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Power Balancing Aggregator Design for Industrial Consumers Using
Direct Control

Samira Rahnama, Jan Dimon Bendtsen, Member, IEEE, Jakob Stoustrup, Senior Member, IEEE
and Henrik Rasmussen

Abstract— Demand side management in the future smart grid
requires new players in the electricity markets. We assume
a player, the so-called aggregator which aims to utilize the
flexibility in large-scale consumers with thermal energy storage.
An aggregator design is proposed to mange the power consump-
tion of flexible demands during a certain period of time. The
setup consists of an MPC-like controller to optimally operate
the consumption units for upward and downward regulating
power provision. To handle the uncertainties arise from model
mismatch, a series of feedback loop are also considered along
with the central optimization. We formulate the problem for
two specific case studies which are supermarket refrigeration
systems and chiller systems in conjunction with ice tanks.
Simulation results are provided for these specific consumers.

I. INTRODUCTION

Increasing use of renewable resources means that the
future electricity system will be faced with more challenges
in maintaining balance between production and consumption
of electricity due to the unpredictable nature of these kind
of resources. Smart grid solutions, in particular, consumer
involvement in balancing issues, can be a promising remedy.
Flexible consumers can offer different services in various
electricity markets such as the day-ahead market, intra-day
market or regulating power market and subsequently benefit
from these tradings [1].

Participation of the consumers necessitates new infrastruc-
ture on both the consumer and grid side. In the smart grid
literature, the so-called ”Aggregator” has been introduced
as a new player in the future market, located between the
grid operator and a number of flexible consumers to handle
the services that can be derived from the demand these
consumers represent [2]. What the aggregator’s responsibility
is and which entities it has interaction with may be different,
however. The aggregator may aim to provide services at the
distribution grid level to the DSO (distribution grid operator),
at the regulating power markets to the TSO (transmission
system operator) or at the balancing power market to the
BRPs (balance responsible parties) [3]. Various types of
consumers, ranging from household appliances with privacy
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issues to large industrial or commercial companies can be ag-
gregated. Moreover, different control strategies can be taken
by the aggregator to manage the consumption units. The
aggregator may have direct jurisdiction over the consumers
or may have negotiations with them. It might also control the
units indirectly by broadcasting incentive signals. In [4], VPP
aggregators (virtual power plant aggregator) were categorized
according to the control strategies, either direct or indirect
(acting through price signals). The work in [5] explains an
architecture to integrate small-scale resources to the grid. A
demonstration environment is also developed to implement
and test the whole setup. In the proposed architecture, the
aggregator acts as an information center that collects and
stores the data it receives from home energy management
systems.

In most cases, the aggregator will be a for-profit entity
in the future market with the main goal of making money.
Thus, in addition to fulfilling the grid operator requirements,
it needs to optimize its performance in order to be eco-
nomically profitable. In general, the objective function at the
aggregator should reflect the profit obtained from attending
the electricity market trading and accordingly the optimiza-
tion should attempt to maximize the profit. However, the
profit can be formulated differently for different use cases.
As an example, in [6], an aggregator design is proposed
which utilizes the flexibility in electric vehicles to provide
frequency regulation to the grid. A vehicle can provide
services as long as it is connected to the grid, except the
times it is being charged by its owner’s decision. The role
of the aggregator is then to control the charging process the
rest of the time such that it maximizes its revenue. Another
example is given in [7], which proposes a general market
model for residential demand response in smart grid. The
model comprises three levels: a utility operator at the upper
level, a number of residential units at the bottom and a
set of competitive aggregators acting as mediators between
the utility operator and the users. The utility operator aims
to minimize its cost, including the power generation cost
as well as the monetary rewards should be given to the
aggregators. Each aggregator tries to maximize its own net
profit, which is the reward received from the operator minus
the compensation that should be paid to the users. Finally the
user’s problem is to maximize the payoff consisting of the
received compensation minus the dissatisfaction caused from
changing its own preferred set-point. However, solving this
multi-level optimization requires that the utility operator has
access to all the information about the end-users. The paper



proposes a practical repeated auction scenario where the
aggregator negotiates with the home owner after the operator
announces its reward. When they reach an agreement, the
aggregator will offer services on behalf of the users. The
utility operator also needs to modify its reward at each
iteration.

In previous work [8], we proposed an aggregator design
based on direct interaction with a few, large-scale consumers.
The proposed aggregator will play in a hierarchical market
setup as it is shown in figure 1. The setup is similar to the
one provided in [7], except that there is no negotiation in
our setup. We considered a scenario in which the aggregator
is activated by the grid operator, TSO, DSO or BRP, to
follow a power reference for a certain period of time. The
objective is to optimally split up the power reference between
the consumers while respecting their constraints. In [8],
we only formulated the problem for down regulation. In
this paper, we complete the formulation by providing an
up regulation scenario as well. Furthermore, as the main
contribution of the paper, we consider the discrepancy in-
herent in the aggregator/consumer interface, according to
which the aggregator utilizes deliberately simplified models
of the consumers, although the physical systems are known
to be more complicated. Rather than having to increase
the model complexity on the aggregator level, we consider
the model mismatch as state-dependent uncertainties and
propose a simple feedback mechanism for re-distributing
power discrepancies among other consumers. We analyze
the potential state trajectories subject to said uncertainties,
and propose a brute-force approach to determine how large
uncertainties the setup can handle over a given activation
horizon.

BRP

DSO TSO

Aggregator

FC1
FC2 FCn. . .

Preference(t)

Fig. 1: Hierarchical direct control setup, where FCi(i =
1, ..., n) stands for the flexible consumption and PFCi(t) is
the power that is distributed to each consumer

The structure of the rest of the paper is as follows:
In section II, we will describe the aggregator setup. In
section III, we will provide our solution to compensate for
uncertainties in the proposed setup. In section IV, we will
examine the constraints for compensation. Simulation results
will be presented in section V. Finally we will conclude the
paper in section VI.

Nomenclature
Ts sampling time
L latent heat of water
nch number of chiller systems
ncr number of cold rooms in a supermarket
nr number of supermarket refrigeration systems
Pri,base baseline power consumption of supermarket
Pchi,base baseline power consumption of chiller
Pri,min minimum power consumption of supermarket
Pri,max maximum power consumption of supermarket
Pchi,min minimum power consumption of chiller
Pchi,max maximum power consumption of chiller
COPch,cool COP of chiller system in direct cooling
COPch,ice COP of chiller system in ice making
COPr COP of supermarket refrigeration system
mice,base mass of ice at the baseline consumption
mice,base maximum mass of ice in the ice tank
UAcr heat transfer coefficient of a cold room
mfood mass of refrigerated food in a cold room
cfood specific heat capacity of food
Tcr,min minimum temperature of a cold room
Tcr,max maximum temperature of a cold room
Tcr,base cold room temperature at baseline

II. NOMINAL AGGREGATOR SETUP

A. Optimization Problem

As stated above, we consider the following scenario:
”The aggreagtor is paid by the grid operator to follow a
power reference it receives within an activation period”. The
task of the aggregator in this setup is then to optimally
distribute the power reference between the consumers. The
power reference following service can be of interest to any
grid operator in the electricity market, such as BRPs, TSO
or DSO. For instance, the aggregator can offer regulating
powers, comprising primary, secondary or manual reserves,
directly to the TSO or via the BRPs in the regulating power
market. The focus in this paper is on thermal energy storage,
i.e. excess electrical energy can be stored in form of thermal
energy for later use. We assume two general cases at the
beginning of the activation period:

Scenario 1: Preference(t) ≥
n∑
i=1

PFCi,base(t)

Scenario 2: Preference(t) ≤
n∑
i=1

PFCi,base(t)

where Preference denotes the power reference that should
be followed by the aggregator and n is the number of
flexible consumers under the control of the aggregator.
PFCi,base represents the baseline power consumption of a
flexible consumer. In normal operation, the units consume
their baseline consumption as long as there is no activation.
Providing downward regulating power and upward regulat-
ing power can be examples of Scenario 1 and Scenario
2 respectively. To formulate the optimization problem, we
divide the operation time into three time periods: before the
activation, activation time and after the activation. Figure 2
shows thermal energy changes and power consumption of a
typical thermal storage during these three time periods. In the
first case, the aggregator is asked to follow a power reference
greater than its baseline power. This requires the aggregator
to store some extra energy in thermal storages at its disposal
when the activation time starts (t = tstart). Right after the



thermal energy power

PFCi,base

PFCi

tFCi,off

activation timebefore activation after activation 

tstart tend

PFCi

PFCi
PFCi

PFCi,base

PFCi,base PFCi,base

PFCi,min

PFCi,max

tFCi,on

Fig. 2: Thermal energy changes and power consumption of a
typical thermal storage during three time periods for two sce-
narios, Scenario 1: power reference is above the aggregated
baseline consumption (top plot), Scenario 2: power reference
is below the aggregated baseline consumption (bottom plot)

activation time finishes (t = tend), the consumers can lower
the consumption to minimum level and use the stored energy.
Reducing the power consumption to the minimum level
minimizes the time needed for regaining the stored energy
and consequently minimizes the heat loss to the surrounding.
tFCi,off in the above figure indicates the time period when
the consumer consumes its minimum power and uses the
stored energy to operate the system within the constraints.
In case of no activation, the consumer needs to consume
at least the baseline consumption. Thus, the consumer is
able to save power corresponding to PFCi,base − PFCi,min at
each time instant during tFCi,off. The second case describes a
situation where the aggregator is asked for a power reference
below its baseline. In this case, the aggregator needs to
store some energy before the activation in order to deliver
it during the activation time. tFCi,on in figure 2 shows the
time period in which the consumer increases its consumption
from baseline in order to store the required energy. Note
that it is better to increase the power consumption to the
maximum level. This minimizes the time required for storing
energy and consequently minimizes the energy loss in the
saving process. Therefore, the consumer has to consume
PFCi,max − PFCi,base more than its normal operation at each
time instant during tFCi,on.

The objective functions at the aggregator for the two above
mentioned scenarios are formulated as below:

max
PFCi

n∑
i=1

(PFCi,base − PFCi,min)× tFCi,off (1)

min
PFCi

n∑
i=1

(PFCi,max − PFCi,base)× tFCi,on (2)

In the objective function (1), we aim to maximize the total
energy saving after the activation while in the objective func-
tion (2), we aim to minimize the total energy consumption
before the activation. Thus, in addition to power reference
following which is the first goal, we aim to minimize
the energy losses or, in other words, maximize the energy
savings. Needless to say, the above objective functions are
not like a standard LQR problem. In general, tFCi,off and
tFCi,on are logarithmic functions of the system state. PFCi,base,
PFCi,min and PFCi,max are given to the aggregator.

B. Consumer Models

In the previous section, the objective function is provided
for the case in which the aggregator aims to exploit the
flexibility in consumers with thermal storage. To do the
optimization, the aggregator requires a model of each storage
that describes thermal energy changes versus input electrical
power. Note that, in order to keep the complexity of the
problem to be solved at the aggregator level at a manageable
level, it is deliberately chosen to represent consumers using
the simplest model possible. Figure 3 depicts the salient
features of such a simplified thermal storage.

Leakage

ConversionPmin≤ Pe≤ Pmax

Emin≤ Eth≤ Emax 

Fig. 3: Salient features of a thermal storage

Each consumer is modeled as an energy collector with
constraints on input electrical power (Pmin ≤ Pe ≤ Pmax)
and stored thermal energy (Emin ≤ Eth ≤ Emax). There could
be also a leakage to the surrounding. Furthermore, energy
conversion and dissipation can be expressed with different
dynamics.

We choose two specific consumer types in this work:
supermarket refrigeration systems and chillers in air con-
ditioning systems. For the first one, cold rooms or display
cases can act as a thermal storage where we store energy
in refrigerated foods. For the second one, an ice storage
connected to the chiller serves as a thermal storage with
water media. In [8], we presented appropriate models of these
consumer types for optimization purposes. In brief, cold
rooms or display cases at the supermarket can be seen as a
storage with state dependent leakage, whereas an ice tank has
no leakage because of good insulation. We assumed constant
COP (coefficient of performance) for the supermarket, which
implies energy conversion from electrical to thermal occurs
at a fixed rate. For the chiller, we assumed two constant COPs
associated with direct cooling and ice making modes. In the
following, the optimization problem for the two scenarios



are presented:

Scenario 1):

max
Uri

,Uchi
,ηi,Zchi

(
nr∑
i=1

pri,downtri,off +

nch∑
i=1

pchi,downtchi,off

)
(3)

Scenario 2):

min
Uri

,Uchi
,ηi,Zchi

(
nr∑
i=1

pri,uptri,on +

nch∑
i=1

pchi,uptchi,on

)
(4)

where,

pri,down = Pri,base − Pri,min

pchi,down = Pchi,base − Pchi,min

pri,up = Pri,max − Pri,base

pchi,up = Pchi,max − Pchi,base

tri,off =
−1

Ari
ln
(

1 +
AriXri(tend)

−Bripri,down

)
(5)

tchi,off =
Xchi

(tend)

Bchipchi,down
(6)

tri,on =
1

Ari
ln
(

1 +
AriXri(tstart)

Bripri,up

)
(7)

tchi,on =
Xchi(tstart)

(Bchi
+Dchi

)pchi,up
(8)

and the objective function is subject to the following con-
straints:

subject to:

Xri(t+ 1) = (1 +AriTs)Xri(t) +BriTsUri(t) (9)
Xri,min ≤ Xri(t) ≤ Xri,max (10)
Uri,min ≤ Uri(t) ≤ Uri,max (11)
Xri(tstart) = 0 (Scenario 1) (12)
Xri(tend) = 0 (Scenario 2) (13)

Xchi
(t+ 1) = Xchi

(t) +Bchi
TsUchi

(t) +Dchi
TsZchi

(t)
(14)

pchi,downηi(t) ≤ Uchi
(t) + pchi,down (15)

(pchi,up + ε)ηi(t) ≤ −Uchi
(t)− ε (16)

Zchi
(t) ≤ pchi,upηi(t) (17)

Zchi
(t) ≥ −pchi,downηi(t) (18)

Zchi
(t) ≤ Uchi

(t) + pchi,down(1− ηi(t)) (19)
Zchi

(t) ≥ Uchi
(t)− pchi,up(1− ηi(t)) (20)

Xchi,min ≤ Xchi
(t) ≤ Xchi,max (21)

Uchi,min ≤ Uchi
(t) ≤ Uchi,max (22)

Xchi
(tstart) = 0 (Scenario 1) (23)

Xchi
(tend) = 0 (Scenario 2) (24)

Uri(t) + Uchi
(t) = Preference(t)−

nr∑
i=1

Pri,base −
nch∑
i=1

Pchi,base

(25)

Equations (9-13) specify the model and constraints for the
supermarket refrigeration systems, while equations (14-24)
are related to the chillers. Thermal energy changes during the
activation are considered as a system state when modeling
the consumers (Xri and Xchi ). Manipulated variables in the
above optimization problem are defined as below:

Uri(t) = Pri(t)− Pri,base (26)
Uchi

(t) = Pchi
(t)− Pchi,base (27){

ηi(t) = 1⇐⇒ Uchi
(t) > 0

ηi(t) = 0⇐⇒ Uchi
(t) ≤ 0

(28)

Zchi
(t) = ηi(t)Uchi

(t) (29)

As explained in [8], the chiller model is a mixed logical
dynamical system that can be described by a binary variable,
ηi and an auxiliary variable, Zchi such that equations (28)
and (29) hold. To solve the optimization problem, we apply
the method proposed in [9] in order to convert (28) to
the linear inequalities (15-16). Equation (29) should also
be used in the inequalities (17-20). ε is a small positive
value. In a real setup, each consumer should communicate
the system parameters and constraints to the aggregator every
sample time or whenever they are updated. Thereupon, at the
aggregator, an MPC-like controller is run which provides a
vector of power consumption for each consumer by the end
of activation period. The first sample indicates the desired
power consumption each unit is asked to follow at current
time. For online optimization, the system parameters and
constraints can be identified locally using empirical data.
Chiller parameters can for instance be obtained as follows:

Bch = COPch,cool (30)
Dch = COPch,ice − COPch,cool (31)
Xch,min = −Lmice,base (32)
Xch,max = L(mice,max −mice,base) (33)

For supermarket refrigeration systems, first we assume a
single cold room at the supermarket. According to thermo-
dynamic laws, the system parameters are as follows:

Acr =
−UAcr
mfoodcfood

(34)

Bcr = COPr (35)
Xcr,min = mfoodcfood(Tcr,base − Tcr,max) (36)
Xcr,max = mfoodcfood(Tcr,base − Tcr,min) (37)

Several cold rooms in a supermarket can be lumped together
using standard model reduction techniques, yielding an ap-
proximate 1st order model:

Gr(s) =
(−Br

Ar
)

1 + (−1Ar
)s

(38)

Since different cold rooms at the supermarket have different
time constants, we consider conservative limits for minimum



and maximum thermal energy as shown in equations (39) and
(40). This ensures that we will not violate the temperature
constraints in all cold rooms.

Xr,min = ncr ×max(Xcri,min), i = 1, . . . , ncr (39)
Xr,max = ncr ×min(Xcri,max), i = 1, . . . , ncr (40)

III. COMPENSATION FOR UNCERTAINTIES

In the previous section, we proposed an MPC-like con-
troller at the aggregator to provide optimal power distri-
bution. The aggregator does not know a perfect model of
the consumers and deliberately utilizes simple models in
optimization process. In reality, the physical systems are
nonlinear and of high order. This model mismatch may lead
to actual power deviation from the desired power reference.
In the following, we propose a simple strategy to deal with
this mismatch, and examine the potential of ramifications of
it. Suppose, there are n consumers in our portfolio, each of
which receives a power reference Ui,ref,i = 1, . . . , n from the
aggregator. However, due to model mismatch ect., the actual
consumption, Ui,act, i = 1, . . . , n, might be forced to deviate
from Ui,ref by some amount εi, i.e., Ui,act = Ui,ref + εi.
It seems reasonable that, although εi is considered to be
unknown by the agregator, it should be limited to an interval
proportional to the current state of the i’th consumer, i.e.,
ε ∈ [δi,minXi(t), δi,maxXi(t)], where δi,min and δi,max are
scalars, consumer-specific constants. Taking advantage of
convexity of this set, we will write the actual consumption
as

Ui,act = Ui,ref + ∆iXi (i = 1, . . . , n) (41)

This assumption is reasonable since there will be larger
deviation for larger energy changes. For instance, in mod-
eling our case studies, we assume the COP to be constant,
which is not valid anymore for large deviations from baseline
consumption. The goal remains to maintain the combined
power consumption of the n units at Preference(t) for all
tstart ≤ t ≤ tend, which implies that the following constraint
has to be imposed:

n∑
i=1

Ui,act −
n∑
i=1

Ui,ref =

n∑
i=1

∆iXi = 0 (42)

Instead of using complicated models or any other solutions
such as having negotiation between the entities, we propose
a setup consists of a series of feedback loop as illustrated in
figure 4. As shown in above figure, we have added (n− 1)
feedback gains per consumer which propagate the deviation
signal to the rest of consumers in order to compensate the
deviation. This implies that consumer j will be requested to
consume an extra contribution:

Uj,add =

n∑
i=1
i6=j

kij (Ui,act − Ui,ref) (43)

yielding the state equation:

Xj(t+ 1) = ajXj(t) + bj×

a1

b1Z-1

bn

an

Z-1

∆1

∆n

Kn(n-1) Kn1 

K12 K1n 

. . .

. . .

. . .

U1,ref

Y1

Yn

X1

Xn

Aggregator

Aggregator

Un,ref

Fig. 4: Feedback Controller Design

∆jXj(t) + Uj,ref +

n∑
i=1
i6=j

kij∆iXi(t)

 (44)

Thus, we will have n × (n − 1) proportional controllers in
the whole setup. The following state space model describes
the whole system:X1(t+ 1)

...
Xn(t+ 1)

 =
(
Ā+ B̄K̄∆̄

)X1(t)
...

Xn(t)

+ B̄

U1,ref(t)
...

Un,ref(t)


(45)

=
(
Ā+ B̄K̄∆̄

)
X̄(t) + B̄Ūref(t)

where X̄(t) ∈ Rn, Ūref(t) ∈ Rn and

Ā =

a1 0
. . .

0 an

 , B̄ =

b1 0
. . .

0 bn



∆̄ =

∆1 0
. . .

0 ∆n

 , K̄ =


1 k21 . . . kn1
k12 1 . . . kn2

...
...

. . .
...

k1n k2n . . . 1


In the above expression, we have ∆̄ ∈
Co {51,52, . . . ,52n}, where each 5i represents a
vertex of the hypercube [δi,min, δi,max]

n. A natural choice for
the feedback gains is kij = −1

n−1 , (i, j = 1, . . . , n) which
means to propagate the error signal evenly. Generally, to
compensate the error, equation (46) should hold:

n∑
i=1

K̄(i, j) = 0 (j = 1, . . . , n) (46)

IV. CONSTRAINTS VS. UNCERTAINTIES

As can be seen from the above, the system consisting
of several consumers in parallel, combined with the pro-
posed compensating feedback connections, is now a state-
constrained linear system in a feedback loop with a struc-
tured uncertainty block. Unfortunately, the situation is not



a standard robust control design problem, since the input
has already been determined by the MPC scheme of the
aggregator. We can safely assume that the nominal state
trajectory computed by the MPC algorithm will remain
within the state constraints, but there is no such guarantee
for the uncertain system Eq. (45). As described in Section II,
the chillers are modeled at the aggregator level as constrained
integrators; this means that the corresponding eigenvalues of
Ā have magnitude 1, so Ā+ B̄K̄∆̄ is highly likely to have
eigenvalues of magnitude greater than 1 for at least some
∆̄ ∈ Co{51,52, . . . ,52n}. This implies that we cannot
compute any norm bounds on the system in a meaningful
manner. Indeed, the final state at the end of the activation,
X̄N , is given by the equation

X̄N = (Ā+ B̄K̄∆̄)N X̄0 + Γ̄×


Ūref(0)
Ūref(1)

...
Ūref(N − 1)

 (47)

Γ̄ =
[
(Ā+ B̄K̄∆̄)N−1B̄ (Ā+ B̄K̄∆̄)N−2B̄ . . . B̄

]
(48)

from which it is seen that ∆̄ appears in a highly nonlinear
fashion, making even conservative matrix norm-based
estimates difficult to compute. On the other hand, for
this specific application, the system only has to remain
within the state constraints during the activation time, not
indefinitely. Hence, the following question makes sense,
even for unstable Ā+ B̄K̄∆̄:

Problem 1: Given finite N and bounded Ūref, how large
uncertainty set [δi,min, δi,max]n can be permitted, such that
{X̄0, X̄1, . . . , X̄N} ∈ X ?

where X is a hypercube defined by the aforementioned
state constraints. Since it does not appear to be possible to
find analytical estimates, we choose brute-force simulation-
based checking as outlined in Algorithm 1.

0 < αi, βi < 1 are scalars. Algorithm 1 sequentially tries
to simulate the system with ever-shrinking uncertainty sets.
For each simulation run, it breaks out of the simulation if a
test trajectory corresponding to one of the vertices of the
uncertainty set violates a state constraint. Algorithm 1 is
terminated by the stop criterion if it does not break out of
the simulation loop, in which case we may try running it
again starting with a larger initial set of δi,min, δi,max, of if
|δi,max− δi,min| drops below some pre-set threshold for some
i. Alternatively, if an estimate of [δi,min, δi,max]n is known
beforehand, it might be possible to incorporate the uncertain
description Eq. (45) in the aggregator’s optimization prob-
lem, which then becomes a robust MPC problem. It is not
clear at this point which approach is simpler, however.

V. SIMULATION RESULTS

For simulation, we assume two supermarkets and two
chillers under the control of the aggregator. Each supermarket
utilizes four of its cold rooms for power reference following
program. One of them uses three medium temperature (MT)

Algorithm 1 Numerical algorithm for solving Problem 1

1:
Assume a subset of ∆̄ :

{
∆̄1, ∆̄2, . . . , ∆̄2n

}∗
for i = 0 to i = 2n do

for t = 0 to t = N do
X̄i(t+ 1) =

(
Ā+ B̄K̄∆̄i

)
X̄i(t) + B̄Ūref(t)

if ∃τ < N such that X̄i(τ) /∈ X then
break to 2.

end if
end for

end for
2:
δj,min ← αjδj,min j = 1, . . . , n
δj,max ← βjδj,max j = 1, . . . , n
3:
if stop criterion met then

terminate
else

go to 1
end if

∗ ∆̄1 =

δ1,min 0
. . .

0 δn,min


∆̄2 =

δ1,min 0
. . .

0 δn,max


...

∆̄2n =

δ1,max 0
. . .

0 δn,max



and one low temperature (LT) cold rooms while the other
uses one MT and three LT cold rooms. Maximum power
consumption of all four units is equal to 15kW . Their
baseline power consumption are as follows:

Pr1,base = 6.2kW Pr2,base = 4.4kW

Pch1,base = 9.4kW Pch2,base = 8.3kW

First, we run a simulation with having two identical
supermarkets and two identical chillers in our portfolio (r1
and ch1). The reason is to investigate the power distribution
between two different types of thermal storage. The aggre-
gated baseline consumption is Pagg,base = 31.2kW . The result
is shown in figure 5.

As shown in figure 5, in the down-regulating scenario, the
chiller is mainly utilized in the beginning. The aggregator
then switches to the supermarket refrigeration at the end
of activation. For the up-regulating scenario, the situation
is reversed. The aggregator first depletes the supermarket
refrigeration system and chiller is utilized at the end. These
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Fig. 5: Identical consumers: power distribution (upper plots)
and associated changes in thermal energy (lower plots)
during a one-hour activation time. Plots on the left indicate
the up-regulating scenario whereas plots on the right indicate
the down-regulating scenario)

results are expected. It is reasonable to discharge and charge
the leaky unit in the beginning and at the end respectively.
Otherwise, depleting energy close to the end or storing
energy from the beginning is accompanied with losses.
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Fig. 6: Various consumers: power distribution for the up-
regulating power scenario (upper plots) and the down-
regulating power scenario (lower plots) during one-hour
activation time

Figure 6 and 7 display the power distributions and energy
changes for two different supermarkets and two different
chillers. We consider six different values for Preference which
are fixed during the activation. The aggregated baseline
consumption is Pagg,base = 28.3kW . Thus, the three upper
plots represent the up-regulating scenario and the three lower
plots represent the down-regulating scenario. As can be seen,
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Fig. 7: Various consumers: thermal energy changes for the
up-regulating power scenario (upper plots) and the down-
regulating power scenario (lower plots) during one-hour
activation time

switching from one unit to the other can occur several
times when we have various consumers in our portfolio. For
instance, for Preference = 37kW , first, there is a switching
from ch2 to r1. Then, the aggregator switches from ch1 to
r1. At the end, there is also another switching from r1 to r2.
Essentially, the form of power distribution is dependent on
the power reference values and the consumer characteristics.
However, as a general rule, the leaky units are utilized
in the beginning and at the end for the up-regulating and
down-regulating scenarios, albeit other parameters are also
determinant. For example, for Preference = 42kW , one of the
supermarkets is utilized from the beginning since there is
maximum power constraint for chiller systems. Moreover,
we can conclude from the figures that the more deviation
from baseline power, the more exploitation of chiller sys-
tems occurs. This is due to state-dependent leakage of the
supermarket refrigeration systems. For large deviation, the
heat loss to the surrounding increases at the supermarkets.
Hence, it is better to exploit the chillers.

The above figures show the desired power references that
are obtained from the optimization. However, the actual
power consumption may be different as we formulated in the
previous section. We again consider the case with identical
units. Applying Algorithm 1 for Preference = 37kW provides
the following:

δr1,max = δr2,max = 10−5

δch1,max = δch2,max = 10−9

In the simulation, we assume δi,min = −δi,max and

K̄ =


1 −1

3
−1
3

−1
3−1

3 1 −1
3

−1
3−1

3
−1
3 1 −1

3−1
3

−1
3

−1
3 1





Figure 8 shows the discrepancy between the actual power,
Pactual, and the desired power reference. As shown in the
figure, without feedback loops, the discrepancy is significant
(lower plot). However, with having feedback loops, the
difference is almost zero (upper plot). In addition, the system
state constraints are not violated. Energy changes for one
supermarket and chiller during the activation correspond to
∆r1 = 10−5, ∆ch1

= 10−9 is depicted in figure 9. As shown,
system states remain in the cube defined by the constraints
during the activation.
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Fig. 8: Discrepancy between the actual power consumption
and the power reference for Preference = 37kW , ∆r1 =
∆r2 = 10−5, ∆ch1

= ∆ch2
= 10−9. Note the different

scale on the ordinate axis
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Fig. 9: System states evolution with the feedback loops
during the activation for Preference = 37kW , ∆r1 = 10−5,
∆ch1

= 10−9. Note that the time axis is vertical in this plot

VI. CONCLUSION

This paper proposes an aggregator setup to integrate the
large-scale flexible consumers with thermal storage to the

future smart grid. The aggregator promises to follow a
specified power reference which it receives from the grid op-
erator during an activation period. To that end, the proposed
setup comprises an MPC controller together with a series of
feedback loop. The MPC controller provides optimal power
distribution for multiple consumers while respecting their
constraints and satisfying the power reference following. The
objective function is formulated for both upward and down-
ward regulating power. However, the goal may not be met
since the aggregator uses simplified model of the consumers
to run the optimization. To compensate the error arises from
model mismatch, we propose a feedback mechanism which
propagates the error of one unit to the rest of units in our
portfolio.

Two case studies are considered in this work: super-
market refrigeration systems and chiller systems with ice
storage. Simulation results for these consumers show that
the aggregator utilizes supermarkets in the beginning and
at the end of activation period for upward and downward
regulating power respectively. Moreover, chiller utilization
increases for large deviation from baseline consumption. We
also simulate a scenario that includes the uncertainties in
modeling. The largest uncertainties can be handled in our
setup is determined via a brute-force approach. With the
feedback loops, we are able to follow the power reference
while honoring the constraints in a good manner.
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