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Abstract 
This work is devoted to the construction of feedback laws which 
guarantee the robust global exponential stability of the 
uncongested equilibrium point for general discrete-time freeway 
models. The feedback construction is based on a control Lyapunov 
function approach and exploits certain important properties of 
freeway models. The developed feedback laws are tested in 
simulation and a detailed comparison is made with existing 
feedback laws in the literature. The robustness properties of the 
corresponding closed-loop system with respect to measurement 
errors are also studied.     
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1. Introduction  
 
    Freeway traffic congestion during peak periods and incidents has become a significant problem 
for modern societies, which leads to excessive delays, reduced traffic safety, increased fuel 
consumption and environmental pollution. The main traffic control measures employed to tackle 
traffic congestion, are ramp metering (RM) and variable speed limits (VSL). RM is implemented 
by use of traffic lights positioned at on-ramps to control the entering traffic flow [26]. VSL are 
used for speed harmonization, but recent studies have demonstrated that it may be used as a 
mainstream metering device as well [3]. To achieve their goal, these control measures must be 
driven by appropriate control strategies. A branch of related research has considered nonlinear 
optimal control and Model Predictive Control as a network-wide freeway traffic control approach, 
see, e.g. [1, 2, 9, 12]. However, possibly due to the involved control strategy complexity, none of 
the proposed methods has advanced to a field-operational tool. Another significant branch of 
freeway traffic control research has considered explicit feedback control approaches to tackle 
congestion problems. A pioneering development in this direction was the I-type local feedback 
ramp metering regulator ALINEA [24], which has been used in hundreds of successful field 
implementations around the world, see, e.g. [25, 27]. ALINEA controls the traffic entering from 
an on-ramp and targets a critical density in the mainstream merging segment so as to maximize 
the freeway throughput. Other proposed local feedback control algorithms for ramp metering 
include [13, 15, 29, 30], to mention just a few. Various extensions and modifications of ALINEA 
were proposed and field-implemented over the years to address specific emerging needs. Most 
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relevant in the present context is the extension to a PI-type regulator so as to efficiently address 
bottlenecks which are located far downstream of the merge area [31]; and the parallel deployment 
of PI-type regulators to address multiple potential bottlenecks downstream of the metered on-
ramp [32]. On the other hand, feedback control approaches for mainstream traffic control by use 
of VSL have been rather sparse, see [4]; see also [14] for a recent extension to the multiple 
bottleneck case. 
 
    To adequately address the increasing freeway traffic congestion problems, it is essential to 
investigate, develop and deploy the potentially most efficient methods; and recent control theory 
advances should be appropriately exploited to this end. In this work, we provide a rigorous 
methodology for the construction of explicit feedback laws that guarantee the robust global 
exponential stability of the uncongested equilibrium point for general nonlinear discrete-time 
freeway models. We focus on discrete-time freeway models which are generalized versions of the 
known first-order discrete Godunov approximations [8] to the kinematic-wave partial differential 
equation of the LWR-model (see [23, 28]) with nonlinear ([19]) or piecewise linear (Cell 
Transmission Model - CTM, [6, 7, 10]) outflow functions (fundamental diagram). Specifically, 
the constructed class of freeway models allows for: (i) consideration of generally nonlinear 
(including piecewise linear) fundamental diagrams; (ii) consideration of all possible cases for the 
relative priorities of the inflows at freeway nodes (see [7]), and even for time-varying and 
unknown priority rules; and (iii) modified demand functions according to [20], to account for the 
capacity drop phenomenon which is not reflected in the classical LWR-model and its Godunov 
discretization. The construction of the robust global exponential feedback stabilizer is based on 
the Control Lyapunov Function (CLF) approach (see [16]) as well as on certain important 
properties of freeway models. In summary, the contribution of the present work is threefold: 
 

 a CLF is constructed for a class of freeway models; the formulas for the Lyapunov 
function are explicit and can be used in a straightforward way for various purposes; 

 important properties of general nonlinear and uncertain discrete-time freeway models are 
proved; 

 a parameterized family of global exponential feedback stabilizers for the uncongested 
equilibrium point of freeway models is constructed. The achieved stabilization is robust 
with respect to all priority rules that can be used for the inflows.  

    
    A comparison is made, by means of simulation, with existing feedback laws proposed in the 
literature and employed in practice. More specifically, we consider the Random Located 
Bottleneck (RLB) PI-type regulator which was proposed in [32] and is the most sophisticated of 
the very few comparable feedback regulators that have been employed in field operations [27]. 
The simulations, presented in Section 4 of the present work, study the performance of the 
corresponding closed-loop systems, as well as their robustness under the effect of measurement 
errors. It was found that the performance and the robustness properties achieved by the proposed 
feedback law were better than or comparable to the performance and the robustness properties 
induced by the RLB PI regulator. Ongoing and future work addresses further robustness issues in 
presence of modelling errors and persistent disturbances.     
 
Definitions and Notation. Throughout this manuscript, we adopt the following notation and 
terminology:  

  : [0, )   . For every set S , n

n times

S S S    for every positive integer n .      
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  By 0 ( ; )C A  , we denote the class of continuous functions on nA , which take values in 
m . By   ( ; )kC A  , where 1k   is an integer, we denote the class of functions on 
nA  with continuous derivatives of order k , which take values in m .   

  Let nx . The transpose of nx  is denoted by x . By x  we denote the Euclidean norm of 

nx .  
 

    Let nS  , lD   be non-empty sets and consider the uncertain, discrete-time, dynamical 
system  
 

( , ) , ,x F d x x S d D    ,                                                  (1.1) 
 

where :F D S S   is a mapping. Let x S   be an equilibrium point of (1.1), i.e., x S   

satisfies ( , )x F d x   for all d D . Notice that x S  denotes the state of (1.1) while d D  
denotes a vanishing perturbation, i.e., a disturbance that does not change the position of the 
equilibrium point of the system.  
 
We use the following definitions throughout the paper. 
 

Definition 1.1: We say that x S   is Robustly Globally Exponentially Stable (RGES) for system 
(1.1) if there exist constants , 0M    such that for every 0x S  and for every sequence 

  0
( )

t
d t D


  the solution ( )x t  of (1.1) with initial condition 0(0)x x  corresponding to input 

  0
( )

t
d t D


  (i.e., the solution that satisfies ( 1) ( ( ), ( ))x t F d t x t   and 0(0)x x ) satisfies the 

inequality 0( ) exp( )x t x M t x x      for all 0t  .  

 
Definition 1.2: A function :V S   for which there exist constants 2 1 0K K  , 0p   and 

[0,1)  such that the inequalities 1 2( )
p p

K x x V x K x x      and ( ( , )) ( )V F d x V x  hold 

for all ( , )d x D S  , is called a Lyapunov function with exponent 0p   for (1.1).  
 

Remark 1.3: If a Lyapunov function with exponent 0p   exists for (1.1), then x S   is RGES. 

Indeed, if the state space were n  and not nS   and if no disturbances were present, then we 
would be able to use Theorem 13.2 on pages 765-766 in [11]. However, since the uncertain 

dynamical system (1.1) is defined on nS   with disturbances d D , we cannot use Theorem 
13.2 on pages 765-766 in [11]. On the other hand, we can use the inequality ( ( , )) ( )V F d x V x  

inductively and obtain the estimate ( ( )) ( (0))tV x t V x  for every solution of (1.1) for every 

sequence  1

0
( ) [0,1]n

t
d t




  and for every integer 0t  . The required exponential estimate of the 

solution is obtained by combining the previous estimate with the inequality 

1 2( )
p p

K x x V x K x x     . 
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2. Freeway Models and Main Result 
 

2.I. Model Derivation 
 
We consider a freeway which consists of 3n   components or cells; typical cell lengths may be 
200-500 m. Each cell may have an external controllable inflow (e.g. from corresponding on-
ramps), located near the cell’s upstream boundary; and an external outflow (e.g. via corresponding 
off-ramps), located near the cell’s downstream boundary (Figure 1). The number of vehicles at 
time 0t   in component {1,..., }i n  is denoted by ( )ix t . The total outflow and the total inflow of 

vehicles of the component {1,..., }i n  at time 0t   are denoted by , ( ) 0i outF t   and , ( ) 0i inF t  , 

respectively. All flows during a time interval are measured in [veh]. Consequently, the balance of 
vehicles (conservation equation) for each component {1,..., }i n  gives: 
 

, ,( 1) ( ) ( ) ( )i i i out i inx t x t F t F t    , 1,...,i n , 0t  .                               (2.1) 

 
    Each component of the network has storage capacity 0ia   ( 1,...,i n ). Our first assumption 

states that the external (off-ramp) flows from each cell are constant percentages of the total exit 
flow, i.e., there exist constants [0,1]ip  , 1,...,i n , such that: 

 

,(1 ) ( )
1 i i out

flow of vehicles
p F t

from component i to component i

 
   

, for 1,..., 1i n                    (2.2) 

 

, ( )i i out
flow of vehicles from

p F t
component i to regions out of the freeway

 
 

 
, for 1,...,i n .                   (2.3) 

 
The constants ip  are known as exit rates, i.e. portions of , ( )i outF t  that are bound for the off-ramp 

of the i -th cell. Since the n -th cell is the last downstream cell of the considered freeway, we may 
assume that 1np  . We also assume that 1ip   for 1,..., 1i n  , and that all exits to regions out 

of the network can accommodate the respective exit flows.  
 
    Our second assumption is dealing with the attempted outflows ( )i if x , i.e. the flows that will 

exit the cell if there is sufficient space in the downstream cell. We assume that there exist 

functions 0([0, ]; )i if C a    with 0 ( )i i if x x   for all (0, ]i ix a  and variables ( ) [0,1]is t  , 

2,...,i n , so that: 
 

1, 1 1( ) ( ) ( ( ))i out i i iF t s t f x t   , 2,...,i n , 0t   and , ( ) ( ( ))n out n nF t f x t .              (2.4) 

 
     The variable ( ) [0,1]is t  , for each 2,...,i n , indicates the percentage of the attempted 

outflow from cell ( 1)i   that becomes actual outflow from the same cell. The function 

:[0, ]i if a   is called, in the specialized literature of Traffic Engineering (see, e.g., [19]), the 

demand-part of the fundamental diagram of the i -th cell, i.e. the flow that will exit the cell i if 
there is sufficient space in the downstream cell i+1. Notice that equation (2.4) for , ( )n outF t  

follows from our assumption that all exits to regions out of the network can accommodate the exit 
flows. 
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   Let 0iu   ( 1,...,i n ) denote the attempted external inflow to component {1,..., }i n  from the 

region out of the freeway. Typically, iu , 2,...,i n , correspond to external on-ramp flows which 

may be determined by a ramp metering control strategy. For the very first cell 1, we assume, for 
convenience, that there is just one external inflow, 1u . Let the variables ( ) [0,1]iw t  , 1,...,i n , 

indicate the percentage of the attempted external inflow to component {1,..., }i n  that becomes 
actual inflow. Then, we obtain from (2.2) and (2.4): 
 

1, 1 1( ) ( ) ( )inF t w t u t  and , 1 1 1( ) ( ) ( ) ( )(1 ) ( ( ))i in i i i i i iF t w t u t s t p f x t     , 2,...,i n .       (2.5) 

 
     Our next assumption is derived from the Godunov discretization (see [19]), which requires that 
the inflow of vehicles at the cell {1,..., }i n  at time 0t  , denoted by , ( ) 0i inF t  , cannot exceed 

the supply function of cell {1,..., }i n  at time 0t  , i.e., 
 

 , ( ) min , ( ( ))i in i i i iF t q c a x t  , 1,...,i n , 0t                                (2.6) 

 
where (0, )iq    denotes the maximum flow that the i -th cell can receive (or the capacity flow 

of the i -th cell) and (0,1]ic   ( 1,...,i n ) is the jam velocity of the i-th cell.  

    Following [7], we assume that, when the total demand flow of a cell is lower than the supply of 
the downstream cell, i.e. when  1 1 1( ) (1 ) ( ( )) min , ( ( ))i i i i i i i iu t p f x t q c a x t       for some 

{2,..., }i n , then the demand flow can be fully accommodated by the downstream cell, and hence 

we have ( ) ( ) 1i is t w t  . Similarly, when  1 1 1 1 1( ) min , ( ( ))u t q c a x t  , then we have 1( ) 1w t  . 

In contrast, when the total demand flow of a cell is higher than the supply of the downstream cell, 
i.e. when  1 1 1( ) (1 ) ( ( )) min , ( ( ))i i i i i i i iu t p f x t q c a x t       for some {2,..., }i n  (or when 

 1 1 1 1 1( ) min , ( ( ))u t q c a x t  ), then the demand flow cannot be fully accommodated by the 

downstream cell, and the actual flow is determined by the supply function, i.e. we have 
 , ( ) min , ( ( ))i in i i i iF t q c a x t   (or  1, 1 1 1 1( ) min , ( ( ))inF t q c a x t  ). Therefore, we get: 

 
 1, 1 1 1 1 1( ) min , ( ( )), ( )inF t q c a x t u t  , 0t                                    (2.7) 

 
   




































 ))(()1(

))((,min
,1min)(

))(()1(

)())((,min
,0max,1min))(1()(

111111 txfp

txacq
td

txfp

tutxacq
tdts

iii

iiii
i

iii

iiiii
ii , 

2,...,i n , 0t                                                              (2.8) 
 

 , 1 1 1( ) min , ( ( )), ( ) (1 ) ( ( ))i in i i i i i i i iF t q c a x t u t p f x t      , 2,...,i n , 0t            (2.9) 

 
where  

( ) [0,1]id t  , 2,...,i n , 0t                                               (2.10) 

 
are time-varying parameters. Note that, if the supply is higher than the total demand, then (2.8) 
yields 1is  , irrespective of the value of id , since the total demand flow can be accommodated 

by the downstream cell. Thus, the parameter id  determines the relative inflow priorities, when the 
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Figure 1: The freeway model (schematically).  

 
downstream supply prevails. Specifically, when ( ) 0id t  , then the on-ramp inflow has absolute 

priority over the internal inflow; on the other hand, when ( ) 1id t  , then the internal inflow has 

absolute priority over the on-ramp inflow; while intermediate values of id  reflect intermediate 

priority cases. The parameters ( ) [0,1]id t   are treated as unknown parameters (disturbances). 

Notice that by introducing the parameters ( ) [0,1]id t   (and by allowing them to be time-varying), 

we have taken into account all possible cases for the relative priorities of the inflows (and we also 
allow the priority rules to be time-varying); see [5, 17, 18, 21, 22] for freeway models with 
specific priority rules, which are special cases of our general approach.   
 
      All the above are illustrated in Figure 1. Combining equations (2.1), (2.2), (2.3), (2.4), (2.7) 
and (2.9) we obtain the following discrete-time dynamical system: 
 

 1 1 2 1 1 1 1 1 1 1

1 2 1 1 1 1

( ) min , ( ),

( )

x x s f x q c a x u

x s f x w u

    

  
                                          (2.11) 

 

 1 1 1 1

1 1 1 1

( ) min , ( ), (1 ) ( )

( ) (1 ) ( )
i i i i i i i i i i i i i

i i i i i i i i i i

x x s f x q c a x u p f x

x s f x w u s p f x


   

   

     

    
, for 2,..., 1i n     (2.12) 

 

 1 1 1

1 1 1

( ) min , ( ), (1 ) ( )

( ) (1 ) ( )
n n n n n n n n n n n n

n n n n n n n n n

x x f x q c a x u p f x

x f x w u s p f x


  

  

     

    
                (2.13) 

 
where [0,1]is  , 2,...,i n  are given by (2.8). The values of [0,1]iw  , 1,...,i n , may also be 

similarly derived from (2.5) when 0iu   but they are not needed in what follows. Define 

1 2(0, ] (0, ] (0, ]nS a a a    . Since the functions :[0, ]i if a   satisfy 0 ( )i i if x x   for all 

(0, ]i ix a , it follows that (2.11), (2.12), (2.13) is an uncertain control system on S  (i.e., 

1( ,..., )nx x x S  ) with inputs 1
1( ,..., ) (0, ) n

nu u u 
     and disturbances 

1
2( ,..., ) [0,1]n

nd d d   . We emphasize again that the uncertainty 1[0,1]nd   appears in the 

equations (2.11), (2.12) and (2.13) only when the supply function prevails, i.e., only when 
 1 1 1( ) (1 ) ( ( )) min , ( ( ))i i i i i i i iu t p f x t q c a x t       for some {2,..., }i n .  

 
We make the following assumption for the functions :[0, ]i if a   ( 1,...,i n ): 

(H) The function 0([0, ]; )i if C a    satisfies 0 ( )if z z   for all (0, ]iz a . There exists 

(0, ]i ia   such that if  is increasing on [0, ]i  and non-increasing on [ , ]i ia . Moreover, there 

exist constants (0,1)iL  , (0, ]i i   such that :[0, ]i if a   is 1C  on (0, )i , 1 ( )i iL f z   

for all (0, )iz   , ( ) 1if z    for all (0, )iz  .  
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    Assumption (H) reflects the basic properties of the so-called “demand function” [19] in the 
Godunov discretization; whereby i  is the critical density, where ( )i if x  achieves a maximum 

value. In other words, the fundamental diagram (FD) of cell i  is composed by the increasing 
function ( )i if x  for [0, ]i ix  ; and by the non-increasing supply function min( , ( ))i i i iq c a x  for 

[ , ]i i ix a . Note, however, that Assumption (H) includes the possibility of reduced demand flow 

for overcritical densities (i.e., when ( )i ix t  ), since ( )i if x  is allowed to be decreasing for 

[ , ]i i ix a ; this could be used to reflect the capacity drop phenomenon as proposed in [20]. In 

conclusion, the model (2.11)-(2.13) is a generalized version of the known first-order discrete 
Godunov approximation to the kinematic-wave partial differential equation of the LWR-model 
(see [23, 28]) with nonlinear ([19]) or piecewise linear (Cell Transmission Model - CTM, [6, 7]) 
fundamental diagram. However, the presented framework can also accommodate recent 
modifications of the LWR-model as in [20] to reflect the so-called capacity drop phenomenon. 

Notice that the piecewise smooth selections 1( )i i if z q z   for [0, ]iz   and ( )i if z q  for 

( , ]i iz a  ( 1,...,i n ) with 1
i i i ia c q    allow us to obtain the standard CTM with: (i) 

triangular-FD (if 1
i i i ia c q   ); and (ii) trapezoidal-FD (if 1

i i i ia c q   ). In the latter case, 

assumption (H) holds with arbitrary (0, ]i i  . 

 

    Define the vector field 1 1:[0,1] (0, )n nF S S 
      for all 1: (0, ] (0, ]nx S a a   , 

1
2( , ..., ) [0,1]n

nd d d D     and 1
1( ,..., ) (0, ) n

nu u u 
    :  

 

1( , , ) ( ( , , ),..., ( , , )) n
nF d x u F d x u F d x u      

with  1 1 2 1 1 1 1 1 1 1( , , ) : ( ) min , ( ),F d x u x s f x q c a x u    , 

 1 1 1 1( , , ) ( ) min , ( ), (1 ) ( )i i i i i i i i i i i i iF d x u x s f x q c a x u p f x         , for 2,..., 1i n  , 

 1 1 1( , , ) ( ) min , ( ), (1 ) ( )n n n n n n n n n n n nF d x u x f x q c a x u p f x         and 

   
1 1 1 1 1 1

min , ( ) min , ( )
(1 ) min 1, max 0, min 1,

(1 ) ( ) (1 ) ( )
i i i i i i i i i

i i i
i i i i i i

q c a x u q c a x
s d d

p f x p f x     

      
            

, for 2,...,i n .       

(2.14) 
Notice that, using definition (2.14), the control system (2.11), (2.12), (2.13) can be written in the 
following vector form: 
 

1

( , , )

, , (0, ) n

x F d x u

x S d D u








    


                                             (2.15) 

 

2.II. Main Result 
 

Consider the freeway model (2.15) under assumption (H). We suppose that there exist 1 0u  , 

0iu   ( 2,...,i n ) and a vector 1 1( ,..., ) (0, ) (0, )n nx x x         with  

1 1 1( )f x u  , 
11

1 1 1
1

( ) (1 ) ( ) (1 )
ii

i i i i i i i k j
j k j

f x u p f x u p u


    
  

 

 
      
 
 

   ( 2,...,i n )    (2.16) 

and     1 1 1 1 1min ,u q c a x   ,   1 1 1(1 ) ( ) min ,i i i i i i i iu p f x q c a x  
      ( 2,...,i n ).   (2.17) 
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This is the uncongested equilibrium point of the freeway model (2.15). Notice that assumption (H) 
guarantees that an uncongested equilibrium point always exists for the freeway model (2.15) when 

1 0u   and 0iu   ( 2,...,i n ) are sufficiently small. The uncongested equilibrium point is not 

globally exponentially stable for arbitrary 1 0u  , 0iu   ( 2,...,i n ); indeed, for relatively large 

values of external demands 1 0u  , 0iu   ( 2,...,i n )  there exist other equilibria for model 

(2.15) (congested equilibria) for which the cell densities are large and can attract the solution of 
(2.15) (see the numerical example 4.2 in the section 4).  
 
    The following result is our main result in feedback design. The result shows that a continuous, 
robust, global exponential stabilizer exists for every freeway model of the form (2.15) under 
assumption (H).  
 
Theorem 2.1: Consider system (2.15) with 3n   under assumption (H). Then there exist a subset 

{1,..., }R n  of the set of all indices {1,..., }i n  with 0iu  ,  constants (0,1]  , (0, )i ib u  for 

i R  and a constant 0    such that for every (0, )    the feedback law : nk S   defined 

by: 
 

1( ) : ( ( ),..., ( )) n
nk x k x k x    with 

 ( ) : max ( ),i i i ik x u x b   , for all x S , i R  and  ( ) :i ik x u , for all x S , i R    (2.18) 

where 1: ( )i i iu b      and 

 
1

( ) : max 0,
n

i
i i

i

x x x 


   , for all x S                                (2.19) 

achieves robust global exponential stabilization of the uncongested equilibrium point x  of 

system (2.15), i.e., x  is RGES for the closed-loop system (2.15) with ( )u k x . Moreover, for 

every (0, )   , there exist constants , , , , 0Q h A K   so that the function :V S   defined 

by: 

1 1

( ) : ( ) max 0, ( ) ( )
n n

i
i i i

i i

V x x x A x K I x P x 

 

 
       

 
  , for all x S            (2.20) 

where 
1

( ) :
j

j i
i

I x x


  for 1,...,j n  and 

 ( ) : min , ( )P x Q h x                                                (2.21) 

 
is a Lyapunov function with exponent 1 for the closed-loop system (2.15) with ( )u k x .   
 
    Although Theorem 2.1 is an existence result, its proof is constructive and provides formulae for 
all constants and for the index set R  (see following sections). Notice that the index set R  is the 
set of all inflows that must be controlled in order to be able to guarantee that the uncongested 
equilibrium point is RGES; consequently, the knowledge of the index set R  is critical.  
 
    The importance of Theorem 2.1 lies on the facts that: 
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 Theorem 2.1 provides a family of robust global exponential stabilizers (parameterized by 

the parameter (0, )   ) and an explicit formula for the feedback law (formula (2.18)); 

 the achieved stabilization result is robust for all possible (and even time-varying) priority 
rules for the junctions that may apply at specific freeways; thus, there is no need to know 
or estimate the applied priority rules;  

 Theorem 2.1 provides an explicit formula for the Lyapunov function of the closed-loop 
system. This is important, because the knowledge of the Lyapunov function can allow the 
study of the robustness of the closed-loop system to various disturbances (measurement 
errors, modeling errors, etc.) as well for the study of the effect of interconnections of 
freeways (by means of the small-gain theorem; see [16]).  

 
    The main idea behind the proof of Theorem 2.1 is the construction of the Lyapunov function of 
the closed-loop system, which acts as a Control Lyapunov Function (CLF; see [16]) for the open-
loop system. The construction of the Lyapunov function is based on the observation that there are 
no congestion phenomena when the cell densities are sufficiently small, i.e., 
 

“There exists a set S  of the form 1(0, ] ... (0, ]n     , where 

0i   for 1,...,i n  are constants, such that no congestion phenomena 

are present when x .”   
 
The existence of the set S  is important because, when no congestion phenomena are present, 
then the freeway model admits the simple (cascade) form: 
 

1 1 1 1 1( )x x f x u    , 1 1 1 1( ) (1 ) ( )i i i i i i i ix x f x p f x u
        , for 2,...,i n , x  

 
and a Lyapunov function for the above form can be a function of the form 

1
1

( ) : ( )
n

i
i i

i

V x x x A x 


    , where  

1

( ) : max 0,
n

i
i i

i

x x x 


   ; and (0,1]   and 0A   are 

appropriate constants. The Lyapunov function for the freeway model is the linear combination of 

the “Lyapunov function” for the uncongested model (i.e., 1
1

( ) : ( )
n

i
i i

i

V x x x A x 


    ) and a 

penalty term, i.e., the term 
1

max 0, ( ) ( )
n

i
i

I x P x


 
  

 
 , that penalizes large cell densities (and thus 

penalizes the possibility of the state being out of the set S  ). The appropriate selection of the 
weight of the penalty term 0K   forces the selected control action to lead the state in the set 

S  (see Figure 2). In other words, the construction of the CLF guarantees that the control 
action will first eliminate all congestion phenomena and then will drive the state to the desired 
equilibrium.    

 
Figure 2: Idea behind Theorem 2.1 
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3. Proof of Main Result 
 
Assumption (H) has non-trivial consequences. A list of the most important consequences of 
assumption (H) is given below. All following consequences are exploited in the proof of Theorem 
2.1. 
 
Consequences of assumption (H): 
 
(C1) The mappings  [0, ] ( ) 0i ia z z f z     are non-decreasing for 1,...,i n . 

 
Property (C1) is a direct consequence of the fact that ( ) 1if z   for all (0, )iz   and the fact that 

if  is non-increasing on [ , ]i ia . 

 
(C2) For each 1,...,i n  there exist constants (0,1)i  , [0,1]iG    such that: 

 

( ) ( )i i i i i i i i ix x f x f x x x        and ( ) ( )i i i i i i if x f x G x x    , for all , [0, ]i i ix x    . (3.1) 

 

Property (C2) is a direct consequence of the fact that there exist constants (0,1)iL  , (0, ]i i   

such that :[0, ]i if a   is 1C  on (0, )i  and 1 ( )i iL f z   for all (0, )iz    and ( ) 1if z   for 

all (0, )iz  . We conclude that (3.1) holds with (0,1)i iL     and 1iG  .  

 
(C3) There exist constants 0i   ( 1,...,i n ) such that ( )i if z z  for all [0, ]iz a  and 

1,...,i n . 
 

Property (C3) is a direct consequence of the fact that ( ) (1 )i if z L z   for all (0, ]iz    (a direct 

consequence of the fact that 1 ( )i iL f z   for all (0, )iz   ) and the fact that 0 ( )if z z   for all 

(0, ]iz a  (for example, the selection  1

[ , ]
min 1 , min ( ) 0

i i
i i i

z a
L z f z


 



    
 

 satisfies (C3)).  

 
The following consequence provides a useful linear lower bound on a weighted sum of exit rates. 
Its proof is provided in the Appendix.  
 
(C4) For every 2,..., 0nr r   with  min ,i i i ir q c a  for 2,...,i n , there exists a constant 0C   

such that the following inequality holds for all 1: (0, ] (0, ]nx S a a   , 

2(0, ) [0, ] ... [0, ]nu U r r      , 1
2( ,..., ) [0,1]n

nd d d    with 11n np s   : 

   1
1 1

1 ( ) ( ) 1
n n

i i i i i
i i

p n i s f x C n i x
 

      .                             (3.2) 

 
Remark 3.1: The proof of property (C4) implies that the constant 0C   can be estimated in a 
straightforward way. We define the positive constants 0iY   ( 1,...,i n ) using the recursive 

formula: 
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 1

1 1
1 1

1 1 1

( 1 )1 ( 1 ) 1 ( 1 )
min , , ,

2 2( 1 ) 2( 2 ) 1 ( 2 )

k k k kk k k k
k k k k

k k k k

n k a c r Yp n k q r p n k
Y Y l

n k n k a n k a p n k a



 

 
  

          
          
 

 (3.3) 

 
for , 1,...,2k n n  , with n nY  , where 0i   ( 1,...,i n )  are the constants involved in Property 

(C3) and 
1 1 1

min 1,
2(1 ) ( )

k k k
k

k k k

c a r
l

p f   

 
   

 for 2...,k n . Then the constant 0C   can be 

selected as 1C Y . However, the estimation of the constant 0C   by the recursive formula (3.3) 

is, in general, conservative. 
 
Finally, the last consequence provides useful equalities and inequalities for a weighted sum of all 
vehicle densities of the freeway. Its proof is provided in the Appendix.   
 
(C5) The following equality holds for all 1: (0, ] (0, ]nx S a a   , 1( ,..., )nu u u   

1(0, ) n
   , 1

2( , ..., ) [0,1]n
nd d d    with 11n np s   : 

    1
1 1 1 1

( ) ( ) 1 1 ( ) ( )
n n n n

i i i i i i i i
i i i i

I x I x n i w u p n i s f x


   
                             (3.4) 

where 
1

( ) :
j

j i
i

I x x


  for 1,...,j n . Moreover, for every 2,..., 0nr r   with  min ,i i i ir q c a  for 

2,...,i n , the following inequality holds: 

 
1 1 1

( ) (1 ) ( ) 1
n n n

i i i
i i i

I x C I x n i u

  
       , for all 1( , , ) [0,1]nx u d S U                  (3.5) 

 
where 2(0, ) [0, ] ... [0, ]nU r r     , and 0C   is the constant involved in (3.2).  

 
We are now ready to provide the proof of Theorem 2.1.  
  

Proof of Theorem 2.1: Define n n    and (0, ]i i   , for 1,..., 1i n   to be the unique 

solution of the equation 
 

1 1( ) min ( ),
1

i i
i i i i

i

q u
f f

p
 


  

    
 .                                                (3.6) 

 

Due to the inequalities (2.17) and the fact that n n   , it follows that *
i ix   for 1,...,i n . 

Define   1 1 1(1 ) ( )i i i i i i i ic a x u p f x   
        for 2,...,i n  and  1 1 1 1 1c a x u     . Next 

define: 
 

1min , ,
2 2(1 )

i i
i i i i

i i

x x
c p

 
     

    
 for 1,..., 1i n   and min ,

2
n

n n n
n

x
c


   

  
 

      (3.7) 

 

Again, due to the inequalities (2.17) and the fact that *
i ix   for 1,...,i n , it follows that *

i ix   

for 1,...,i n . 
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It follows from (2.5), (2.7), (2.8), (2.9), (2.11), (2.12), (2.13), (3.6) and (3.7) that the following 

equations hold when 1(0, ] ... (0, ]nx       and [0, ]i iu u  for 1,...,i n : 

 
1iw  , for 1,...,i n  and 1is  , for 2,...,i n                                   (3.8) 

 

1 1 1 1 1( )x x f x u    , 1 1 1 1( ) (1 ) ( )i i i i i i i ix x f x p f x u
        , for 2,...,i n .         (3.9) 

 

To see this, notice that for all 1(0, ] ... (0, ]nx       and 1[0, ] [0, ]nu u u     we have 

 1 1 1 1 1min , ( )u q c a x   and  1 1 1(1 ) ( ) min , ( )i i i i i i i iu p f x q c a x       for 2,...,i n . Indeed, 

assumption (H) in conjunction with equation (3.6) and definition (3.7) implies that  
 

1 1 1 1 1 1 1 1 1(1 ) ( ) (1 ) ( ) (1 ) ( )i i i i i i i i i i i i iu p f x u p f u p f q  
                  

 

for 2,...,i n  and for all 1(0, ] ... (0, ]nx       and 1[0, ] [0, ]nu u u    . The inequality 

1 1 1u u q   is directly implied by (2.17). Moreover, assumption (H) (and particularly the fact that 

if  is increasing on ],0[ i   with ( ) 1if z   for all (0, )iz   for 1,...,i n ) in conjunction with 

(2.17) and definition (3.7) implies that  
 

 
 

   

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

(1 ) ( ) (1 ) ( ) (1 ) ( ) ( )

(1 ) ( ) (1 ) max 0,

1 1 1
(1 ) ( ) (1 ) ( )

2 2 2 2

i i i i i i i i i i i i i

i i i i i i i

i
i i i i i i i i i i i i i i

u p f x u p f x p f x f x

u p f x p x x

u p f x c a x u p f x c a x


  
          

  
     

     
     

       

     

          

         
2

max 0,

i

i i i i i i i i i i i i i i ic a x c x x c a x c x x c a x



   



         

 

 

for 2,...,i n  and for all 1(0, ] ... (0, ]nx       and 1[0, ] [0, ]nu u u    . The inequality 

1 1 1 1 1( )u u c a x    is a consequence of (2.17), definition (3.7) and the inequalities 

 

       
     

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1
max 0,

2 2 2
u u c a x c a x c a x c x x

c a x c x x c a x

     

 

          

    
 

 
    Let (0,1)i  , [0,1]iG   ( 1,...,i n ), be the constants involved in Property (C2). Let (0,1]   

be a constant so that 
 

 
1,..., 1

: max , max (1 ) 1n i i i
i n

L G p  
 

     
 

.                                  (3.10) 

Notice that  
1,..., 1

max , max (1 ) 1n i i i
i n

G p  
 

    
 

 for all (0,1)  . In what follows, we have 

11n np s   . Let *
i ir u  for 2,...,i n  and let 0C   be the constant involved in (3.2). Let 

{1,..., }R n  be a subset of the set of all indices {1,..., }i n  for which 0iu   and such that: 
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1,...,

1 min 1 ( )i i i i
i ni R

n i u n i p f x 


      and     

1,...,
1 min 1i i

i ni R

n i u C n i 


      (3.11) 

 

where *
i ix   for 1,...,i n  are the constants defined by (3.6). Such a set {1,..., }R n  always 

exists (for example, {1,..., }R n  can be the set of all indices {1,..., }i n  for which 0iu  ). 

Inequalities (3.11) imply that there exist constants (0,1)   and (0, )i ib u  for i R  such that: 

 

       
1,...,

1 1 min 1 ( )i i i i i
i ni R i R

n i b n i u n i p f x 

 
          and 

      
1,...,

1 1 min 1i i i
i ni R i R

n i b n i u C n i 

 
         .                          (3.12) 

 
We next define the following parameters: 
  

 Define   
1,...,

: min i
i i

i n
h x  


  .  

 Define 

      
1,..., 1,...,1 1

: max min 1 , (1 ) ( ) (1 ) max ( 1 ) 1
n n

i
i i i

i n i ni i

Q n i C I x C h n i n i u   

  

 
            

 
 

 and   1

1,...,
: min 1 i

i n
h Q n i  



     
 

.  

 Define   1: min , ( ) 1 i i
i R

h L n i u b   



 
     

 
  and let (0, )   . 

 Define 1: 1 (1 ) i
i

i R

A L  


    , where 1: ( )i i iu b      for i R . 

 Define 
   

 
1 1

1,...,

max , ( )

:
(1 ) min ( 1 )

n n
i i

i i i i i
i i

i
i n

a x x A a x A L h

K
C n i

 

 

  

 



    


  

 
.  

 
We next prove the implication: 
 

If 1(0, ] ... (0, ]nx      , 1[0,1]nd   and 1[0, ] [0, ]nu u u     then ( ) ( )x L x    (3.13) 

 

where (0,1)L  is defined by (3.10) and ( , , )x F d x u   . Indeed, using (3.9) and definition (2.19), 

we get for all 1(0, ] ... (0, ]nx      , 1[0,1]nd   and 1[0, ] [0, ]nu u u    : 

 

   

   

1 1 1 1 1 1 1 1
2

1 1 1 1 1
1 2

( ) max 0, ( ) (1 ) ( ) max 0, ( )

max 0, ( ) ( ) (1 )max 0, ( ) ( )

n
i

i i i i i i i i
i

n n
i i

i i i i i i i i i i i
i i

x x f x p f x u x x f x u x

x f x f x x p f x f x

 

 

  
  



  
    

 

          

      



 
 (3.14) 
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Using (3.1), the fact that i i    for 1,...,i n  (a consequence of (3.6) and (3.7)) and the fact that 

if  is increasing on [0, ]i  for 1,...,i n  (a consequence of assumption (H)), we get: 

 

   max 0, ( ) ( ) max 0,i i i i i i if x f x G x x    , for all [0, ]i ix  , 1,...,i n .        (3.15) 

 

Using properties (C1), (C2) and the fact that i i    for 1,...,i n  (a consequence of (3.6) and 

(3.7)), we get: 
 

   max 0, ( ) ( ) max 0,i i i i i i i i ix f x f x x x x       , for all [0, ]i ix  , 1,...,i n .   (3.16) 

 
Combining (3.10), (3.14), (3.15), (3.16), we obtain implication (3.13).  
 
Next, we show the implication: 

If x S , 1[0,1]nd   and 1[0, ] [0, ]nu u u     then ( ) ( )P x P x  .             (3.17) 

 

where ( , , )x F d x u   . Indeed, (3.17) is a direct consequence of (3.13) and definition (2.21) when 

1(0, ] ... (0, ]nx      . On the other hand, when \x S   there exists at least one 

{1,..., }i n  for which i ix  . Therefore, definition (2.19) implies   
1,...,

( ) min i
i i

i n
x x  


   ,  

and consequently definition (2.21) gives ( )P x Q h   (a consequence of the fact that 

  
1,...,

min i
i i

i n
h x  


  ). Since ( )P x Q h   for all x S  (a consequence of (2.21)), we get 

( ) ( )P x Q h P x     when \x S  . 
 

In what follows, we have ( , , ( ))x F d x k x   . Next we make the following claims. Their proofs 
can be found in the Appendix. 
 

(Claim 1): For all x S , 1[0,1]nd  , the following inequality holds: 
 

1

( ) ( ) (1 )
n

i
i i

i

V x V x L x x 


    .                                        (3.18) 

 (Claim 2): There exist constants 2 1 0K K   such that the following inequality holds. 

 

 1 2( )K x x V x K x x      for all x S .                                  (3.19) 

 

Using (3.18), the fact that (0,1]  , and (3.19), we get for all x S , 1[0,1]nd  :  

 1
2

1

( ) ( ) (1 ) ( ) (1 ) 1 (1 ) ( )
n

i n n
i i

i

V x V x L x x V x L x x L K V x     


           . 

 
The above inequality implies that the inequality  
 

( ( , , ( ))) ( )V F d x k x LV x   for all x S , 1[0,1]nd                            (3.20) 
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holds with 1
2: 1 (1 ) nL L K    . Notice that (0,1)L . Inequalities (3.19) and (3.20) show that 

the function :V S   is a Lyapunov function with exponent 1 for the closed-loop system 

(2.15) with ( )u k x . Remark 1.3 guarantees that x  is RGES for the closed-loop system (2.15) 
with ( )u k x . The proof is complete.        
 
Remark 3.2: The proof of Theorem 2.1 provides a methodology for obtaining an estimation of 

the set {1,..., }R n , the constant (0,1]   and the critical constant 0   . Let *
i ir u  for 

2,...,i n  and let 0C   be the constant involved in (3.2). Select {1,..., }R n  to be a subset of the 

set of all indices {1,..., }i n , for which 0iu   and for which there exist (0, )i ib u  such that: 

 

       
1,...,

1 1 min 1 ( )i i i i i
i ni R i R

n i b n i u n i p f x 

 
          and 

 

      
1,...,

1 1 min 1i i i
i ni R i R

n i b n i u C n i 

 
          

 

where *
i ix  , for 1,...,i n , are the constants defined by (3.6). Let (0,1)   be a constant which 

satisfies       
1,...,

1 1 min 1i i i
i ni R i R

n i b n i u C n i 

 
         . The estimation of the critical 

constant 0    may be done in the following way: 

 Select (0,1]   so that  
1,..., 1

max , max (1 ) 1n i i i
i n

L G p  
 

     
 

, where (0,1)i  , 

[0,1]iG   ( 1,...,i n ), are the constants involved in Property (C2). 

 Define   
1,...,

: min i
i i

i n
h x  


  .  

 Define 

      
1,..., 1,...,1 1

: max min 1 ,(1 ) ( ) (1 ) max ( 1 ) 1
n n

i
i i i

i n i ni i

Q n i C I x C h n i n i u   

  

 
            

 
   

and   1

1,...,
: min 1 i

i n
h Q n i  



     
 

, where 
1

( ) :
j

j i
i

I x x


  for 1,...,j n .  

The estimated value of 0    is given by   1: min , ( ) 1 i i
i R

h L n i u b   



 
     

 
 . However, 

the estimated value of 0   , which is obtained by applying the above methodology, may be 
conservative (significantly smaller than the actual value).   
 
 

4. Illustrative Examples 
 
   The issue of the selection of which specific inflows must be controlled for the stabilization of the 
uncongested equilibrium point of a freeway is crucial. The following example illustrates how 
Theorem 2.1 can be used for such a selection. 
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Example 4.1: Consider a freeway stretch, which consists of 4n   cells, where the first and the 
third cell have one on-ramp, while there are no intermediate off-ramps (i.e., 0ip   for 1,2,3i  ). 

Each cell has jam density 80ia   and is characterized by the same demand functions which are 

given by: 
 

 (9 /10) 0,40

( ) (9 /10)(80 ) (40,370 / 9]

35 (370 / 9,80]
i

z for z

f z z for z

for z

 
  
 

 ( 1,..., 4i  ). 

 

Assumptions (H) hold with 40
~
 ii  , 9 /10ic  , 36iq  (leading to a triangular-shaped FD) 

and 1/10iL   ( 1,..., 4i  ). Property (C3) holds with 7 /16i   for 1,..., 4i  . The value of 

constant 0C   that satisfies (3.2) was estimated by applying the procedure described in Remark 
3.1 with 1 35.9r  , 2 4 0r r   and 3 1r  . It was found that 0.005C  . 

 

    Next, we consider inflows *
1 35.5u  , 2 4 0u u    and 3 0u  . The uncongested equilibrium 

point exists for all *
3 0.5u  . However, for constant inflow 1 35.5u  , the uncongested equilibrium 

point is not globally exponentially stable due to the existence of congested equilibria. Therefore, 
there is a need for controlling the main inflow 1u . At this point, the following question becomes 

crucial: 

“For what values of *
3 (0,0.5)u   can the uncongested equilibrium point be globally 

exponentially stabilized by controlling only the inflow 1u , i.e., for what 

 values of *
3 (0,0.5)u   do we have {1}R  ?”. 

We checked numerically inequalities (3.11) by computing the values of i  from (3.6) for given 

values of *
3u . It was found that inequalities (3.11) hold for {1}R  , provided that *

3 0.1u  . 

Therefore, we conclude that the uncongested equilibrium point can be globally exponentially 

stabilized by controlling only the inflow 1u  for 3 0.1u  . The answer may be conservative, since 

the estimation of the constant 0C   that satisfies (3.2) is conservative.         
 
Example 4.2: Consider a freeway model of the form (2.11), (2.12), (2.13), (2.8) with 5n   cells. 
Each cell has the same critical density 55i  ( 1,...,5i  ) and the same jam density 170ia   

( 1,...,5i  ). The considered freeway stretch has no intermediate on/off-ramps (i.e., *( ) 0i iu t u   

for 2,3,4,5i   and 0ip   for 1,..., 4i  ). Thus, the only control possibility is the inflow 1u  of the 

first cell (see Figure 3). We also suppose that the cell flow capacities are 25iq   for 1,2,3,4i   

and 5 20q  , i.e. the last cell has 20% lower flow capacity (e.g. due to grade or curvature or 

tunnel or bridge etc.) than the first four cells and is therefore a potential bottleneck for the 
freeway. 
 

 
Figure 3: Freeway stretch. 
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    Figure 4, depicts the triangular fundamental diagrams for the above model. The blue line 
corresponds to the demand function, while the red line corresponds to the supply function. More 
precisely, the demand part for every cell is given by the following functions: 
 

(5 /11) [0,55]

( ) (25 /115)(170 ) (55,87.2]

18 (87.2,170]
i

z z

f z z z

z


  
 

 

( 1,..., 4i  ), 5

(4 /11) [0,55]

( ) (20 /115)(170 ) (55,72.25]

17 (72.25,170]

z z

f z z z

z


  
 

 

 
Notice that, the capacity drop phenomenon has been taken into account by considering a partly 
decreasing demand function for over-critical densities (55,170]ix  . 
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Figure 4: Fundamental diagram of every cell. 

 
    For readers who are accustomed to the traditional units of veh/h for flows and veh/km for 
densities, the example model may be viewed to reflect a freeway stretch with 3-lane cells with 
equal lengths of 500 m; with a time step of 15 s. With these settings, the critical density of 55i   

corresponds to 36.7 veh/km/lane; while the jam density of 170ia   corresponds to 113.3 

veh/km/lane; and the cell flow capacities of 1,2,3,4 25q   and 5 20q   correspond to 2000 

veh/h/lane and 1600 veh/h/lane, respectively.  
 

     Assumption (H) holds with 55i i    ( 1,...,5i  ), 6 /11iL   ( 1,..., 4i  ), 5 7 /11L  . The 

uncongested equilibrium point * *
111 / 5ix u  ( 1,..., 4i  ), 5 111 / 4x u   exists for 1 20u  .  

Simulations showed that the open-loop system converges to an uncongested equilibrium point for 

main inflow 1u  less than 17. For higher values of the main inflow, the uncongested equilibrium 

point is not globally exponentially stable due to the existence of additional (congested) equilibria. 
This is shown in Figure 5, where the solution of the open-loop system, with constant inflow 

1 19.99u   is attracted by the congested equilibrium [91.8,91.8,91.8,91.8,72.25]. The 

components of the uncongested equilibrium for 1 19.99u   are * 43.978ix   for 1,..., 4i   and 

5 54.9725x  . Therefore, if the objective is the operation of the freeway with large flows, then a 

control strategy will be needed. 
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    We next notice that property (C2) holds with 6 /11i  , 5 /11iG   ( 1,..., 4i  ), 5 7 /11   and 

5 4 /11G  . Therefore, we are in a position to achieve global exponential stabilization of the 

uncongested equilibrium point for model by using Theorem 2.1. Indeed, Theorem 2.1 guarantees 

that for every (0,1]   there exists a constant 1 1(0, )b u  and a constant 0   such that, the 

feedback law 5: (0,10]k   defined by: 

 

 
5

1 1 1
1

max max 0, ,i
i i

i

u u x x b  



 
    

 
                                   (4.1) 

 
achieves robust global exponential stabilization of the uncongested equilibrium point 

1 5( ,..., ) (0,55) (0,55)x x x      for the closed-loop system.    

      We selected 1 19.99u  , which is very close to 20 , the capacity flow of cell 5. The value of 

the constant 1 1(0, )b u  was chosen to be 0.2; this is a rather low minimum flow value in practice, 

but allows us here to study the dynamic properties of the regulators in a broader feasible control 
area. Various values of the constants (0,1]   and 0   were tested by performing a simulation 
study with respect to various initial conditions. Low values for (0,1]   require large values for 

0   in order to have global exponential stability for the closed-loop system. Moreover, in order 
to evaluate the performance of the controller, we used as a performance criterion the total number 
of Vehicles Exiting the Freeway (VEF) on the interval [0, ]T , i.e., 
 

5 5
0

( ( ))
T

T
t

VEF f x t


 .                                                  (4.2)  

 
Notice that the freeway performs best (and total delays are minimised) if VEF is maximized; the 
maximum theoretical value for VEF is 20( 1)T  , which is achieved if cell 5 is operating at 

capacity flow ( 5 20q  ) at all times. For 200T  , the maximum theoretical value of VEF is 4020. 
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Figure 5: Open-loop system convergence (dashed lines correspond to the uncongested 

equilibrium point for the inflow 1 19.99u  ). 

 
   All following tests of the proposed regulator (4.1) were conducted with the same values 0.7   
and 0.6  . The responses of the densities of every cell for the closed-loop system with the 

proposed feedback regulator (4.1) and initial condition  0 60,57,58,60,62x   are shown in 

Figure 6(a). Notice that all initial cell density values are slightly overcritical (slightly congested). 
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For this case, we had 200 3979.8VEF  . The feedback regulator is seen to respond very 

satisfactorily in this test and achieves an accordingly high performance. 
 
   A detailed comparison of the proposed feedback regulator (4.1) is one of the very few was made 
with the Random Located Bottleneck (RLB) PI regulator, which was proposed in [32] and 
comparable feedback regulators that has been employed in field operations [27]. The RLB PI 
regulator for the present system is implemented as follows: 
 

       )()1()()1(,max,)1()),1((,min,min)( min11111max txKtxtxKtvuctutxacqutv iiIiipii  
(4.3) 

for 1,...,5i  , 

( ) ( ) (1 ) ( 1)sm sm
i i iv t ev t e v t    , for 1,...,5i                                 (4.4)  

 

 
1,...,5

( ) min {1,2,3,4,5}: ( ) min ( )sm sm
l i

i
j t l v t v t



    
 

                           (4.5) 

 

1 ( )( ) ( )j tu t v t .                                                        (4.6) 

 
where 0,, Ip KKc  and )1,0(e  are constant parameters. Essentially, (4.3) reflects the parallel 

(independent) operation of five bounded PI-type regulators, one for each cell; while (4.4) 
performs an exponential smoothing of the respective obtained inflows. Eventually, the smoothed 
inflow values are compared in (4.5) in order to pick the currently most conservative regulator; 
whose (unsmoothed) inflow is finally actually activated as a control input in (4.8), see [32] for the 
background and detailed reasoning for this approach. The parameters for the RLB PI regulators 
are set (as proposed in [32] - with the suitable transformation in the current units) to be 

5 /18pK  , 1/ 90IK  , while 4c  , 0.5e  , min 0.2u   and max 25u  . Notice that all PI 

regulators were given the same gain values for simplicity and convenience, as suggested in [32]. 
In all reported tests, the initial condition for the RLB PI regulator was 

1( 1) ( 1) ( 1) 20sm
i iv v u       for 1,...,5i  , and 0( 1) (0)x x x   , where 0x  is the vector of the 

initial values for the densities of every cell.  
 
    When applied to the same initial condition  0 60,57,58,60,62x  , the RLB PI regulator 

(Figure 6(b)), led to slower convergence compared with the proposed regulator (4.1). This is also 
reflected in the computed value of 200 3785.9VEF   for RLB PI regulator.  In general, conducting 

a simulation study with various levels of initial conditions, the proposed regulator (4.1) exhibited 
faster performance than the RLB PI regulator. For example, Figure 7 shows the evolution of the 

Euclidean norm ( )x t x  for the closed-loop system with the proposed feedback regulator (4.1) 

(blue curve) and for the closed-loop system with the RLB PI regulator (4.3), (4.4), (4.5), (4.6) (red 
curve), when starting from the initial condition [170,170,170,170,170] reflecting a fully congested 
original state (as in Figure 5 as well). It is again clear that the proposed feedback regulator (4.1) 
achieves faster convergence and higher performance of 200 3845.2VEF  , while 200 3007.8VEF   

resulted for the RLB PI regulator.  
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Figure 6: The responses of the densities of every cell for the closed-loop system (4.1) with initial 

condition  0 60,57,58,60,62x  using: (a) the proposed feedback regulator (4.1); and (b) the 

RLB PI regulator. 
 

50 100 150 200 250 300
0

50

100

150

200

250

300

t

|x
(t

)-
x*

|

 
Figure 7: The evolution of the Euclidean norm for the closed-loop system (4.1) and initial 

condition 0 [170,170,170,170,170]x   for two cases, for the proposed feedback regulator (4.1) 

(blue curve) and for the RLB PI regulator (red curve). 
 
    
    We next investigated the robustness of the proposed feedback regulator with respect to 
measurement errors. The applied formula for the measurements was: 
 

 ( ) ( ) ( )x t P x t Ae t                                                   (4.7) 

 
where P  is the projection operator on the closure of S , ( )e t  is a normalized vector, and 0A   is 
the magnitude of the measurement error. In this case, the feedback law (4.1) was implemented 
based on the state measurement ( )x t  given by (4.7), i.e., 

 
5

1 1 1
1

( ) max max 0, ( ) ,i
i i

i

u t u x t x b  



 
    

 
  .                            (4.8) 
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    For comparison purposes, we also present the performance of the RLB PI regulator for the 
same system, under the same measurement errors. In this case, equation (4.3) is replaced by the 
equation  
  

       )(~)1(~)(~)1(,max,)1()),1((,min,min)( min11111max txKtxtxKtvuctutxacqutv iiIiipii  
 (4.9) 

for 1,...,5i  , where the state measurement ( )x t  is given by (4.7). 
 
    Figure 8 shows the responses of the densities of every cell for two cases: (a) for the closed-loop 
system with the proposed feedback regulator (4.8); and (b) for the closed-loop system with the 
RLB PI regulator (4.9), (4.4), (4.5), (4.6); where the state measurement in both cases is given by 

(4.7) with 10A  ,  cos( )
( ) 1,1,...,1

5

t
e t


 ,   . The initial condition was the uncongested 

equilibrium point. 
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Figure 8: The responses of the densities of every cell for the closed-loop system (4.1): (a) with 

the proposed feedback regulator (4.8); and (b) with the RLB PI  regulator (4.9), (4.4), (4.5), (4.6). 

In both cases the state measurement is given by (4.7) with 10A  ,   ( ) cos( ) 5 1,1,...,1e t t , 

  ; initial condition is the uncongested equilibrium point. 
 
 
    In this test, the RLB PI regulator is less sensitive to measurement errors than the proposed 
feedback regulator (4.8), the latter producing a visible offset (Figure 8), in particular also for cell 
5, which reduces accordingly the stationary outflow. This is also reflected in the computed values 
of 200 3789VEF   for the proposed feedback regulator (4.9) (which is 6% less than the maximum 

value of 200VEF ) and 200 4016.8VEF   for the RLB PI regulator (which is 0.8% less than the 

maximum value of 200VEF ) due to the measurement error. The ultimate mean values of the states 

are much closer to the equilibrium values for the RLB PI regulator than for the proposed feedback 
regulator (4.8), indicating that the RLB PI regulator achieves a much smaller mean offset in this 
case. It should be noted at this point that various frequencies   were tested for measurement 
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errors. While Figure 8 is typical for medium and high frequencies (the RLB PI regulator achieves 
a smaller mean offset than the proposed feedback regulator (4.8)), the results indicate higher 
sensitivity of the RLB PI regulator with respect to measurement errors at low frequencies (Figure 
9). For low frequency measurement errors, the proposed feedback regulator (4.8) achieves a 
smaller mean offset than the RLB PI regulator, as shown in Figure 9. Figure 9 shows the 
responses of the densities of every cell for two cases: (a) for the closed-loop system with the 
proposed feedback regulator (4.8), and (b) for the closed-loop system with the RLB PI regulator 
(4.9), (4.4), (4.5), (4.6), where the state measurement in both cases is given by (4.7) with 10A  , 

  ( ) cos( ) 5 1,1,...,1e t t , 0.1  . The initial condition is the uncongested equilibrium point. 
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Figure 9: The responses of the densities of every cell for the closed-loop system (4.1): (a) with 

the proposed feedback regulator (4.8); and (b) with the RLB PI  regulator (4.9), (4.4), (4.5), (4.6). 

In both cases the state measurement is given by (4.7) with 10A  ,   ( ) cos( ) 5 1,1,...,1e t t , 

0.1  ; initial condition is the uncongested equilibrium point. 
 
 
The conclusions of this simulation study are: 
 

 The proposed feedback regulator (4.1) can achieve a faster convergence of the state to the 
equilibrium compared to the RLB PI regulator in the absence of measurement errors. 

 
 The proposed feedback regulator (4.1) is quite robust to measurement errors. However, it 

is more sensitive to measurement errors with high frequency than the RLB PI regulator; 
but it is less sensitive to low-frequency measurement errors than the RLB PI regulator. 
Intended future extensions are expected to improve the properties of the proposed 
feedback regulator in this respect, as well as in cases of modelling errors or persisting 
disturbances. 
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5. Conclusions 
 
This work provided a rigorous methodology for the construction of a parameterized family of 
explicit feedback laws that guarantee the robust global exponential stability of the uncongested 
equilibrium point for general nonlinear and uncertain discrete-time freeway models. The 
construction of the global exponential feedback stabilizer was based on the CLF (control 
Lyapunov function) approach as well as on certain important properties of freeway models. 
 
    Simulation-based comparisons were made with existing feedback laws, which were proposed in 
the literature and have been in practical use. More specifically, we compared the performance and 
some robustness properties of the closed-loop system under the effect of the proposed feedback 
law and under the effect of the Random Located Bottleneck (RLB) PI regulator [32]. In most 
cases, it was found that the performance and the robustness properties guaranteed by the 
implementation of the proposed feedback law were good and comparable to or better than the 
performance and the robustness properties induced by the RLB PI regulator. 
 
   Ongoing and future research addresses robustness issues in a rigorous way: the knowledge of a 
Lyapunov function for the closed-loop system can be exploited to this purpose, and explicit 
formulas for the gains of various inputs (measurement or modelling errors) can be derived. Also, 
the estimation of the gains of various inputs can allow the study and control of interconnected 
freeways (traffic networks). Finally, the present approach does not consider the impact of inflow 
control on upstream traffic flow conditions (e.g. queue forming at on-ramps); future extensions 
will address these issues appropriately. 
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Appendix 
 
Proof of (C4): We prove the following claim:  
 
(Claim): For all 1,..., 1m n   there exists a constant 0mC   such that the following inequality 

holds for all 1: (0, ] (0, ]nx S a a    , 2(0, ) [0, ] ... [0, ]nu U r r      , 
1

2( , ..., ) [0,1]n
nd d d   : 

  11 ( ) ( ) ( 1 )
n n

i i i i m i
i m i m

p n i s f x C n i x
 

      .                               (A.1) 

 
Property (C4) is a direct consequence of the above claim. 
 

First we prove the claim for 1m n  . Define 
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. Indeed, using 

Property (C3), we get for all 1 1( , ) (0, ] (0, ]n n n nx x a a   , 2(0, ) [0, ] ... [0, ]nu U r r      , 
1

2( , ..., ) [0,1]n
nd d d    with n ns l : 
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On the other hand, for all 1 1( , ) (0, ] (0, ]n n n nx x a a   , 2(0, ) [0, ] ... [0, ]nu U r r      , 

1
2( , ..., ) [0,1]n

nd d d    with n ns l , it follows from (2.8) that 

 1 1 1(1 ) ( ) min , ( )n n n n n n n np f x u q c a x      . We distinguish the cases: 

 

  min , ( ) ( )n n n n n n nq c a x c a x   . In this case, we have 1
n n n na c q x  . Assumption 

(H) in conjunction with the fact that n n n nu r c a   implies that 
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  min , ( )n n n n nq c a x q  . In this case, we obtain from (2.8) and the fact that n n nu r q   

the inequality 
1 1 1(1 ) ( )
n n

n
n n n

q r
s

p f x  





. Using Property (C3), we get: 
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It follows from (A.2) and the above inequalities that (A.1) holds with 
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Next, we suppose that the claim holds for {2,..., 1}m k n    and we show that the claim holds 

for 1m k  . Define 
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. Using (A.1) for m k  and Property 
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On the other hand, for all 1: (0, ] (0, ]nx S a a    , 2(0, ) [0, ] ... [0, ]nu U r r      , 

1
2( , ..., ) [0,1]n

nd d d    with k ks l , it follows from (2.8) that 

 1 1 1(1 ) ( ) min , ( )k k k k k k k k kl p f x u q c a x      . We distinguish the cases: 
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, gives  11

2k k k kx a c r  . Using (A.1) for 

m k  and Property (C3), we get: 
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It follows from (A.3) and the above inequalities that the claim holds for 1m k   with: 
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Proof of (C5): The following equations hold for all 1: (0, ] (0, ]nx S a a   , 

1
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Equality (3.4) is a consequence of (2.11), (A.4), (A.5) and definitions 11n np s   .  

 
Combining (3.4) and (3.2), we get: 
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Proof of the Claim 1 made in the proof of Theorem 2.1: We distinguish two cases.  
 

Case 1: 1(0, ] ... (0, ]nx      , 1[0,1]nd  .  

 

Definition (2.20) and equations (3.4), (3.8), (3.9) with ( )i i iu k x u   give: 

 

   

1 1 1 1 1 1 1 1
2

1 1 1

( ) ( ) ( ) (1 ) ( )

max 0, ( ) 1 ( ) ( ) 1 ( ) ( )

n
i

i i i i i i i i
i

n n n

i i i i i
i i i

V x x f x u x x f x p f x u x

K I x n i p f x n i u P x A x

   
  



 

  

         

 
           

 



  
         (A.7)    

 

with 1np  . Using (3.13), property (C2), the fact that i i    for 1,...,i n  (a consequence of 

(3.6) and (*)) and definition (3.10), we get from (A.7): 

   

1 1

1 1 1

( ) ( )

max 0, ( ) 1 ( ) ( ) 1 ( )

n n
i i

i i i i
i i

n n n

i i i i i
i i i

V x L x x u u LA x

K I x n i p f x n i u P x

   

 



  

     

 
         

 

 

  
               (A.8) 

 
It follows from the combination of (2.18) and inequality (A.8) that the following inequality holds 
for all x : 
 

 

   

1

1 1 1

( ) min ( ), ( )

max 0, ( ) 1 ( ) ( ) 1 ( )

n
i i

i i i i i
i i R

n n n

i i i i i
i i i

V x L x x x u b LA x

K I x n i p f x n i u P x

    

 



  

      

 
         

 

 

  
              (A.9) 

 
Inequality (3.2) and equations (3.8) imply that: 
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1 1

1 ( ) ( ) ( )
n n

i i i i
i i

n i p f x C I x
 

    .                                      (A.10) 

 
Using (A.8) and (A.10), we get: 
 

 

 

1

1 1

( ) min ( ), ( )

max 0, (1 ) ( ) 1 ( )

n
i i

i i i i i
i i R

n n

i i
i i

V x L x x x u b LA x

K C I x n i u P x

    

 



 

      

 
       

 

 

 
                  (A.11) 

 
We next distinguish two cases: 
 

Case 1(i): ( )x   . In this case we have ( )i i ix u b     for all i R . Since ( )x h   (a 

consequence of h    ), we get from (3.13) and definition (2.18) that 

( ) ( )i i i i iu k x u x b      for all i R  and    min , ( ) min , ( )h x L h x   . Using the 

definitions 
1

( ) :
j

j i
i

I x x


  for 1,...,j n ,  ( ) : min , ( )P x Q h x    and the facts 

    
1,...,1 1

(1 ) ( ) (1 ) max ( 1 ) 1
n n

i
i i

i ni i

Q C I x C h n i n i u  

 
           

        1 11 1 ( ) 1i i i i i
i R i R i R

n i n i u b n i u b L       

  
              (a consequence 

of   1( ) 1 i i
i R

L n i u b    


     ), 

       
1,...,1 1

1 ( ) ( 1 ) max(0, ) max ( 1 ) ( )
n n

i i i
i i i i

i ni i

n i x x n i x x n i x     

 
              for 

1,...,i n  (a consequence of definition (2.19)),  
 
we get: 

   

   

     

1,...,1 1

1,...,1 1

1 1

(1 ) ( ) (1 ) max ( 1 ) 1

(1 ) ( ) (1 ) ( ) max ( 1 ) 1

( ) 1 ( ) (1 ) ( ) (1 ) 1 ( ) 1

n n
i

i i
i ni i

n n
i

i i
i ni i

n n

i i i i i
i R i i

Q C I x C h n i n i u

Q C I x C x n i n i u

Q L x n i x C I x C n i x x n i u





 

  

 

  

 

 

  

         

          

               

 

 

  

   

 

1

1

1 1

min( , ( )) (1 ) ( ) 1 ( ( )) 1

0 1 (1 ) ( ) ( )

n

i

n

i i i i
i i R i R

n n

i i
i i

Q h x C I x n i u x n i u

n i u C I x P x
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Combining (A.11) with the above inequality, we obtain: 
 

1

( ) ( ) ( )
n

i i
i i i

i i R

V x L x x x LA x   

 
       .                          (A.12) 

 

It follows from (A.12) and the fact that 1(1 ) i
i

i R

A L  


    that (3.18) holds when ( )x   .  

Case 1(ii): ( )x   . In this case ( )i i ix u b     for all i R . Definition (2.18) implies that 

( )i ik x b  for all i R . Moreover, in this case there exists at least one {1,..., }i n  for which 
*

i ix x . Since if  is increasing on [0, ]i  for 1,...,i n  (a consequence of (H) and the fact that 

i i   ), we conclude that there exists at least one {1,..., }i n  for which ( ) ( )i i i if x f x . 

Consequently, we get from (3.12) and the fact that ( )i i iu k x b   for all i R : 

 

            
1,...,1 1

1 1 1 min 1 ( ) 1 ( )
n n

i i i i i i i i i
i ni i R i R i

n i u n i b n i u n i p f x n i p f x 

   
                 . 

 

Combining (3.17), (A.9) with the above inequality and using the fact 1(1 ) i
ii R

A L  
   , we 

conclude that (3.18) holds when ( )x   . 
 

Case 2: \x S  , 1[0,1]nd  .  
 
In this case, there exists at least one {1,..., }i n  for which i ix  . Therefore, definition (2.19) 

implies   
1,...,

( ) min i
i i

i n
x h x  


    , and consequently definition (2.21) gives ( )P x Q h  . 

Moreover, definition (2.18) gives ( )i ik x b  for all i R  (a direct consequence of the facts that 

h     and    1 1
i i i i iu b h u b         ). Combining, we get from definition (2.20) and 

(3.17): 
 

1 1

1 1

( ) ( ) max 0, ( ) ( )

max 0, ( ) ( )

n n
i

i i i
i i

n n
i

i i i
i i

V x x x A x K I x P x

x x K I x Q h A x



 

     

 

   

 

 
       

 
 

        
 

 

 
               (A.13) 

 
Using (3.5), the facts that ( )i i iu k x b   for all i R ,   

1,...,
min 1 i

i n
Q h n i  


     and 

      
1,...,

1 1 min 1i i i
i ni R i R

n i b n i u C n i 

 
          (which both imply that 

     1 1i i
i R i R

n i b n i u C Q h

 
        ), we get: 

 
1 1

max 0, ( ) (1 )max 0, ( )
n n

i i
i i

I x Q h C I x Q h 

 

   
           

   
  .                 (A.14) 
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Combining (A.13) and (A.14), we get: 
 

1 1

( ) (1 ) max 0, ( ) ( )
n n

i
i i i

i i

V x x x K C I x Q h A x    

 

 
         

 
  .          (A.15) 

 
Definition (2.19) in conjunction with (A.15) implies that the following inequality holds: 
 

   
1 1 1

( ) max , (1 ) max 0, ( )
n n n

i i
i i i i i i

i i i

V x a x x K C I x Q h A a x     

  

 
         

 
   .   (A.16) 

 
The fact that there exists at least one {1,..., }i n  for which i ix  , implies that  

    
1,...,1 1

( ) 1 min 1
n n

i i i
i ni i

I x n i x n i 
 

       .                           (A.17) 

Using (A.16), (A.17) and the fact that   
1,...,

min 1 i
i n

Q h n i  


    , we obtain: 

 

      

1 1

1,...,1

( ) max , max 0, ( )

1 min 1

n n
i

i i i i
i i

n
i

i i i
i ni

V x a x x K I x Q h

A a x KC n i

 

  

  

 





 
      

 

     

 


                   (A.18) 

 

Since 
   

 
1 1

1,...,

max , ( )

(1 ) min ( 1 )

n ni i
i i i i ii i

i
i n

a x x A a x A L h
K

C n i

 

 

  
 



    


  

 
, 

1

( )
n

i
i i

i

x x x h 


    , we 

conclude from (A.18) and definition (2.20) that (3.18) holds. The proof is complete.         
 
Proof of the Claim 2 made in the proof of Theorem 2.1: Since (0,1]  , we get for all x S : 
 

1 1

n n
n i i

i i
i i

x x x x x x    

 
      .                                    (A.19) 

 
Similarly, using definition (2.19), we get for all x S : 
 

1 1

0 ( )
n n

i i
i i

i i

x x x x x  

 
       .                                     (A.20) 

Using (A.20), the fact that 
1

( ) :
j

j ii
I x x


   for 1,...,j n , definition (2.21) and the fact that 

1
( )

n
ii

Q I x  (a consequence of (3.5) and the fact that 

 1 1
(1 ) ( ) 1

n n
i ii i

Q C I x n i u 
       ), we get for all x S :  
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1 1 1 1

1 1

1 1

max 0, ( ) ( ) max 0, ( ) ( ) max 0, ( ) ( )

max 0, 1 ( ) max 0, ( ) min , ( )

1 max 0, ( )

n n n n

i i i i
i i i i

n n

i i i
i i

n n

i i i
i i

I x P x I x I x I x P x

n i x x I x Q h x

n i x x I x Q



 

   

 

 

 

 

     
              

     
   

             
   

     

   

 

   

   
1 1 1

min , ( )

1 ( ) 1
n n n

i
i i

i i i

h x

n i x x x x x n i x x



    

  

 
   

 

             

            (A.21) 

 
It follows from definition (2.20) and (A.19), (A.20), (A.21) that there exist constants 2 1 0K K   

such that inequality (3.19) holds. The proof is complete.         


