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Abstract— An adaptive energy-based swing-up controller for
simple pendulums is presented. A state transformation from
cartesian to polar phase space followed by approximation steps
leads to the fundamental dynamics of the controlled simple
pendulum. Based on the fundamental dynamics, the unknown
natural frequency is estimated and a control gain is adjusted
such that the system energy follows desired reference dynamics.
We prove convergence of the natural frequency estimate to
the true value as well as convergence of the system energy
to the desired energy level under the fundamental dynamics
assumption. The implications of the fundamental dynamics
approximation are evaluated in simulation. Noise affected
angle measurements simulate a realistic inverted pendulum
experiment. The successful swing-up into the highly nonlinear
regimes of the simple pendulum support the applicability of
the fundamental dynamics.

I. INTRODUCTION

Simple pendulums have been thoroughly studied. Their
nonlinear nature has turned them into an extensively used test
bed for linear as well as nonlinear control approaches. Next
to serving as a control theoretic test bed, simple pendulums
have been successfully used to approximate complex mech-
anisms. Examples are robotic walking [1], robotic brachi-
ation [2] or the manipulation of pendulum-like objects [3].
All examples mentioned share the need for energy control. In
order to reach stable limit cycles when the environment, e.g.
the ground, changes or the manipulated objects are unknown,
adaptive control approaches are needed. This motivates the
design of an adaptive energy-based swing-up controller for
simple pendulums of unknown dimensions in this paper.

In the literature, different swing-up controllers are found
for different types of pendulums. The cart driven simple
pendulum [4], the acrobot [5], the pendubot [6] and the
furuta pendulum [7] are pendulum variants with one under-
actuated degree of freedom. Our work focuses on cart driven
simple pendulums, a pendulum attached to a horizontally
moving pivot (see Fig. 1). Most swing-up controllers are
designed based on energy considerations. In [4], energy-
based controllers with minimal swing-up time for cart driven
simple pendulums are investigated with respect to the ratio
of maximum acceleration to gravity. However, only the
acceleration is considered. Examples for approaches that take
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Fig. 1. Simple pendulum under the influence of gravity g.

into account restricted pivot travel are e.g. [8], [9], [10].
Lozano et al. present a passivity based design of a swing-
up controller and show asymptotic stability of the inverted
pendulum at zero cart displacement [9]. The energy-based
controller by Yoshida injects energy into the pendulum by
excitation at its natural frequency, while obeying a restricted
pivot travel by means of a sinusoidal reference input with
low-pass properties [10].

Application of swing motion in robotics is motivated by an
increased workspace [11] as well as extended locomotion [2]
and manipulation capabilities [3]. Ape-like brachiation is
achieved in [2] by controlling a two-link robot to follow
certain target dynamics. For the swing-up problem the target
dynamics mimic a negatively damped simple pendulum.
Human-robot cooperative swinging of complex pendulum-
like objects is discussed in [3]. The pendulum-like object
is projected onto a simple pendulum. The energy of the
virtual simple pendulum is controlled based on the swing-up
controller presented in [10].

All the afore mentioned works are model-based. Only
few works on adaptive swing-up controllers exist. A fuzzy
controller with an adaptive mechanism to online adjust the
controller parameters is presented in [12]. The model-based
swing-up controller of [10] is combined with a reinforcement
learning algorithm in the context of human-robot object
swinging in [13]. The major drawback of the reinforcement
learning approach is the high number of tuning parameters.

The adaptive simple-pendulum swing-up controller dis-
cussed in this paper builds upon the same model-based
controller [10] as the reinforcement learning approach [13].
The main contribution of this work are the fundamental dy-
namics which approximate the simple pendulum dynamics.
The fundamental dynamics enable the design of a simple
adaptation mechanism for the natural frequency of the pendu-
lum and the adjustment of a control gain such that the system
energy follows desired reference dynamics. In contrast to the
reinforcement learning approach in [13], only two design
parameters are introduced by the adaptive control; namely
the gain of the reference dynamics and a time constant that



defines the speed of the natural frequency adaptation.
The remainder of this paper is organized as follows.

Section II recapitulates important simple pendulum basics,
describes the underlying model-based swing-up controller
and finishes with the problem statement for the adaptive
swing-up controller. The fundamental dynamics are derived
in Section III, based on which the adaptive controller includ-
ing stability analyses is developed in Section IV. Section V
investigates the interaction of the adaptive controller with a
simple pendulum in simulation. We draw our conclusions in
Section VI.

II. PROBLEM FORMULATION

In this section we first recapitulate important simple pen-
dulum basics (Section II-A). This is followed by a description
of the model-based controller by [10] in Section II-B. Based
on the knowledge of the underlying model-based controller,
the problem statement for the adaptive swing-up controller
is formulated in Section II-C.

A. Simple pendulum preliminaries

Figure 1 shows a simple pendulum, which consists of a
point mass m attached through a massless rod of length l to
a pivot located at r. The pendulum states xc =

(
ϑ ϑ̇

)T
are

influenced by horizontal acceleration of the pivot u = r̈. The
state space representation of a lossless simple pendulum is

ẋc =

(
ϑ̇

−ω2
0 sinϑ

)
+

(
0

− 1
gω

2
0 cosϑ

)
r̈, (1)

with gravity g and the small angle approximation of the
natural frequency ω0 =

√
g
l . The simple pendulum is

controllable via u = r̈ everywhere except for deflection
angles ϑ = ±π/2.

We define the energy Eϑ of the ϑ-oscillation to be the
energy of the simple pendulum for zero pivot velocity ṙ = 0

Eϑ := E|ṙ=0 =
1

2
ml2ϑ̇2 +mgl (1− cosϑ) . (2)

Differentiation of the energy Eϑ with respect to time and
insertion of the pendulum dynamics (1) leads to the energy
flow Ėϑ to the pendulum caused by the acceleration input r̈

Ėϑ = −mlϑ̇ cosϑr̈. (3)

Consequently, energy cannot be injected when the pendulum
is uncontrollable (ϑ = ±π/2) and at the turning points
(ϑ̇ = 0). Energy is most efficiently injected for maximum
angular velocities ϑ̇, which occur when the pendulum passes
the lower equilibrium point ϑ = 0.

The energy Eϑ can equivalently be expressed as the
amplitude ϑE of the ϑ-oscillation. The amplitude ϑE equals
the maximum deflection angle ϑ reached at the turning points

Eϑ
!
= mgl (1− cosϑE)

⇔ ϑE = arccos

(
1− Eϑ

mgl

)
(2)
= arccos

(
cosϑ− l

2g
ϑ̇2

)
. (4)

Note that ϑE ∈ [0, π], meaning that the energy of an inverted
pendulum is the maximum representable energy through ϑE ,
which suffices for our purposes. Throughout the rest of the
paper, we use the amplitude ϑE to refer to the system energy.

The natural frequency of the nonlinear simple pendulum
is not constant, but decreases with higher energy con-
tent ω(ϑE). No analytic solution exists for the natural fre-
quency, but it can be obtained numerically by the arithmetic-
geometric mean M

{
1, cos ϑE

2

}
[14]

ω = ω0M

{
1, cos

ϑE
2

}
ωa = ω0

1 + cos ϑE

2

2

ωg = ω0

√
cos

ϑE
2
, (5)

where ωa and ωg are the arithmetic and geometric mean
of
{

1, cos ϑE

2

}
multiplied by the small angle approximation

of the natural frequency ω0. The arithmetic and geometric
mean are the result of the first iteration of the arithmetic-
geometric mean M

{
1, cos ϑE

2

}
calculation and already rep-

resent good approximations for ω(ϑE): The maximum error
at ϑE = π

2 is 0.74 % for ωa and 0.76 % for ωg.
The nonlinearities of the simple pendulum are also visible

in its phase space. The left hand side of Fig. 2 shows the
phase portrait for two different constant energy levels ϑE =
{0.5π, 0.9π}. The inscribed phase angle ϕ is calculated as

ϕ = atan2

(
− ϑ̇

Ω
, ϑ

)
, (6)

with the variable Ω serving as a normalization factor. On the
right hand side of Fig. 2 the phase angle ϕ is plotted over
time for zero initial phase ϕ(t = 0) = 0 . Normalization
with the natural frequency Ω = ω leads to a circle-like phase
portrait for relatively low energy levels and consequently a
linearly rising phase angle

ϕ(t) ≈ ωt+ ϕ(t = 0). (7)

The higher the energy content of the simple pendulum, the
more apparent are the nonlinearities in the phase space as
well as in ϕ(t) (see Fig. 2). Normalization with the small
angle approximation Ω = ω0 leads to an increased deviation
from a circle-like phase portrait, especially for high energy
contents.

B. Model based swing-up controller

The adaptive control approach presented in this pa-
per builds upon the model-based swing-up controller by
Yoshida [10]. The following approximate control law cap-
tures the idea of the energy-based swing-up controller

r̈ ≈ aω2 sinϕ, (8)

where a is an amplitude factor, which we will later use
to specify the amount and direction of energy flow to the
pendulum. From the approximate relationship (7) we can
infer that the term sinϕ allows for a well-timed energy



−π 0 π

-4

0

4

ϑE = 0.9π

ϑE = 0.5π

(ϕ, ϑr)

sinϕ < 0

sinϕ > 0

ϑ [rad]

ϑ̇ Ω

0 2 4
0

4

8

12

ϑE = 0.5π

ϑE = 0.9π

t [s]

ϕ
[r
ad

]

Fig. 2. Phase portrait of a lossless simple pendulum (left) and the resulting
phase angle ϕ over time (right) for two different energy levels ϑE . Solid
lines indicate normalization with Ω = ω, dashed lines Ω = ω0.

injection, as it excites the pendulum close to its natural
frequency ω. In [10], the small angle approximation is
used for normalization Ω = ω0 within the phase angle ϕ
calculation (6).

We explain the influence of the amplitude factor a in
the following. According to (3), the energy flow is positive
if sgn(ϑ̇ cosϑ) = − sgn(r̈). For angles ϑ =] − π

2 ,
π
2 [,

cosϑ > 0 and further sgn(ϑ̇) = − sgn(sinϕ) (see Fig. 2).
Consequently, the approximate control law (8) with a positive
amplitude factor a > 0 leads to positive energy flow Ėϑ > 0,
whereas a negative amplitude factor a < 0 leads to negative
energy flow Ėϑ < 0.

The amplitude factor a is calculated based on a linear
mapping from the difference of the current energy Eϑ to the
desired energy Ed

ϑ saturated at ±ā

a =

{
ā sgn(Ed

ϑ − Eϑ) if k|Ed
ϑ − Eϑ| ≥ ā

k(Ed
ϑ − Eϑ) else, (9)

with k being a control gain which defines the slope of the
linear mapping. The saturation allows to specify workspace
boundaries. From (8) we can infer that the pivot trajectory
is approximately r ≈ −a sinϕ. Thus, the limits ±ā relate to
the maximum pivot amplitude r.

For energies ϑE higher than π
2 , periods of cosϑ < 0

occur which violate the sign condition. However, within these
periods energy flow |Ėϑ| is relatively low, allowing to use
the same control law also for desired energies ϑE > π

2 [10].
As explained in the previous section, the phase ϕ is only

approximately time linear. Consequently, the acceleration r̈
according to the approximate control law (8) does not only
contain the desired oscillation of frequency ω, but also
higher order harmonics, which disturb the sign condition.
In order to attenuate the higher harmonics and to be able
to obey a restricted workspace, Yoshida defines a reference
trajectory [10]

rd = − a

|G(jΩ)| sin(ϕ− ∠G(jΩ)), (10)

which is filtered by the second-order low-pass filter

G(s) =
r̈

rd
=

s2
(

Ω
cf

)2

s2 + 2ζ Ω
cf
s+

(
Ω
cf

)2 , (11)

with design parameters cf and ζ. The acceleration results
approximately in

r̈ ' a ω2 |G(jω)|
|G(jΩ)| sin(ϕ− ∠G(jΩ) + ∠G(jω))

≈ a ω2 sin(ϕ). (12)

The sinusoidal shape of the commanded robot accelera-
tion allows to compensate for the amplitude and phase
shift |G(jω)| and ∠G(jω) caused by the filter (11) at the
natural frequency ω, by using the approximated amplitude
and phase shift |G(jΩ)| and ∠G(jΩ) with Ω = ω0 within
the reference trajectory (10).

C. Problem statement for the adaptive swing-up controller

The energy-based swing-up controller by Yoshida requires
model knowledge. The objective of our work is to design
a swing-up controller that allows to control the energy of
simple pendulums with unknown length l and mass m. We
are looking for a control law

u = r̈ = f(xc)

s. t.
∣∣ϑE − ϑEm

∣∣ ≤ ε
with ϑ̇Em = Kd(ϑd

E − ϑEm), (13)

where ε defines bounds within which the system energy ϑE is
required to follow the first order reference dynamics of ϑEm.
We assume state feedback xc =

(
ϑ ϑ̇

)T
.

By the use of the amplitude ϑE instead of the energy Eϑ
as an energy equivalent (see (4)), the controller becomes
independent of mass m. The small angle approximation of
the natural frequency ω0 =

√
g
l is the only unknown model

parameter that has to be adapted.1 We further want to adapt
the control gain k of (9) such that the system energy ϑE
follows the reference dynamics of ϑEm.

III. FUNDAMENTAL DYNAMICS

In this section we transform the system states from carte-
sian to polar coordinates. The resultant state space repre-
sentation is simplified through approximations with Taylor
polynomials and negligence of higher harmonics. The result
are approximately decoupled system dynamics, based on
which we design an adaptive controller in Section IV.

A. Cartesian to polar state transformation

The dynamics (1) are highly coupled with respect to the
states xc =

(
ϑ ϑ̇

)T
. We add the index c to indicate that

the angle ϑ and angular velocity ϑ̇ represent the cartesian
coordinates in the phase space (see Fig. 2). A state trans-
formation to the phase of the oscillation ϕ and the energy

1Note that this can also be achieved for a simple pendulum with
distributed mass through normalization [4].



equivalent ϑE would ideally lead to decoupled states. This
refers to the expectation that the energy of the system is
independent of the phase of the oscillation. Insertion of (6)
solved for ϑ̇ into (4) yields

cosϑE = cosϑ− Ω2

2ω2
0

tan2 ϕ ϑ2. (14)

This relationship is, however, not analytically solvable for ϑ.
We circumvent this problem by using the radius of the phase
space ϑr to approximate the system energy ϑE

ϑr :=

√√√√ϑ2 +

(
ϑ̇

Ω

)2

. (15)

Note that ϑr approximates the energy ϑE , but is
superimposed by higher order oscillations, which
increase with higher energy content of the system
ϑr ≈ const ∀ Eϑ = const (see Fig. 2).

The phase ϕ and the radius ϑr span the new phase
space xp =

(
ϕ ϑr

)T
, with p indicating polar coordinates.

The cartesian states xc can be expressed as a function of the
polar states xp

ϑ = ϑr cosϕ

ϑ̇ = −ϑrΩ sinϕ. (16)

We obtain the dynamical equations for the polar states xp

in three steps: Differentiation of (6) and (15) with respect
to time, insertion of the cartesian state dynamics (1) and
substitution of the remaining cartesian states through polar
states (16)

ϕ̇ =
Ωϑ̇2 − Ωϑϑ̈

Ω2ϑ2 + ϑ̇2

(1)
=

Ωϑ̇2 + Ωω2
0ϑ sinϑ+ 1

gΩω2
0ϑ cosϑr̈

Ω2ϑ2 + ϑ̇2

(16)
= Ω sin2 ϕ+

ω2
0

Ωϑr
cosϕ sin(ϑr cosϕ)

+
ω2

0

gΩϑr
cosϕ cos(ϑr cosϕ)r̈, (17)

ϑ̇r =
Ω2ϑϑ̇+ ϑ̇ϑ̈

Ω
√

Ω2ϑ2 + ϑ̇2

(1)
=

Ω2ϑϑ̇− ω2
0ϑ̇ sinϑ− 1

gω
2
0ϑ̇ cosϑr̈

Ω
√

Ω2ϑ2 + ϑ̇2

(16)
= −Ωϑr sinϕ cosϕ+

ω2
0

Ω
sinϕ sin(ϑr cosϕ)

+
ω2

0

gΩ
sinϕ cos(ϑr cosϕ)r̈. (18)

The resultant state space representation is of the form

ẋp = fp(xp) + gp(xp)r̈ (19)

and still highly coupled.

B. Extraction of the fundamental dynamics

Insertion of the approximate control law (8) leads to a
modified state space representation with new input a

ẋp = fp(xp) + agp(xp)a. (20)

In the following we show that through the transformation
of the system input we obtain decoupled fundamental dynam-
ics. Our assumptions for the fundamental system behavior
are as follows:

• The phase ϕ is approximately time-linear ϕ̇ ≈ ω and
the influence of the actuation a on the phase is small.

• The energy flow ϑ̇E ≈ ϑ̇r is approximately equal to the
amplitude of the actuation a times a system dependent
factor B: ϑ̇r ≈ Ba and thus zero for no actuation a = 0.

In order to keep the error caused by the approximations
ϑE ≈ ϑr and ϕ̇ ≈ ω as small as possible, we use the
actual natural frequency for normalization of the phase
space Ω = ω (see Fig.2).

We simplify each term of the state space representation
in order to extract the fundamental dynamics through two
consecutive steps:
S1 Approximations through 3rd order Taylor polynomials,

e.g. sin(ϑr cosϕ) ≈ ϑr cosϕ− ϑ3
r cos3 ϕ

6
S2 Negligence of higher harmonics,

e.g. cos4 ϕ = 3
8 + cos 2ϕ

2 + cos 4ϕ
8 ≈ 3

8

1) Phase dynamics ϕ̇:

fp,1
Ω=ω
= ω sin2 ϕ+

ω2
0

ωϑr
cosϕ sin(ϑr cosϕ)

S1,S2≈ 1

2
ω +

1

2

ω2
0

ω

(
1− 1

2

(
ϑr
2

)2
)

S1−1

≈ 1

2
ω +

1

2

ω2
0

ω

(
cos

(
ϑr
2

))
ωg(5)
≈ ω, (21)

where “S1−1” indicates the reverse direction of a 3rd or-
der Taylor approximation. Application of the approximation
steps S1 and S2 to agp,1 lead to agp,1 ≈ 0. Consequently,
insertion of the geometric mean approximation (5) in the last
step in (21) results in the expected relationship ϕ̇ ≈ ω.

2) Energy dynamics ϑ̇r: Similar to agp,1, the approxi-
mation steps 1 and 2 result in fp,2 ≈ 0. The remaining
term agp,2 simplifies to

agϕ,2 =
ωω2

0

g
sin2 ϕ cos(ϑr cosϕ)

S1,S2≈ 1

2g
ωω2

0

(
1− 1

2

(
ϑr
2

)2
)

S1−1

≈ 1

2g
ωω2

0

(
cos

(
ϑr
2

))
ωg(5)
≈ 1

2g
ω3 =: B. (22)

Similar to (21), application of the inverse 3rd order Taylor
approximation and the insertion of the geometric mean



ϑ = ϑr cos(ωt)

ϑ̇ = −ϑrω sin(ωt)
atan2(− ϑ̇

ω̂ , ϑ)

Eq.(6)

ϕ s
1+Tωs

Eq.(24)
ω̂

Fig. 3. Block diagram of the ω-adaptation. Phase computation with
normalization factor Ω = ω̂.

approximation of the natural frequency ω of (5) lead to the
expected energy dynamics ϑ̇r ≈ Ba.

The decoupled fundamental simple pendulum dynamics
result in

ẋp =

(
ϕ̇

ϑ̇r

)
=

(
ω
Ba

)
with B =

1

2g
ω3 = const, (23)

and are used in Section IV to design an adaptive energy-
based swing-up controller. Note that for the fundamental
dynamics we make the assumption of a constant natural
frequency ω, and thus an harmonic oscillator. As the natural
frequency is an unknown system parameter that will be
adapted online, we are able to capture the nonlinear nature
of the simple pendulum to a certain extent.

IV. ADAPTIVE SWING-UP CONTROL

In this section we use the fundamental dynamics (23)
derived in the previous section to design an adaptive swing-
up controller. The natural frequency ω is the only unknown
system parameter and is adapted based on the phase ϕ. The
system parameter B follows from the fundamental dynamics
with the natural frequency estimate ω̂. Based on B, we adapt
a control gain k such that the system follows the reference
dynamics specified in the problem statement (13).

A. Adaptation of natural frequency ω

According to the fundamental dynamics, the unknown sys-
tem parameter ω equals the time derivative of the state ϕ. We
capture this simple relationship in our adaptation dynamics,
which additionally contain a first-order low-pass filter with
cut-off frequency 1

Tω

ω̂ =
s

1 + Tωs
ϕ. (24)

The block diagram in Fig. 3 illustrates how the ω-
adaptation is integrated into the swing-up controller. The
internal feedback of the natural frequency estimate ω̂ for
the computation of the phase ϕ requires a stability analysis.

We carry out the stability analysis of the ω-adaptation
based on the assumption that the fundamental dynamics
are valid. This implies that the system input ω is constant
(changes only slowly) and thus ϕ(t) = ωt + ϕ(t = 0).
Without loss of generality we assume ϕ(t = 0) = 0
in the following. Calculation of the phase ϕ using the
angle ϑ = ϑr cos(ωt), angular velocity ϑ̇ = −ϑrω sin(ωt)

and normalization factor Ω = ω̂ results in

ϕ = atan2

(
− ϑ̇
ω̂
, ϑ

)
= atan2

(
−ω
ω̂

sin(ωt), cos(ωt)
)
,

(25)
which is independent of the system energy ϑr. Thus, the
only input to the ω-adaptation system in Fig. 3 is the natural
frequency ω and the output is the estimate ω̂.

Transformation of the adaptation dynamics from frequency
domain (24) to time domain results in

˙̂ω = − 1

Tω
(ω̂ − ϕ̇). (26)

The time derivative of the phase ϕ (25) is

ϕ̇ =
ω
(

tan(ωt)
(
− 1
ω̂2

)
˙̂ω + 1+tan2(ωt)

ω̂ ω
)

1 +
(
ω
ω̂ tan(ωt)

)2 . (27)

Insertion of (27) into (26) and some rearrangements result
in the dynamics

˙̂ω =
ω̂ω2 − ω̂3

Tωω̂2 + Tωω2 tan2(ωt)− ω tan(ωt)
, (28)

for which stability has to be shown. We choose the Lyapunov
function

V =
1

2
(ω̂ − ω)

2 (29)

which leads through temporal differentiation to

V̇ =
−ω̂(ω̂ − ω)2(ω̂ + ω)

Tωω2 tan2(ωt)− ω tan(ωt) + Tωω̂2
. (30)

The enumerator of (30) is −ω̂(ω̂−ω)2(ω̂+ω) ≤ 0. The de-
nominator is a quadratic function of tan(ωt), where tan(ωt)
can take any values between ±∞. From the sign of the
multiplier of the quadratic term Tωω

2 > 0 we know that
the denominator with tan(ωt) = x forms a parabola which
opens up. Thus, a positive denominator is equivalent to a
negative discriminant D

D = ω2 − 4Tωω
2Tωω̂

2 < 0 ⇒ Tω >
1

2ω̂
. (31)

This constraint implies that the adaptation speed is limited.
Under the constraint (31), the time derivative of the Lya-
punov function is strictly negative V̇ < 0 subject to ω 6= ω̂.
This proves asymptotic stability of the ω-adaptation under
the assumption of the fundamental dynamics. For a linearly
oscillating pendulum, the estimate ω̂ converges to the actual
natural frequency ω.

B. Computation of control gain k

We reformulate the linear mapping (9) in terms of the
energy equivalent ϑd

r − ϑr

a =

{
ā sgn(ϑd

r − ϑr) if k|ϑd
r − ϑr| ≥ ā

k(ϑd
r − ϑr) else. (32)

The stability analysis of the proportional controller with
gain k in the following shows that under the fundamental



dynamics assumption we reach the desired energy level ϑd
r .

The Lyapunov function is

V =
1

2

(
ϑr − ϑd

r

)2
(33)

with time derivative

V̇ =

{
−Bā|ϑd

r − ϑr| if k|ϑd
r − ϑr| ≥ ā

−Bk(ϑd
r − ϑr)2 else. (34)

Consequently, V̇ < 0 subject to ϑr 6= ϑd
r and for all

k,B, ā > 0 the energy level ϑr = ϑd
r resembles a globally

asymptotically stable fixpoint2.
As stated in the problem formulation (13), the swing-up

process is supposed to not only reach the desired energy
level ϑd

r , but to behave as the first-order reference dynamics

ϑ̇rm = Kd

(
ϑd
r − ϑrm

)
, (35)

formulated here in terms of the phase space radius ϑr.
Off the saturation, we obtain the proportional controller
a = k

(
ϑd

r − ϑr

)
. Insertion of the fundamental dynamics (23)

yields

ϑ̇r = Bk
(
ϑd
r − ϑr

)
. (36)

Comparison of (35) and (36) leads to the require-
ment kB !

= Kd and thus the control gain

k =
Kd

B

(23)
=

2gKd

ω3
. (37)

Saturation of the controller means that tracking of the
first order reference dynamics requires an amplitude a that
violates the amplitude limits ±ā.

V. SIMULATION EXPERIMENT

The simple form of the fundamental dynamics derived
in Section III allows for the design of a stable adaptive
controller in Section IV. However, the fundamental dynamics
only approximate the behavior of a simple pendulum. In this
section, three simulation experiments are performed with the
purpose to analyze the controller behavior in interaction with
a simple pendulum:

1) Analysis of the ω-adaptation
2) Analysis of the follow-up behavior with respect to the

reference dynamics
3) Analysis of the complete controller under more re-

alistic circumstances and stabilization in the unstable
equilibrium

A. Simulation setup

The simulation experiments are performed using MAT-
LAB/Simulink. The first two simulation experiments use
the undamped simple pendulum (1). For the third sim-
ulation experiment we introduce viscous damping of
d = −∂ϑ̈

∂ϑ̇
= 0.1 1/s. The mass of the simple pendulum

is m = 0.5 kg. We choose the length such that the
small angle approximation of the natural frequency is

2In reality B ≥ 0. Asymptotic stability can still be shown for all initial
states except ϑr = 0 using e.g. LaSalle’s Invariance Principle [15].
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Fig. 4. Block diagram of the simulated system. For equations with
normalization factor Ω = ω̂.

ω0 =
√

g
l = 4 rad/s. The initial pendulum configuration is

ϑ(t = 0) = 2 ◦, ϑ̇(t = 0) = 0. The adaptive controller as
well as the original controller by [10] cannot start from the
lower equilibrium point. For ϑ(t = 0) = ϑ̇(t = 0) = 0, the
phase ϕ stays zero with the effect of zero acceleration r̈. In
experiments this problem can be circumvented, e.g. through
a controlled initial jerk in r̈.

The block diagram in Fig. 4 shows the entire system. The
natural frequency estimate ω̂ is input to the transformation
from cartesian xc to polar states xp, for the computation
of the fundamental dynamics constant B as well as for the
filter design and the reference trajectory rd. The controller
parameters that stay fixed for all simulation experiments are
Kd = 0.4 1/s, cf = 0.9 and ζ = 1.2.

Within the last simulation experiment, we show that the
presented adaptive controller can be used to inject energy into
the pendulum such that it reaches its unstable equilibrium.
The adaptive energy-based controller turns the upper equilib-
rium point into an unstable saddle point [4]. Consequently,
we need to switch to a linear controller to stabilize the
inverted pendulum. We apply an LQR controller based on the
linearized state space representation (1) around the unstable

equilibrium point x∗
c =

(
π 0

)
, with Q =

(
0.09 0

0 0.09

)
and R = 1. Note, as the focus of our work is on the
adaptive swing-up controller, we assume complete system
knowledge for the design of the stabilizing controller. We
switch from the swing-up controller to the LQR controller if
|2mgl − Eϑ| < 0.05 J or 1− cos(ϑ− π) < 0.09 as in [10].

B. Simulation results and discussion

1) Analysis of ω-adaptation: Figure 5 shows the sim-
ulation results for three different filter time constants Tω
of the ω-adaptation (24). We obtain accurate values for
the natural frequency ω = ωM4 from the 4th iteration of
the arithmetic-geometric mean computation [14]. The initial
value of the natural frequency estimate is ω̂(t = 0) = 1 rad/s.
The lossless simple pendulum is actuated with a constant
amplitude factor a = 0.04 m. Despite the constant amplitude,
the pendulum swing-up is slightly affected by the adaptation
process, as the estimated natural frequency defines the cut-off
frequency of the second-order low-pass filter (11).



0

2

4

b)

ω
[r
a
d /

s]

0 4 8 12 16 20
0

2

4

c)

t [s]

ω
[r
a
d /

s]

0

2

4

a)

ω
[r
a
d /

s]

ω̂ ωM4

Fig. 5. Analysis of ω-adaptation: Natural frequency ω and its estimate ω̂
for a) Tω = 2 s, b) Tω = 0.2 s and c) Tω = 0.17 s of a lossless simple
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The constant actuation increases the system energy over
time with the effect of a decreasing natural frequency ω
(see Fig. 5). We observe adaptation to the decreasing natural
frequency ω for all three time constants Tω . The adaptation
process is faster for lower time constants Tω , with insta-
bilities visible for Tω = 0.17 s. Lower time constants Tω
and higher energy levels lead to increased oscillations of the
estimate ω̂ around the actual natural frequency.

Discussion: The high frequent oscillations for the low-
est time constant Tω strengthen our result in Section IV-
A that the adaptation speed is limited. According to the
stability analysis, the theoretical constraint is Tω > 1

2ω̂ .
The natural frequency estimate during the simulation ranges
from ω̂ = [1, 5]rad/s. Consequently, we expect stable system
behavior for time constants Tω > 0.5 s. Note that the
constraint found based on Lyapunov theory might be conser-
vative, also for the dynamics (28) found based on the fun-
damental dynamics. Simulations with the simple pendulum
show first small regions of unstable behavior for Tω ≤ 0.17 s.
The fact that the stability bound found in simulation is
close to the theoretically found stability bound, supports
the fundamental dynamics approximation. The oscillations
around the actual value of the natural frequency ω show
the limitations of the fundamental dynamics approximation.
With increasing energy content the nonlinearities of the
simple pendulum become more apparent and the funda-
mental dynamics approximation less accurate. Lower time
constants Tω attenuate the erroneous oscillations in ω̂. Thus,
the time constant Tω can be used to find a compromise
between fast adaptation and sufficient filtering.

2) Analysis of follow-up behavior: The second simula-
tion experiment investigates how well the reference dynam-
ics ϑrm are followed by the system energy ϑE . For this pur-
pose, we replace the ω-adaptation with the accurate results
of the arithmetic-geometric mean computation ωM4. We set
the desired energy to ϑd

E = 120 ◦. Figure 6 shows the sim-
ulation results for two different amplitude limits ā = 0.1 m
and ā = 1 m. For the higher limit ā, the amplitude a does not
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Fig. 6. Analysis of follow-up behavior: Angle ϑ, desired energy ϑd
E ,

reference dynamics ϑrm and energy equivalents ϑE and ϑr of a lossless
simple pendulum with accurate ω estimates for amplitude limits a) ā = 1 m
and b) ā = 0.1 m.

saturate (a < 0.25 m) with the effect that the energy equiva-
lents ϑE and ϑr closely track the reference ϑrm. Saturation
of the amplitude a, as it occurs for the lower limit ā, prohibits
a swing-up equally fast as the reference ϑrm. During the
swing-up, the phase space radius ϑr is almost equal to the
accurate energy equivalent ϑE . While the accurate energy
equivalent ϑE shows that the system energy converges to
the desired energy level ϑd

E , we observe oscillations of the
energy approximation ϑr during the energetic steady state.

Discussion: The close tracking of the reference dynamics
ϑrm for an unrestricted amplitude a and a lossless simple
pendulum with accurate ω estimates shows that the en-
ergy dynamics are well approximated by the fundamental
dynamics ϑ̇r = Ba. The oscillations of the phase space
radius ϑr expose the nonlinearities of the simple pendulum,
which are more apparent for higher energy contents and
are not perfectly captured by the fundamental dynamics.
During swing-up, the phase portrait of the simple pendulum
is more circle-like with the result of ϑr ≈ ϑE also for higher
energies than shown in Fig. 6. During steady state, the phase
portrait is less circle-like which becomes visible in higher
deviations of ϑr from ϑE . Figure 6 shows that despite of
the inaccuracies of ϑr during the steady state, the system
energy ϑE closely tracks the desired energy level ϑd

E .
3) Inverted pendulum experiment: For the third simula-

tion experiment, we choose a more realistic setting. Instead
of assuming full state-feedback, only noisy angle measure-
ments ϑn are available. A normally distributed random signal
of frequency 1 kHz with variance 5 ◦ and zero mean serves
as the noise. We filter the noisy angle measurements ϑn

with a 8th-order low-pass butterworth filter with cut-off
frequency 50 rad/s. Numerical differentiation of the filtered
angle measurements ϑnF lead to estimates of the angular
velocity ϑ̇nF. We set the desired energy level to the energy
of the unstable equilibrium ϑd

E = π. The ω-estimation
starts from an initial value of ω̂(t = 0) = 7 rad/s with
time constant Tω = 0.5 s. The amplitude factor is limited
by ā = 0.2 m.

Figure 7 shows the swing-up to and the stabilization
at the unstable equilibrium. The simple pendulum follows
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the reference dynamics with a clear delay, but reaches the
region of the stabilizing LQR controller slightly after 10 s
(dashed vertical line in Fig. 7). The noise added to the angle
measurements with the subsequent filtering and numerical
time differentiation leads to a disturbed angular velocity ϑ̇nF,
subject to a clear phase shift with respect to the true angular
velocity ϑ̇. The disturbed states ϑnF and ϑ̇nF affect the
energy approximations ϑE and ϑr. The natural frequency
estimate ω̂ smoothly approaches but does not reach the actual
natural frequency ω. The amplitude a stays within the limits
ā except for short periods of time around 9 s (not displayed)
and the trajectory r does not exceed ±0.23 m.

Discussion: The simulation demonstrates successful
swing-up to the unstable equilibrium, close to which an LQR
controller stabilizes the pendulum. The noise added to the
angle measurement ϑ clearly affects the energy estimates.
Furthermore, we initialized the ω-estimation far away from
its actual initial value. The initialization of the ω-adaptation
as well as the disturbed states ϑr and ϕ cause the delay
with respect to the reference dynamics ϑrm. Nevertheless,
the adaptive controller successfully injects energy into the
pendulum, such that the pendulum reaches high energy
levels and consequently the highly nonlinear regime. The
performance of the adaptive controller in this more realistic
setting supports the applicability of the fundamental dynam-
ics approximation.

VI. CONCLUSION

In this work, we design an adaptive energy-based swing-
up controller. A state transformation allows us to approxi-
mate the nonlinear simple pendulum dynamics in a simple
decoupled fashion, the fundamental dynamics. Based on
the fundamental dynamics, the natural frequency is adapted
and reference dynamics are tracked. Convergence to the
natural frequency and to the desired energy level are shown

under the fundamental dynamics assumption. The interac-
tion of the adaptive controller with a simple pendulum is
investigated through simulation experiments. We verify the
theoretically obtained stability bounds in simulation. Good
tracking performance of the desired reference dynamics
further supports the fundamental dynamics approximation. A
controlled swing-up to the unstable equilibrium point based
on noisy angle measurements indicates the applicability
of the adaptive controller to real-world inverted pendulum
experiments. In future work we plan to apply the approach
to the manipulation of unknown complex pendulum-like
objects.
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