [14] and [15]. Then, their works have

been extended to observer-based control. In [16], a predict Assumption 1:4, B andC are constant and known, the
feedback control from the reconstructed states is designgmhir (4, B) is controllable, the paifC, A) is observable.

Vincent Léchappé, Franck Plestan, Alain Glumineau and Assumption 2:h > 0 is constant and known
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Assumption 3 is a locally integrable functionu € « designing a controller based on the new predictive
L}, .([=h, +oo[,R™). scheme will refer to the design of a control law on (7)
so the controller will read as = f(X;).

It has been shown in [1] that a controller of the form
u(t) = f(Xp) (with f is a Lipschitz continuous function)
[1d®)]] < dmaz < +0 (2) leads to a better disturbance attenuation than a contmfller
the formu(t) = f(x;) for a wide class of perturbations. In
next subsection, previous considerations are extenddukto t

Assumption 4:d : R>o — R™ is an unknown function
such that for allt > 0,

and for allt > h,

[|d(t) — d(t — h)|| < hDmag < +00. (3) partial state measurement case.
The inequality (3) is implied by (2) choosing,,,,, = 24
but more accurate upper bound may exist. C. Predictive schemes with partial state knowledge
B. Predictive schemes with full state knowledge The computation ofX;; involves the full knowledge of

siatez in (4). However, when only a part of the state is
gvailable, one can design an observer to first recontruct the
state and then compute the prediction in a similar way to
(4). Consider the Luenberger observer for (1):

In this subsection, the new predictive scheme designed
[1] is recalled. This scheme is based on the definition of
new predictionX:

Definition 1: Let us define:
Xp(t) = zp(t) + x(t) — 2p(t — h) (4)

for all ¢ > h, with z; given by

Z(t) = Az(t) + Bu(t — h) + L(y(t) — Ci(t)). (8)

Note that (8) can be implemented becausds known.
The coefficientL has to be properly chosen such that the

t following error dynamics is practically staBle
xp(t) = eMa(t) + / eAt=%) Bu(s)ds. (5) .
t) = Ae(t) — LCe(t d(t 9
J é(t) = Ae(t) — LCe(t) + (1) ©)

The integral term in (5) and all the integral terms mentione$ith €(t) = z(¢) — &(¢). In particular, L can be chosen

in the sequel are well defined thanks to Assumptions 3 arf§ich that the convergence error of the nominal system, with

4. d(t) = 0, is exponentially stable. Observability Assumption
The termz; is the standard prediction that is used inl guarantees the existence of such a gain.

almost all papers about predictive control of input delay From Lemma 9.2 in [23] and Assumption 4, one can state

systems [5],[4], [2]. BasicalyX;(t) is equal to the standard that there existd’, I" > 0 such that for allt > T

predictionz;(¢) corrected byz(t) — x5(t — h). This latter

term represents the prediction error at instant h due to le@)l] < Tdmas (10)
the unknown perturbatiod: and
! lle(t) — e(t — h)|| < hT'Dyas. (11)
z(t) —zp(t —h) = / e d(s)ds .
From the estimated staig we can computeX;, the “recon-

] b ) structed new prediction”:
Note that the computation of; does not require any knowl-
edge of the perturbation but it requires the full knowledge Definition 2: Let us define:
of x.
The reduction method consists in rewritting system (1) in Xp(t)=2p(t) +2(t) — Tp(t — h) 12)
terms of prediction’s For the standard prediction;, the
transformation leads to the delay free system:

ip(t) = Axp Bu eAhd(t). 6 /
(t) = Awy(t) + Bu(t) + e d(t) © () = eAhi(t) + / A Bu(s)ds.  (13)

t—h

for all ¢ > h, with &; given by

For the new predictiorX, it yields to

Y _ Ah

Xp(t) = AXp(t)+Bu(t) +d(t) +e™ | d(t)=d(t=h)|. (7)  Like in subsection II-B, the dynamics of (1) can be rewrit-
Then, the objective consists in designing the control law ten in the coordinate of the reconsructed predictions. The
on delay free systems (6) or (7). In the rest of the paper, 'eduction ini; leads to the system :

. de3|gn|ng_ a controller baseq on the standard predictive szﬁ(t) = Azp(t) + Bu(t) + AL Ce(t). (14)
sheme will refer to the design of a control law on (6) —_——
so the controller will read a8 = f(z;); dz (1)

1In the Artstein reduction method [5], the system is turnei ia delay 2practical stability means that the observation eeraonverges to a ball

free system using the transformatia(t) = e~ 4 z;(¢). of radiusr > 0 around the origin [22].



As for the transformation withf(ﬁ, one obtains guarantees thaf(ﬁ = 0 is a globally exponentially stable
. . equilibrium point of the closed-loop system (15)-(20) with
Xﬁ(t):AXﬁ(t)-ﬁ-Bu(t)-ﬁ-LCe(t)—i—eAhLC[e(t) —e(t—h)|. dg(t) = 0 forall t > 0. Similarly to u(t) = f(35(t)),
Assumption 3 is verified foru(t) = f(X;(t)). Besides,
(15) inequalities (17) still holds forf(ﬁ:

dx ()

The objective of the next section is to show that the results ol X5l < VI(Xp) < ol X5

of [1] still holds when the state is partially known. In other V(Xﬁ) < —03||Xﬁ|| 21)
words, it will be proved that designing a controller on (14) av | A

(u(t) = f(2;)) leads to better disturbance attenuation than ’KH < cal| Xl

designing a controller on (15)(= f(X;)). Similarly, to the Erom Assumption 4, the inequality
full state knowledge case,

Ah
« designing a controller based on the standard recon- de((t)H <T|lLCy| [dmaw+h||e ||Dmam:|a (22)

structed predictive sheme will refer to the design ofs verified for all+ > 7. Relations (21) and (22) comply
a control law on (14) so the controller will read asyjith the assumptions of Lemma 9.4 in [23] so the following
u(t) = f(Zp); inequality is obtained
« designing a controller based on the new reconstructed
predictive scheme will refer to the design of a control|| X;(t)|| < Be=**=T) 4 AT||LC| [dmam + h||eAh||meJ>
law on (15) so the controller will read as= f(X}). (23)
for all ¢t > T. The constants, 8 and~ are the same as in
Ill. COMPARISON BETWEEN PREDICTIVE SCHEMES WITH  (19) pecause they only depend on the form of the undisturbed
PARTIAL MEASUREMENT system. As it has been mentioned before, systems (14) and
For time varying perturbations,e when D,,., > 0, (15) have the same representatipn= Ay + Bu(t) when
asymptotic stability cannot be achieved, only stabilitghivi  there is no observation error. Singeis the solution of (1),
a ball around the origin is possible. The objective of this t
subsection is to study the influence of the prediction schem%(tJrh) = e (t) + / pA(t—s) [Bu(s)+d(s+h)]ds (24)
on the error bound. .

Let f be a Lipschitz continuous function and assume the ¢

control and one has
u(t) = f(25(t)) (16) " : e
. _ — _ _ t—s
is such that the origin of the closed-loop system (14)-(16) Ep(t) — 2t + 1) e elt) / c d(s + h)ds.
with d; = 0 is a globally exponentially stable equilibrium t=h

point. The functionf : R™ — R™ is locally Lipschitz and After evaluating above expressionin- h, it follows that
Zp is continuous so Assumption 3 holds. Besides, Theorem < s b p AR b
4.14 in [23] guarantees the existence of a Lyapunov function 2@ < 1125t = W)l + 1dmaz + (||| [le(t = A)]

V(&) that satisfies 0
R R X with = || [ e?*ds||. Similarly,
il |Zp]] < V(@p) < collp] ~h
V(tp) < —csl|2] a7 ¢
| 42]| < eallal Xp(t) = a(t+h)= Aot —e(®)]+ [ ACIBu(s)ds
t—h
with ¢1, ¢z, ¢3 and ¢4 positive constants. In addition, the +~’C(th—€(t)—eAh[I(t—h)—e(t—h)]
pertgrpatiqn of system (14) is bounded and the following _ 7 eAt=h=5) By(s)ds—z(t + h)
maximization holds ‘—on
l|dz()]| < T|le™]] [|ILC||dmaz, Vt>T. (18)  Substitutingz(¢+h) andz(t) by their expressions from (24)
leads to
Therefore, the assumptions of Lemma 9.4 in [23] are fulfilled AR AR
(equations (17) and (18)) so one deduces that fot allT’ Xp(t) —a(t+h) =—ee(t) —e(t) + e et — h)]
o (t < —a(t=T) +AT|ILC Ah dmaz 19 !
lea(0)] < pe AL e (19) e
with «, 8 and~ positive constants that depends on cs, e
c3 andC4. . .. . . .
Since (6) and (7) have the same form when there is n‘(l')hus, the following maximization is derived
perturbationj.e d;(t) = 0 andd (t) = 0, the controller |z (t)]| < ||Xﬁ(t — W)|| + nhDuaz + ||e(t — h)||+

u(t) = f(Xp(t)) (20) eIl fle(t —h) — e(t — 2R))|. (25)



As aresult, if (1) is controlled by the feedback) = f(Z;),
the inequality

o)l < Be"e™ =4 [ TleA| (14| LCY) | dma

" (26)
holds and, if (1) is controlled by the feedbagk) = f(X;),
the inequality

le(t)]] < pelre=et=T)

T [149]|LC | dmas + [0+ T[4 [1 + 11| LCI} | AD e

r2

(27)
is verified. This proves the following theorem.

V. SIMULATION
A. Model presentation, observer and predictor-controller
design

A second order perturbed system has been chosen to
illustrate the results. Its state space representation is

{ (t) = [—(210 _10“] () + m w(t — h)+ { d?t)}
y(t) = z1()

(29)
with ag = 9 anda; = —3. The parameters chosen for all

the simulations aré = 0.5 s, z(0) = [1.5,1]T and£(0)
[0,0]7. Two Luenberger observers are tested:

Z(t) = Az(t) + Bu(t — h) + L1 (y(t) — Ci(t))  (30)

Theorem 1:Consider system (1), observer (8) anoland

predictor-controllers (13)-(16) and (12)-(20), resuititin
error bounds respectively; in (26) and ro in (27). If
Dz > 0 and the bounds od(t) comply with the relations

el
[leAr|| - 17

then one gets, < r; for |[eA"|| > 1.

dmam
h
Dmaz

(28)

In addition, d,,., and D,,,, are supposed to be known
in order to apply this criterion but they are not used in

Z(t) = A(t) + Bu(t — h) + La(y(t) — C&(t))  (31)

with L; and L, such that (31) is faster than (30). In the
sequel, the components of a vector are denoted by the
subscript “i”. For instance, one has, = [v1,732]7. The

PID controllers used in the simulation are defined in Table |
and the functionf is defined below

F(X) = kpxa(t) + kaxa(t) + ki/o X1(s)ds. (32)

the controller design. Theorem 1 and equations (26) arfdontrollers (33) and (34) are designed using the whole state
(27) show that the design of a Lipschitz controller within order to have a comparison point with observer-based

the new reconstructed predictioﬁi, given by (20) leads

controllers (35) and (36). Finally, two kinds of disturbasc

to a smaller error bound than designing a controller withly anddz, are chosen as shown on Figure 1. The analytic
the standard reconstructed prediction (16). Consequently

the new predictive scheme is said to better attenuate
disturbances than the standard one. Note that the crite
(28) is the same as in [1]: it is independent of the obser
choice. Indeed, the same observer is designed in both ce
it means that whatever the observer (robust, finite time3) (.
will remain unchanged. The result holds for a wide class
functions f so it gives the possibility to robustly stabiliz
Xﬁ at zero. However, even if(ﬁ converges to zero, there
are inevitable errors in (25) when the perturbation is tinr
varying:

o |let=n)||+]|le|| |le(t —h)—e(t—2h)|| is due to the
observation error and it can be attenuated by the des
of a robust observer;

e nhD,4. IS independent of the controller and the ol
server and cannot be reduced.

Note that if the observation error in (26) and (27) is cantel

we get back to the full state knowledge case like in [4;.

Theorem 1 holds for time-varying disturbanceg when
D,.... > 0. Nevertheless, for constant disturbances,is
not modified and-, becomes

ro =T [1 4+ 4||LC||] dmaz:  f Dimaz = 0;

so one always has, < r1. These results are going to be

illustrated in the next section.

—di(t)

0 10

g

- 30
time (s)
Fig. 1. Disturbancesd(t) = d1(t) or d(t) = d2(t)
expression ofl, is

do(t) = 3sin(t + g)

SO dmaz = 3 and D00 = 3.



STANDARD PREDICTIVE SCHEME NEW PREDICTIVE SCHEME
Full State Measurement u(t) = f(zp) (33) u(t) = f(Xp) (34)
Partial State Measurement u(t) = f(&p) (35) u(t) = f(X;)  (36)
TABLE |

PREDICTIVE FEEDBACKS WITH f DEFINED IN (32), x5 IN (5), X} IN (4), 5 IN (13),)21; IN (12)

B. Comparison of the schemes for constant disturbahce

----- u=f(i5) (35)[]
u=f(X;) (36)
“““ u=f(xp) (33)
u=f(X;) (34)

In this subsection, the performances of the closed-Ic
system (29) with one of the four controllers defined abac
are compared. From the analysis of the results obtained \
“slow” observer (30) (see Figure 2), one concludes that:

» The controllers designed from the new predictiots
and X, perform a better disturbance attenuation th 2] 5
the controllers from the standard ones: the converge
radius for solid lines is much smaller than for dotte
ones.

« The controllers obtained from the reconstructed p
dictions (respectivelyf(ﬁ) do not achieve as gooc
attenuation as the controllers from full state predictio
xp (respectivelyX;): the convergence radius for blac
solid line (respectively dotted line) is larger than blt
solid line (respectively dotted line).

« The observer-based controller (36) designed with the
new reconstructed predictive scheme performs bett@;"cq,')
disturbance attenuation than full state controller (33)
designed with the standard predictive scheme. This
confirms the improvement of the new predictive schemachieved by a simple PID controlléreven if it is designed
to attenuate perturbation. with the new predictive scheme and full state knowledge.

Note that in the full state knowledge case, the new predictvReémark that it would not be possible in the delay free
scheme (controller (34)) leads to the perfect rejectiorhef t €aSe either. The behawoqr of.the system \{wth obser\{erebase
constant disturbance. In the case of partial measuremefgntrollers (35) and (36) is diplayed on Figure 4. It is clear
this is not possible anymore because of the observatidhat the controller_ designed on the new predictive scheme
error. However, it is clear on Figure 3 (results obtainechwit performs better d|sturl_)a_nce attenuation than the coatroll
“fast” observer (31)) that if the observer becomes faster tHTom the standard predictive scheme because the convergenc
results from the reconstructed predictions tend to the fuldius for (36) is smaller than the convergence radius for
state knowledge case. Therefore, perfect rejection is simd35). This observation confirms the result of Theorem 1.
achieved for the controller (36) from the new reconstructed
scheme.

10 . 3? 40 50
time (s)

2. Comparison between predictive feedbacks with “Slolserver
and disturbancé;

V. CONCLUSION
It has been shown that the results of [1] can be extended
. . . . to the case when only partial state measurement is avail-
C. Comparison of the schemes for time-varying dlsturbanc%%le In compari th . K L
d - In comparison with our previous work, an _|neV|tabIe
2 observation error is introduced but the new predictive sehe
From the above subsection, it has been illustrated that théth the reconstructed state performs a better disturbance
faster the observer is, the more attenuated is the perionbat attenuation than the standard scheme with the reconstructe
Therefore, only observer (31) has been used with the timstate. Besides, the faster the observer is, the closer shége

varying disturbancel,. Note that criterion (28) is verified _ _ _ -

dman [le®™] . It could have been possible to reject perfectly time-vayydisturbances
becaus_eme =1 a_nd h eAh[—1 ™~ 0.58. The_only differ- with sliding mode control for example but in this cages not Lipschitz
ence with perturbatiod; Is that, perfect rejection cannot be anymore.



""" u=f(&5) (35) ]
— u=f(X;) (36)
e (33)
— u=£(X;) (34)

10 . 3? 40 50
time (s)

Fig. 3. Comparison between predictive feedback with “fagiServer (31)
and disturbancel;

————— u=f(&p) (35)

— u=f(%;) (36)

P

20 30

time (s)

40 50

Fig. 4. Comparison between predictive feedback with “fagiServer (31)
and disturbancelo

(5]
(6]

(7]

(8]

El

[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

get to the full state measurement case. This result is very

interesting from a practical point of view. All the resultea
illustrated by simulations. An extension to unknown deky i

one of the perspectives of this work.
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