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Abstract— We consider the problem of planning trajectories
for a group of N vehicles, each aiming to reach its own
target set while avoiding danger zones of other vehicles. The
analysis of problems like this is extremely important practically,
especially given the growing interest in utilizing unmanned
aircraft systems for civil purposes. The direct solution of this
problem by solving a single-obstacle Hamilton-Jacobi-Isaacs
(HJI) variational inequality (VI) is numerically intractable
due to the exponential scaling of computation complexity with
problem dimensionality. Furthermore, the single-obstacle HJI
VI cannot directly handle situations in which vehicles do not
have a common scheduled arrival time. Instead, we perform
sequential path planning by considering vehicles in order
of priority, modeling higher-priority vehicles as time-varying
obstacles for lower-priority vehicles. To do this, we solve a
double-obstacle HJI VI which allows us to obtain the reach-
avoid set, defined as the set of states from which a vehicle
can reach its target while staying within a time-varying state
constraint set. From the solution of the double-obstacle HJI VI,
we can also extract the latest start time and the optimal control
for each vehicle. This is a first application of the double-obstacle
HJI VI which can handle systems with time-varying dynamics,
target sets, and state constraint sets, and results in computation
complexity that scales linearly, as opposed to exponentially, with
the number of vehicles in consideration.

I. INTRODUCTION

Consider a group of autonomous vehicles trying to per-
form a task or reach a goal which may be time-varying in
their joint state space, while avoiding obstacles and other
vehicles. Providing safety and performance guarantees for
such a multi-agent autonomous system (MAAS) is very
relevant practically: Recently, there has been a growing
interest in using unmanned aerial vehicles (UAVs) for civil
applications, as companies like Amazon and Google are
looking in the near future to send UAVs into the airspace
to deliver packages [1], [2]. Government agencies such as
the Federal Aviation Administration (FAA) and National
Aeronautics and Space Administration (NASA) of the United
States are also expressing growing interest in analyzing these
problems in order to prevent airspace conflicts that could
arise with the introduction of potentially many UAVs in an
urban environment [3]. In addition, UAVs can be used not
only to deliver packages quickly, but in any situation where
fast response is desired. For example, UAVs can provide
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emergency supplies to disaster-struck areas that are otherwise
difficult to reach [4].

In general, MAASs are difficult to analyze due to their
inherent high dimensionality. MAASs also often involve
aspects of cooperation and asymmetric goals among the
vehicles or teams of vehicles, making their analysis particu-
larly interesting. MAASs have been explored extensively in
the literature. Some researchers have done work on multi-
vehicle path planning in the presence of other unknown
vehicles or moving entities with assumptions on their specific
control strategies [5]. In a number of formulations for safe
multi-vehicle navigation, these assumed strategies induce
velocity obstacles that vehicles must avoid to maintain safety
[6], [7]. Researchers have also used potential functions to
perform collision avoidance while maintaining formation
given a predefined trajectory [8], [9]. However, these bodies
of work have not considered trajectory planning and collision
avoidance simultaneously.

One well-known technique for optimal trajectory planning
under disturbances or adversaries is reachability analysis, in
which one computes the reach-avoid set, defined as the set
of states from which the system can reach a target set while
remaining within a state constraint set for all time. For reach-
ability of systems of up to five dimensions, single-obstacle
Hamilton-Jacobi-Isaacs (HJI) variational inequalities (VI)
[10], [11] have been used in situations where obstacles and
target sets are static. Another HJI VI formulation [12] is able
to handle problems with moving target sets with no obstacles.

A major practical appeal of the above approaches stems
from the availability of modern numerical tools such as [10],
[13], [14], [15], which can efficiently solve HJI equations
when the problem dimension is low. These numerical tools
have been successfully used to solve a variety of differ-
ential games, path planning problems, and optimal control
problems[10], [16], [17]. Despite the power of the previous
HJI formulations, the approaches become numerically in-
tractable very quickly as the number of vehicles in the system
is increased. This is because the numerical computations are
done on a grid in the joint state space of the system, resulting
in an exponential scaling of computation complexity with
respect to the dimensionality of the problem. Furthermore,
state constraint sets, while useful for modeling unsafe vehicle
configurations, are required to be time-invariant in [10],
[11], [18]. To solve problems involving time-varying state
constraints, [19] proposed to augment the state space with
time; however, this process introduces an extra state space
dimension, resulting in added computation complexity.

Recently, [20] presented a double-obstacle HJI VI which
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handles problems in which the dynamics, target sets, and
state constraint sets are all time-varying, and provided a nu-
merical implementation based on well-known schemes. The
formulation does not introduce any additional computation
overhead compared to the above-mentioned techniques, yet
it still maintains the same guarantees on the system’s safety
and performance. In this paper, we provide a first application
of the theory presented in [20]. As a point of clarification,
“obstacles” in the context of HJI VIs refer to the effective
constraints in the HJI VI, while obstacles in the state space
represent physical obstacles that vehicles must avoid.

Our contributions are as follows. First, we formulate
a multi-vehicle collision avoidance problem involving N
autonomous vehicles. Each vehicle seeks to get to its own
target sets while avoiding obstacles and collision with all
other vehicles. To reduce the problem complexity to make
the problem tractable, we assign a priority to each vehicle,
and model higher-priority vehicles as time-varying obstacles
that need to be avoided. We then utilize the double-obstacle
HJI VI proposed in [20] to compute reach-avoid sets to plan
trajectories for vehicles in order of priority. This way, we
are able to offer a tractable solution that scales linearly, as
opposed to exponentially, with the number of vehicles. We
demonstrate the scalability of our approach in a four-vehicle
system.

II. PROBLEM FORMULATION

Consider N vehicles Pi, i = 1 . . . , N , each trying to reach
one of N target sets Ti, i = 1 . . . , N , while avoiding obsta-
cles and collision with each other. Each vehicle i has states
xi ∈ Rni and travels on a domain Ω = Ωobs ∪ Ωfree ∈ Rp,
where Ωobs represents the obstacles that each vehicle must
avoid, and Ωfree represents all other states in the domain
on which vehicles can move. Each vehicle i = 1, 2, . . . , N
moves with the following dynamics for t ∈ [tEST

i , tSTA
i ]:

ẋi = fi(t,xi,ui), xi(t
LST
i ) = x0

i (1)

where x0
i represents the initial condition of vehicle i, and

ui(·) represents the control function of vehicle i. In general,
fi(·, ·, ·) depends on the specific dynamic model of vehicle i,
and need not be of the same form across different vehicles.
Denote pi ∈ Rp the subset of the states that represent the
position of the vehicle. Given p0

i ∈ Ωfree, we define the
admissible control function set for Pi to be the set of all
control functions such that pi(t) ∈ Ωfree∀t ≥ tLST

i . Denote
the joint state space of all vehicles x ∈ Rn where n =

∑
i ni,

and their joint control u.
We assume that the control functions ui(·) are drawn from

the set Ui := {ui : [tEST
i , tSTA

i ] → Ui,measurable1} where
Ui ∈ Rnu

i is the set of allowed control inputs. Furthermore,
we assume fi(t,xi,ui) is bounded, Lipschitz continuous
in xi for any fixed t,ui, and measurable in t,ui for each

1 A function f : X → Y between two measurable spaces (X,ΣX)
and (Y,ΣY ) is said to be measurable if the preimage of a measurable set
in Y is a measurable set in X , that is: ∀V ∈ ΣY , f

−1(V ) ∈ ΣX , with
ΣX ,ΣY σ-algebras on X ,Y .

Obstacle
Targets
Vehicle
Danger zone

Ω

𝜕Ω

𝒯1

𝒯3

𝒯2

𝑃1

𝑃2

𝑃3

Ω𝑜𝑏𝑠

𝑅𝐶

Fig. 1: An illustration of the problem formulation with three
vehicles. Each vehicle Pi seeks to reach its target set Ti by
time t = tSTA

i , while avoiding physical obstacles Ωobs and
the danger zones of other vehicles.

xi. Therefore given any initial state x0
i and any control

function ui(·), there exists a unique, continuous trajectory
xi(·) solving (1) [21].

The goal of each vehicle i is to arrive at Ti ⊂ Rni

at or before some scheduled time of arrival (STA) tSTA
i in

minimum time, while avoiding obstacles and danger with all
other vehicles. The target sets Ti can be used to represent
desired kinematic quantities such as position and velocity
and, in the case of non-holonomic systems, quantities such
as heading angle. tEST

i can be interpreted as the earliest start
time (EST) of vehicle i, before which the vehicle may not
depart from its initial state. Further, we define tLST

i , the latest
(acceptable) start time (LST) for vehicle i. Our problem can
now be thought of as determining the LST tLST

i for each
vehicle to get to Ti at or before the STA tSTA

i , and finding
a control to do this safely. If the LST is before the EST
tLST
i < tEST

i , then it is infeasible for vehicle i to arrive at
Ti at or before the STA tSTA

i . Comparing tLST
i and tEST

i is
feasibility problem that may arise in practice; however, for
simplicity of presentation, we will assume that tEST

i ≤ tLST
i ∀i.

Danger is described by sets Dij(xj) ⊂ Ω. In general, the
definition of Dij depends on the conditions under which ve-
hicles i and j are considered to be in an unsafe configuration,
given the state of vehicle j. Here, we define danger to be
the situation in which the two vehicles come within a certain
radius RC of each other: Dij(xj) = {xi : ‖pi − pj‖2 ≤
RC}. Such a danger zone is also used by the FAA [22]. An
illustration of the problem setup is shown in Figure 1.

In general, the above problem must be analyzed in the joint
state space of all vehicles, making the solution intractable.
In this paper, we will instead consider the problem of
performing path planning of the vehicles in a sequential
manner. Without loss of generality, we consider the problem
of first fixing i = 1 and determining the optimal control for
vehicle 1, the vehicle with the highest priority. The resulting
optimal control u1 sends vehicle 1 to T1 in minimum time.

Then, we plan the minimum time trajectory for each of
the vehicles 2, . . . , N , in decreasing order of priority, given



the previously-determined trajectories for higher-priority ve-
hicles 1, . . . , i − 1. We assume that all vehicles have com-
plete information about the states and trajectories of higher-
priority vehicles, and that all vehicles adhere to their planned
trajectories. Thus, in planning its trajectory, vehicle i treats
higher-priority vehicles as known time-varying obstacles.

With the above sequential path planning (SPP) protocol
and assumptions, our problem now reduces to the following
for vehicle i. Given xj(·), j = 1, . . . , i− 1, determine ui(·)
that maximizes tLST

i and such that xi(τ) ∈ Ti, τ ≤ tSTA
i .

III. SOLUTION VIA DOUBLE-OBSTACLE HJI VI AND SPP
One direct way of solving the problem formulated in Sec-

tion II is by solving a single-obstacle HJI VI [10], [11], [23],
[24]. In this approach, one considers the joint time-invariant
dynamics of the entire system, f(x,u), and defines the static
goal set and the static avoid set in the joint state space of all
vehicles. The goal set encodes the joint states representing all
vehicles being at their target sets, and the avoid set encodes
the joint states representing all unsafe configurations. These
sets are defined as sub-zero level sets of appropriate implicit
surface functions s(x) where x ∈ S ⇔ s(x) ≤ 0. Having
defined the implicit surface functions, the HJI VI (2) is then
solved backwards in time with the implicit surface function
representing the terminal set l(x) as the initial condition and
the implicit surface function representing the avoid set a(x)
as an effective constraint:

max
{
DtV + min [0, H (x, DxV )] ,−a(x)− V (x, t)

}
= 0,

V (x, 0) = l(x)
(2)

with the optimal Hamiltonian H (x, p) = minu∈U p·f(x,u).
The solution V (x, t) is the implicit surface function rep-

resenting the reach-avoid set RA(t), which defines the set
of states from which the system has a control to drive the
state at time t to the goal set L at time 0 while staying out
of the avoid set A at all times. Note that the joint dynamics,
goal set, and avoid set must be time-invariant. Time-varying
dynamics and sets can be treated by augmenting the state
space with time as an auxiliary state [19]; however, this state
augmentation comes at a large computational expense.

The direct solution described above has been successfully
used to solve a number of problems involving up to a pair
of vehicles [10], [16], [17], [25]. However, since numerical
methods for solving a PDE or a VI involve gridding up the
state space, the computation complexity scales exponentially
with the number of dimensions in the joint state. This
makes the single-obstacle HJI VI inapplicable for problems
involving three or more vehicles. Therefore, instead of
solving a single-obstacle HJI VI in the joint state space in
Rn = R

∑
i ni , we will consider the problem in in Rni and

solve a sequence of double-obstacle HJI VIs introduced in
[20]. By doing so, we take advantage of the fact that time-
varying targets, obstacles, and dynamics can be handled by
the double-obstacle HJI VIs (but not by the single-obstacle
HJI VI without incurring significant computational expense),
making the analysis of the problem tractable. Furthermore,

even if the dimensionality of the problem is sufficiently low
for computing a numerical solution to the single-obstacle HJI
VI, its inability to handle time-varying systems would still
limit us to only consider problems in which the required time
of arrival is common across all vehicles: tSTA

i = tSTA ∀i.
We first describe the framework for computing reach-avoid

sets with arbitrary terrain, domain, moving obstacles, and
moving target sets based on [20]. As with the single-obstacle
HJI VI, sets are defined as sub-zero level sets of implicit
surface functions; however, crucially, these implicit surface
functions can be time-varying in the double-obstacle HJI VI
without increasing computational complexity. Being able to
compute reach-avoid sets with moving obstacles allows us to
overcome the computational intractability described above
by sequentially performing path planning for one vehicle
at a time in order of priority, while treating higher-priority
vehicles as moving obstacles. The target set is defined in the
same way as in the single-obstacle HJI VI; the avoid set is by
convention defined as the complement of the state constraint
set in the double-obstacle HJI VI.

A. Reachability via HJI VI

We first state the result given in [20], and then specialize
the result to the problem formulation given in Section II.
Consider a general nonlinear system describing the state
evolution of two players in a differential game for t ∈ [0, T ].

ẋ(t) = f(t, x, u, d), x(0) = x (3)

where x is the joint state, u is the control input for player 1,
and d is the control input for player 2. Their joint dynamics f
is assumed to be bounded, Lipschitz continuous in x for any
fixed u, d and t, and measurable in t, u, d for each x. Given
control functions u(·), d(·), there exists a unique trajectory
φu,dx ((τ), τ) [21]. Player 1 wishes to minimize, and player 2
wishes to maximize the following cost functional:

V
(
t, x, u(·), d(·)

)
= min
τ∈[t,T ]

max
{
l(φu,dx(0)(τ), τ), max

s∈[t,τ ]
g(φu,dx(0)(s), s)

}
(4)

The value of the game is thus given by

V (x, t) := sup
δ[u](·)

inf
u(·)
V
(
t, x, u(·), δ[u](·)

)
(5)

where player 2 chooses a nonanticipative strategy d(·) =
δ[u](·), under which the control signal d(t) is chosen in
response to player 1’s control function up to time t, u(τ), τ ≤
t [18]. The value of the game characterizes reach-avoid set,
or all the states from which player 1 can reach the target L
encoded by the implicit surface function l(x, t), while staying
within some state constraint set G encoded by the implicit
surface function g(x, t), despite the adversarial actions of
player 2. The value function is the unique viscosity solution
[26] to the following single-obstacle HJI VI [20]:



max
{

min
{
DtV +H (x,DxV, t) , l(x, t)− V (x, t)

}
g(x, t)− V (x, t)

}
= 0, t ∈ [0, T ], x ∈ Rn

V (x, T ) = max
{
l(x, T ), g(x, T )

}
, x ∈ Rn

(6)

The proof is given in [20] and is based on viscosity
solution theory [27], [28].

Now consider the system with dynamics given by (1).
Given a time-varying target set Ti(t) and obstacle Ai(t) that
vehicle i must avoid, we define implicit surface functions
l(xi, t), g(xi, t) such that xi ∈ Ti(t) ⇔ li(xi, t) ≤ 0,xi /∈
Ai(t) ⇔ gi(x, t) ≤ 0. Now, the problem formulated in
Section II becomes one in which vehicle i chooses a control
function ui(·) to minimize the following cost functional:

Vi
(
t,xi,ui(·)

)
= min
τ∈[t,T ]

max
{
li(xi(τ), τ), max

s∈[t,τ ]
gi(xi(s), s)

} (7)

Note here, we have an optimal control problem involving
only one vehicle and no adversary (given gi(xi(s), s)),
unlike in the case of the HJI VI (6). Now, specializing
(6) to our optimal control problem, the value function that
characterizes the reach-avoid set RAi(t) is Vi(xi, t), where
xi ∈ RAi(t) ⇔ Vi(xi, t) ≤ 0. Vi(xi, t) is the viscosity
solution [26] of the HJI VI

max
{

min{DtVi +Hi (xi, Dxi
Vi, t) , li(xi, t)− Vi(xi, t)}

gi(xi, t)− Vi(xi, t)
}

= 0, t ∈ [tEST
i , tSTA

i ],xi ∈ Rni

Vi(xi, t
STA
i ) = max

{
li(xi, t

STA
i ), gi(xi, t

STA
i )

}
,xi ∈ Rni

(8)
where the Hamiltonian Hi(t,xi, p) and optimal control ui
are given by

Hi(t,xi, p) = min
ui∈Ui

p · fi(t,xi,ui)

u∗i = arg min
ui

Hi(t,xi, p)
(9)

B. Sequential Path Planning

In order to use (8) to perform SPP, we first define
the moving obstacles induced by higher-priority vehicles.
Specifically, for vehicle i, we define the moving obstacles
Oij(t) induced by vehicles j = 1, . . . , i−1, given their known
trajectories xj(·), to be Oij(t) := {xi : pi ∈ Dij(xj(t)).

Each vehicle i must avoid being in Oij(t) for each j =
1, . . . , i − 1 and for all time t, as well as avoid being in
static obstacles Ωobs in the domain. Therefore, for the ith

vehicle, we compute the reach-avoid set with the following
time-varying avoid set Ai(t) and goal set Li(t):

Ai(t) := {xi : pi ∈ Ωobs} ∪
( ⋃
j=1,...,i−1

Oij(t)
)

Li(t) := Ti, t ≤ tSTA
i

(10)

The goal set is represented by the implicit surface function
li(x, t), where li(xi, t) ≤ 0 ⇔ xi(t) ∈ Li(t). The state

constraint set in the HJI VI is defined as the complement
of the avoid set, Aci (t), and is represented by the implicit
surface function g(xi, t), where g(xi, t) ≤ 0⇔ xi /∈ Ai(t).
For both li(xi, t) and g(xi, t), we use the signed distance
function (in xi) to the sets Li(t) and Aci (t), respectively.

Now, we can solve the double-obstacle HJI VI (8). The
solution V (xi, t) represents the reach-avoid set RA(t):
V (xi, t) ≤ 0 ⇔ xi(t) ∈ RA(t). RA(t) is the set of states
at starting time t from which vehicle i can arrive at Ti at or
before time tSTA

i while avoiding obstacles and danger zones
of all higher-priority vehicles j = 1, . . . , i− 1.

Alternatively, given an initial state x0
i , we can solve (8)

to some tLST
i = inf{t : x0

i ∈ RA(t)}. This represents the
latest time that vehicle i must depart from its initial position
in order to reach Ti while avoiding obstacles and all danger
zones of higher-priority vehicles j = 1, . . . , i− 1.

The optimal control is given by

ui(t) = arg minHi (t,DxiV (xi, t), V (xi, t)) (11)

Observe that since each vehicle i is guaranteed to be safe
with respect to higher priority vehicles j = 1, . . . , i− 1, the
safety of all vehicles, including lower-priority vehicles, can
also be guaranteed.

IV. RESULTS: FOUR VEHICLES WITH CONSTRAINED
TURN RATE

Consider four vehicles with states xi = [xi, yi, θi]
> mod-

eled using a horizontal kinematics model with the following
dynamics for t ∈ [tEST

i , tSTA
i ], i = 1, 2, 3, 4:

ẋi = vi cos(θi)

ẏi = vi sin(θi) xi(t
EST
i ) = x0

i

θ̇i = ωi |ωi| ≤ ω̄i

(12)

where (xi, yi) is the position of vehicle i, θi is the heading
of vehicle i, and vi is the speed of vehicle i. The control
input ui of vehicle i is the turning rate ωi, whose absolute
value is bounded by ω̄i. For illustration, we chose ω̄i = 1∀i
and assume vi = 1 is constant; however, our method can
easily handle the case in which ω̄i differ across vehicles and
vi is a control input. Optimizing the Hamiltonian associated
with vehicle i, Hi(t,DxiVi(xi, t), Vi(xi, t)), we can obtain
the optimal control

ωi(t) = −ω̄i
DθiVi(xi, t)

|DθiVi(xi, t)|
(13)

The vehicles have initial conditions and STA as follows:

x0
1 = (−0.5, 0, 0), tSTA

1 = 0

x0
2 = (0.5, 0, π), tSTA

2 = 0.2

x0
3 = (−0.6, 0.6, 7π/4) , tSTA

3 = 0.4

x0
4 = (0.6, 0.6, 5π/4) , tSTA

4 = 0.6

(14)

The target sets Ti of the vehicles are all 4 circles of
radius 0.1 in the domain. The centers of the target sets are at
(0.7, 0.2), (−0.7, 0.2), (0.7,−0.7), (−0.7,−0.7) for vehicles
i = 1, 2, 3, 4, respectively. The obstacles are rectangles near



Initial Setup
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Position/Heading 4
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Fig. 2: Initial configuration of the four-vehicle example.

the middle of the domain. The setup for this example is
shown in Figure 2.

The joint state space of this system is twelve-dimensional,
intractable for analysis using the single-obstacle HJI VI (2).
Therefore, we will repeatedly solve the double-obstacle HJI
VI (8) to compute the reach-avoid sets from targets Ti
for vehicles 1, 2, 3, 4, in that order, with moving obstacles
induced by vehicles j = 1, . . . , i − 1. We will also obtain
tLST
i , i = 1, 2, 3, 4, the LSTs for each vehicle in order to

reach Ti by tSTA
i .

Figures 3, 4, and 5 show the results. Since the state space
of each vehicle is 3D, the reach-avoid set is also 3D. To
visualize the results, we slice the reach-avoid sets at the
initial heading angles θ0i . Figure 3 shows the 2D reach-avoid
set slices for each vehicle at its LSTs tLST

1 = −1.12, tLST
2 =

−0.94, tLST
3 = −1.48, tLST

4 = −1.44 determined from our
method. The obstacles in the domain Ωobs and the obstacles
induced by other vehicles inhibit the evolution of the reach-
avoid sets, carving out thin “channels” that separate the
reach-avoid set into different “islands”. One can see how
these channels and islands form by examining the time
evolution of the reach-avoid set, shown in Figure 4 for
vehicle 3.

Finally, Figure 5 shows the resulting trajectories of the
four vehicles. The subplot labeled t = −0.55 shows all four
vehicles in close proximity without collision: each vehicle is
outside of the danger zone of all other vehicles. The actual
arrival times of vehicles i = 1, 2, 3, 4 are 0, 0.19, 0.34, 0.31,
respectively. It is interesting to note that for some vehicles,
the actual arrival times are earlier than the STAs tSTA

i , i =
1, 2, 3, 4. This is because in order to arrive at the target by
tSTA
i , these vehicles must depart early enough to avoid major

delays resulting from the induced obstacles of other vehicles;
these delays would have lead to a late arrival if vehicle i
departed after tLST

i .

V. CONCLUSION

We have presented a problem formulation that allows us
to consider the multi-vehicle trajectory planning problem in
a tractable way by planning trajectories for vehicles in order
of priority. In order to do this, we modeled higher-priority
vehicles as time-varying obstacles. We then solved a double-
obstacle HJI VI to obtain the reach-avoid set for each vehicle.
The reach-avoid set characterizes the region from which each

Vehicle 1, t=t
i

1
=-1.12

-1 0 1
-1

-0.5

0

0.5

1

Vehicle 2, t=t
i

2
=-0.94

-1 0 1
-1

-0.5

0

0.5

1

Vehicle 3, t=t
i

3
=-1.48

-1 0 1
-1

-0.5

0

0.5

1

Vehicle 4, t=t
i

4
=-1.44

-1 0 1
-1

-0.5

0

0.5

1

Obstacle

Targets

Initial pos. and heading

Reach-avoid set

Danger zones

Fig. 3: Reach-avoid sets at t = tLST
i for vehicles 1, 2, 3, 4,

sliced at initial headings θ0i . Black arrows indicate direction
of obstacle motion. Due to the turn rate constraint, the
presence of static obstacles Ωobs and time-varying obstacles
induced by higher-priority vehicles Oij(t) carves “channels”
in the reach-avoid set, dividing it up into multiple “islands”.

vehicle is guaranteed to arrive at its target within a time
horizon, while avoiding collision with obstacles and higher-
priority vehicles. The solution also gives each vehicle a latest
start time as well as the optimal control which guarantees that
each vehicle safely reaches its target on time.
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