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Abstract—1In this paper, a novel optimality-tracking algo-
rithm for solving Economic Nonlinear Model Predictive Control
(ENMPC) problems in real-time is presented. Developing online
schemes for ENMPC is challenging, since it is unclear how
convexity of the Quadratic Programming (QP) problem, which
is obtained by linearisation of the NMPC program around
the current iterate, can be enforced efficiently. Therefore, we
propose addressing the problem by means of an augmented
Lagrangian formulation. Our tracking scheme consists of
a fixed number of inexact Newton steps computed on an
augmented Lagrangian subproblem followed by a dual update
per time step. Under mild assumptions on the number of
iterations and the penalty parameter, it can be proven that
the sub-optimality error provided by the parametric algorithm
remains bounded over time. This result extends the authors’
previous works from a theoretical and a computational
perspective. Efficacy of the approach is demonstrated on an
ENMPC example consisting of a bioreactor.

I. INTRODUCTION

In NMPC, a control input is computed as a solution
of a parametric Optimal Control Problem (pOCP) at
each sampling time. Solving a pOCP at a high sampling
rate is not computationally tractable and may result
in unacceptable latency when dealing with unstable
systems. Therefore, a significant research effort has been
made to alleviate the computational burden of NMPC
e.g. [6,7,17,22,23]. An important class of real-time
optimisation techniques applicable to online NMPC are
continuation methods [1]. They exploit the parametric nature
of the NMPC problem by computing predictor and corrector
steps along the state trajectory. Among such techniques,
the real-time iteration scheme of [6] has proven efficient on
NMPC problems with a least-squares stage-cost [13]. Such
NMPC programs generally appear when the control objective
is set-point stabilisation or trajectory tracking. The online
strategy of [6] consists in solving a single parametric convex
QP per time step. Convexity of the QP is enforced by means
of the Gauss-Newton approximation [16], which provides
an accurate hessian estimate when the residuals are small.

When it comes to ENMPC, the stage-cost corresponds
to an economic performance index. Besides theoretical
challenges regarding Lyapunov stability of the closed-loop
system under the ENMPC control law [6], it appears
to be difficult to develop an efficient real-time ENMPC
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algorithm. As the stage-cost does not have a least-squares
structure, the Gauss-Newton hessian estimate is not applica-
ble. To tackle this issue, a novel SQP-based real-time strategy
was proposed in [19]. In order to obtain a convex QP, a
mirrored hessian is used, which is made positive semidefinite
by clipping the negative eigenvalues of the hessian of the La-
grangian. Despite its computational efficiency, the approach
of [19] does not come with theoretical stability properties.

In this paper, we propose a novel real-time approach
to ENMPC. Instead of constructing a local convex QP
approximation of the Nonlinear Program (NLP) resulting
from the discretisation of the pOCP as in [6,19], we form
an augmented Lagrangian relaxation of the ENMPC prob-
lem [16]. The parametric augmented Lagrangian program
is bound-constrained. Hence, a gradient projection can be
computed efficiently and provides an active-set. A Newton
subproblem is then solved inexactly on the current active-
set. Global convergence of the process is guaranteed by
means of a trust region [5]. The real-time scheme consists
of computing a fixed number of trust region iterations on the
augmented Lagrangian and then performing a first-order up-
date of the Lagrange multiplier. Under mild assumptions on
the ENMPC problem, it is shown that the suboptimal solution
provided by our real-time scheme remains around an optimal
solution of the ENMPC problem. Thus, the optimality-
tracking scheme is stable under some conditions on the
penalty coefficient and the number of primal iterations. Such
a stability result for inexact Newton iterations on a paramet-
ric augmented Lagrangian is novel and did not appear in
the authors’ previous works [10,12]. In particular, it is based
a local convergence rate for trust region Newton methods
that does not rely on a finite detection of an optimal active-
set. This is novel compared to the trust region literature [4].

In Section III, the multiple-shooting discretisation of the
economic pOCP is presented and our real-time augmented
Lagrangian algorithm is introduced. In Section IV, the
stability properties of the scheme are analysed. In particular,
we establish an inequality, which shows that the optimality-
tracking method is contractive under some requirements on
the penalty and the number of primal iterations. Finally,
in Section V, our approach is demonstrated by applying
ENMPC to control a bioreactor in order to maximise its
productivity.



II. NOTATION

The indicator function of a closed subset €2 in R”™ is
denoted by t and is defined as

Lo () = {3_00

The open ball with center x and radius r is denoted
by B (x,r).
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IIT. A REAL-TIME ENMPC SCHEME

A. Problem formulation

We address the problem of computing a first-order
solution (z*(-),u*(:)) to the continuous-time economic
NMPC problem

T
minimise / Lz (t),u(t))dt (1)
z(-),u(") 0
S.t. l‘(O) =29 ,
vt e [0,T], &(t) = f(x(t),u(?) ,
Vte[0,T], z<a(t)<Z, u<u(t)<u,
for an initial condition Z, € R", a prediction

horizon T and a continuously differentiable stage-cost
l:R" x R™ — R. The function f : R®» x R — R"=
is assumed to be continuously differentiable on the set
Q= X x U, which is defined by

X:={zeR"™ : g
U={ueR™ : u

The pOCP (1) is to be solved in real-time for varying initial
conditions Zg.

Remark 3.1: The terminal cost and constraint set, which
are required to ensure closed-stability of the nonlinear
system under the closed-loop optimal ENMPC solution u*,
are neglected. Closed-loop asymptotic stability under an
economic NMPC control law has been investigated by [8]
under some dissipativity and controllability assumptions.

In order to transform the pOCP (1) into a finite-dimensional
NLP, direct methods proceed by parameterising the
continuous control profile w(-) using a finite number of
parameters, whose optimal values can be computed by
means of a nonlinear solver. Similarly to [15], we resort to
a piecewise constant parameterisation of the control profile,
which is written as follows, given a time instant ¢ € [0, T,

N—-1
t) = Z Qillt; ;4] (t) )
1=0

where N > 1, {¢ (])V_l C R"™ and the mesh
{ti}i]io C [0,7] is such that tp := 0 and ty := T. In
order to parameterise the state profile z (-), shooting nodes
{si } —o C R"= and shooting constraints are introduced for
each interval [t;,¢;11] as follows

Si+1 — X (ti+1;si7Qi) = 07 (S {O7N - 1} 5 (2)

where x (t;11; S, ¢;) is the solution of the boundary value
problem

HO=fa)

vt € [ti, tisa],

The role of the shooting constraints is to ensure continuity
of the state profile at the ends of every shooting interval. The
objective of the pOCP (1) is also subdivided according to
the mesh {ti}ij\io as follows

N—-1

/ti“ (z(t),u(t)dt

i

T
/ Iz (t),u(t))dt
0

I
N\

i

w (ti+1; Siy ql) 3

Il
=]

i
where w (t;41; Si,¢;) is the solution of the boundary value
problem

Yt € [ti,tiva], §(tsi,q) = 1(w (t58i,00) 5 ¢)
w(ti;si,qi) =0,
which is coupled with (3) via the state x (¢;s;, ¢;). Finally,

the paramteric NLP resulting from the multiple-shooting
discretisation is

“4)

N-1

minimise w (tit1s 84, Gi) )
{Sz‘}ﬁvzgv{‘h‘};v:zl ;

S.t. so — "%0 = 0,

P (i‘o) .

Si+1 — X (ti+1; Sy QZ) =0,

sieX, ¢; €U, iE{O,...,N—l} s

where for all ¢ € {0,...,N —1}, x(ti11;8i,¢;) and
w (ti+1; 8i,q;) are solutions of the following augmented
boundary value problem

Vt€ [titiva], 0(tsnq) = F(v(tisia), a)
S (6)
v (tu Siaqi) - <0> .
where the mapping F : R*=+! x R?« — R +1

l (l‘ (t7 Siy qt) ’ QL)

and the augmented state is denoted by
v (t;8i,q:) == (m (t Si’qi)) e R+

w (t; 8i, ;)
B. Algorithm description

F 0t 5q0) 1) = (f ( (t 51’;%’)7%‘)) ’

Instead of linearising the shooting constraint (2) with
respect to the shooting node s; and control ¢; as in [6,13,15],
we relax it by means of an augmented Lagrangian penalty
and thus introduce

Ly (2,1, %0) := (Mo +2 (s0 — io))T (so — &o) (N

2

+ZL

tuvsz 1,4i— 1) Siaﬂi) )



where the local augmented Lagrangian is defined by
Lo (v(t;s,q), s, v) ==w(ts,q)

(v 56 —asa) (-2 (tsa)

for 5,8’ € R", ¢ € R", a Lagrange multiplier v € R"=,
a penalty o > 0 and

zZ = (ngqgv'--751—{7—17QXI—17SX7)T € R™
pi= (g ) € RIOED

with n := N (ng + ny) + ng. Our real-time scheme then
proceeds by minimising the augmented Lagrangian (7)
and updates the Lagrange multiplier © only once per time
instant while the state evolves from g to Zo, as described
in Algorithm 1 below.

Algorithm 1 Optimality-tracking descent-based algorithm

Input: Suboptimal point (Z (Z¢)" ,ﬂ(ﬁco)T)T, state T
and augmented Lagrangian function £, (-, & (%), %) +
LO.

Descent phase: Apply M iterations of Algorithm 2 ini-
tialised at Z (£o) to minimise the augmented Lagrangian
L, (-5 (Z0),%0) + to and obtain a suboptimal primal
iterate 2M.

z (.’i‘o) — M

Dual update: [i (Zg) < i (Zo) + oG (Z (Zo) , Zo)
Output: Primal-dual point (2 (o))" ,fi (Z0)")

An efficient strategy to compute an approximate critical
point of the augmented Lagrangian (7) is the truncated
trust region Newton method described in Algorithm 2
below. At every iteration of Algorithm 2, a Newton model

Algorithm 2 Trust region algorithm on the parametric
augmented Lagrangian

1: Constants: Initial trust region radius A, coefficient vy >
0 and regularisation coefficient 7.

2: Input: Suboptimal primal variable Z (&) and objective
function £, (-, it (Zo) , Zo) + ta-

3: Warm-start: z < Z (&)

4: forl=1,...,.M do

5: Active set computation

6: Compute the Cauchy point z,. as in Eq. (9) according

7

8

9

to the requirements in (10).
Refinement phase
: Find y € Q) by approximately solving (11) via sCG
10: iterations initialised at z. [21].

11: Trust-region update
12: Compute the test ratio p according to Eq. (13).
13: Shrink or increase the trust region radius A

14: and update z depending on the ratio p.
15: end for
16: Output: zM = 2z

my (-, & (&0),%o) of the augmented Lagrangian (7) is

constructed around the current iterate z as follows
Mo (y7p/(‘f?0>7j}0) = ‘CQ (27/7‘(:%0)7'%0) (8)
+ vzﬁg (Z7 /j (jo) 7i0)T (y - Z)

F5 =) V2L, (i (i) 30) (5~ 2)

An active-set is then computed by means of a gradient
projection. More precisely, it is the set of active constraints
Agq (z.) at the Cauchy point

ze =P (z —aV, L, (2,5 (%), %0)) 9)
where the step-size « is such that

My (Zw Iz (i‘o) 7j0) < My (Zv iz ('%0) 7i'0)
+10V2L (2, i (20) , T0) " (2 — 2)

lze — 2]l o S 1A .
(10)

where vy € (0,1) and v; > 0. For clarity, we omit other
standard conditions on «, which can be found in [4]. The
first condition in Eq. (10) corresponds to a sufficient decrease
of the model function, while the second condition ensures
that the Cauchy point lies in a scaled trust region around
the iterate z. A point that fulfils the requirements in (10)
can be computed by means of a projected search [5]. Once
an active-set has been computed by means of the Cauchy
point z., the model function is further minimised on the
subspace of free variables at z.. A candidate point y in 2
is obtained by approximately solving the nonconvex QP

(1)

.. _ A ~ r
minimise m, (y, it (o), %0) + = ||y — zc||§
yeQ 2

st ly —zllo <724,
-AQ (Zc) - AQ (y) )

where r is a regularisation coefficient. The proximal regular-
isation in problem (11) is the main novelty of Algorithm 2
compared to standard trust region methods. The point y is
yielded by safeguarded Conjugate Gradient (sCG) iterations,
which are aborted if a negative curvature direction is
encountered or a problem bound is hit during search [21]. An
important point is that the sCG procedure is to be initialised
at the Cauchy point z.. As sCG guarantees decrease of
the regularised model function at each iteration [21], the
proximal regularisation allows for a quantification of the
decrease provided by the refinement phase, namely

N ~ r N ~
mg (y: /i (20) , %0) + 5 ly = zelly < my (2, 1 (20) , %o)
(12)

This is a key ingredient in the convergence analysis as
explained in Section IV. Moreover, it does not hamper the
fast local convergence property of Newton’s method if the
regularisation coefficient r is sufficiently small, as shown
in [11]. In order to assess the quality of the candidate point
y, the ratio

£’Q (y7
m@ (y7

(T0) , T0)

(Zo0),T0)

13)

=i | =



is computed. If the ratio is below a threshold 7; € (0,1),
the trust region iteration is deemed to be unsuccessful
and the trust region radius is shrunk. In case the ratio is
above 7)1, the iteration is considered as successful, the trust
region radius is enlarged and the iterate z is updated to
the candidate point y. This process is iterated M times to

provide a suboptimal primal point z (Z¢) := 2.

IV. STABILITY GUARANTEES
Algorithm 1 provides a suboptimal primal-dual point
w (Zo) == (2 (%0)" ,ﬁ(jo)T)T
As Algorithm 1 is a truncated procedure warm-started

at w (&), it cannot be guaranteed to remain close to a
first-order critical point of P (Zg)

~ ~ T ~ ™ T
w* (&) := (2" (&o)" 1" (Z0)")
if the state o moves too far from the state Zy. However,
one can derive conditions on the parameter difference

|0 — Zo||5, the number of iterations M and the penalty o
so that the optimality-tracking error

€(z) = |lw () —w ()] (14)

remains within a bounded interval as the system’s state z
evolves. In this section, the closed-loop state trajectory under
the suboptimal control law o () is sampled at discrete
time instants, so that we can consider a state sequence
{z1}. To show that the error sequence {¢ (zy)} is stable, we
require two ingredients, which are a local convergence rate
for Algorithm 2 and some regularity properties of critical
points of P (x) with respect to parameter changes. These
elements translate into two fundamental properties of the
parametric NLP P (x), namely the Kurdyka-Lojasiewicz
(KL) inequality [2] and Robinson’s strong regularity [20]
respectively. A detailed formulation of these two properties
in the context of NMPC can be found in the authors’
previous work [10,12], thus we only give an overview of
the theoretical results in the following two paragraphs.

A. Convergence rate of the trust region iterates

Using the arguments of [4], if M is infinite, it can be
shown that the primal sequence generated by Algorithm 2
converges to a critical point 2% (i (&0),Zp) of the
augmented Lagrangian (7). However, the asymptotically
superlinear convergence rate of trust region Newton methods
such as Algorithm 2 holds only once the active-set has
settled down [4]. Therefore, resorting to such a convergence
rate for our analysis does not seem to be appropriate, as
the primal warm-start Z (£o) cannot be assumed to lie on
the same face of Q as the critical point 2> (& (Zo), Zo),
especially if zg is far from 2y. Therefore, we establish an
asymptotic convergence rate for Algorithm 2, which does
not rely on finite activity detection. The KL property turns
out to be a key ingredient to obtain this result.

Assumption 4.1 (Polynomial data): The  stage-cost [
and the dynamics right hand side f are assumed to be
polynomial functions.

Assumption 4.1 guarantees that the KL inequality is
satisfied by the augmented Lagrangian (7), as it becomes a
multivariate polynomial function [3]. Its degree is denoted
by dy. In plain words, the KL inequality corresponds to the
fact that the norm of any subgradient grows faster than a
power of the objective locally. Further details can be found
in [2,3]. Based on the properties of the gradient projection
onto the convex set {2 and inequality (12), it can be easily
shown that a successful iteration of Algorithm 2 ensures a
sufficient decrease of the augmented Lagrangian

L, (2,0 (Z0),%0) — Lo (y, £ (Z0) , Zo) (15)

2 2
> s ma {1z — 213, v - 213}

where k; is a positive constant. The sufficient decrease
inequality (15), when combined with the KL property, plays
an important role in the proof of Theorem (4.1) below.
Theorem 4.1 (Local convergence rate of Algorithm 2):
Let {zl} be the sequence generated by Algorithm 2. There
exists a radius 7 > 0 and a constant C' > 0 such that if

zZ(%0) € B(2* (fi(20) ,%0) , 1),
|2 = 2% (7 (20) , %) |, < (16)
C8 (M)~ |12 (d0) = 2 (B (0)  F),
where S (M) is the number of successful iterations from 0
to M and
1
Y (d,n) = — .
(dm) d(3d—3)""' -2
The proof of Theorem 4.1 is omitted for brevity. It mainly

follows the arguments of [2] after some changes required
by the trust region procedure.

B. Local primal-dual contraction

As the state xj changes, strong regularity of critical
points of P (x) is assumed at all time instants k. In
plain words, this property ensures Lipschitz continuity of
critical points corresponding to different parameters, if the
parameter difference is sufficiently small [20]. An important
points is that it takes active-set changes into account.

Assumption 4.2 (Strong regularity at all points): For all

k > 0, the associated critical points w* (z)) of P (z) are
strongly regular.
Under Assumption 4.2, a sequence of critical points
{w* (xg)} can be defined by means of Theorem 1
in [12]. The behaviour of the error sequence {e ()}
between two consecutive time instants is then characterised
by Theorem 4.2 below.

Theorem 4.2 (Primal-dual contraction): Assume that the
suboptimal primal point Z (xpy1) has been generated by
Algorithm 2. Given a time index k, if the error € (xy), the
number of primal iterations M, the penalty parameter o and
the parameter difference ||zx+1 — xx||, satisfy the conditions
of Theorem 4 in [12], then the following inequality is
satisfied for all time indices k > 0O:

€ (Trr1) < Buw (0, M) e (wg) + Bs (0, M) [|[2p 41 — wrlly 5



with

Buw (Q, M) :=C (14 0)\g) (1 + AB)‘H) S(M)—d)(dL,n)
(17)
ABA
4 ABAH 7
0
and
By (0, M) = C (14 0Ag) ApAuS (M)~ V(0" (18)
4 AsAnAadr

)

o

where the positive constants A4, Ag, Ap and Ay are defined
in [12].

In particular, the result of Theorem 4.2 holds if the
parameter difference ||zy41 — x|, is sufficiently small to
be in the neighbourhood defined by the strong regularity of
P (zk) [12,20]. In the context of NMPC, this is equivalent
to saying that the sampling period has to be small in
comparison to speed of the system’s dynamics.

C. Stability of the error sequence

Theorem 4.2 shows that some conditions on the number
of successful iterations S (M) and the penalty coefficient g
must be satisfied for the error sequence {e(zj)} generated
by Algorithm 1 to remain within a bounded interval. In
particular, the coefficients 8, (o, M) and S, (0, M) should
be strictly smaller than 1. Hence, the number of successful
iterations in Algorithm 2 is to be sufficiently large to make
the first terms in (17) and (18) small. At the same time,
given a fixed number of successful iterations S (M), the
penalty coefficient ¢ has to be above a specific threshold to
ensure that the second summands in (17) and (18) do not
prevent (,, and 3, from being below one. This shows that a
trade-off between S (M) and o needs to be found in order
to guarantee stability of the error sequence {e (x)}.

Corollary 4.1 (Error stability): Assume that S (M) and o
are such that 8, (0, M) and S5 (0, M) are below one. Let r.
be a positive scalar satisfying the conditions of Corollary 2
in [12]. If € (xo) < rc and the state difference ||zy41 — 2k ||5
meets the requirement of Corollary 2 in [12], then for all
k>0,

e(rg) <re .

In plain words, Corollary 4.1 shows that if the optimality-
tracking process is initialised in a sufficiently small
neighbourhood of a critical point of P (z), the suboptimal
sequence generated by Algorithm 2 evolves in a tube around
an optimal trajectory, under mild conditions on the state dif-
ference, the number of successful iterations and the penalty
coefficient. We refer to [9] for implementation details and
computational considerations for the discussed algorithms.

V. NUMERICAL EXAMPLE

In this section, we consider a nonlinear continuous-time
model of bioreactor for culture fermentation. The system
has five states and one input. The system dynamics is

provided in Eq. (19).

&1 = —Dxy + p(x) 21 (19a)
o = D (u— o) — % (19b)
3 = —Dxs + (ap(x) + ) 1 (19¢)
. u
by = (19d)
. X
iy = ?1 (19¢)
where
(1 ~ 563) 2
P,
p(x) = L
K, -2
+ 20 + K,

For the sake of brevity, we do not discuss details about
the model and numerical values of parameters and refer
to [19]. We consider the following economic stage-cost
—D(E3

T
The input is subject to lower and upper bound,

l(z,u) =

u=28.7¢1L<u<iu=400¢L .

The control objective is to maximise the average
productivity. It is known that for system (19), the
maximum productivity is obtained when operating in
periodic mode [18]. Therefore, we enforce periodicity
constraints in the ENMPC problem, as follows

x(0) =2 (T)

Algorithm 1 has been implemented in C++ and tested on a
processor with 2.5 GHz and 8 GB of RAM. For this simu-
lation, the maximum number of trust region M was set to
3. The penalty o was set to 100 and a banded preconditioner
with 10 bands was used. In the ENMPC problem (1), a
prediction horizon of T' = 48 hours with N = 20 shooting
intervals was set. In order to simulate the system, we applied
a fourth-order explicit Runge Kutta scheme (RK4) with
20 steps. The evaluation of the shooting constraints in (1)
was performed with 1 step of RK4. The suboptimal input

Input (g/L)

0 50 100 . 150 200
Time (h)

Fig. 1: Suboptimal input.

computed by our algorithm is shown in Fig 1



An average productivity of 3.08 g/r-x is obtained, which
is a bit lower than the productivity given by the periodic
trajectory proposed in [14] (3.11 &/r.n), but larger than
the steady-state productivity (3.0 g/r-). It is worth noting
that the system operates in almost periodic mode under our
suboptimal ENMPC control law.

Solving times (ms)
I o
N o w
H L2 x

o
N

o
=
N

50 00 150 200
Time (h)

15

Cumulative PCG iterations

¥ 50 100 15 200
Time (h)

Fig. 2: Solving times and cumulative PCG iterations.

Computational results are shown in Fig. 2. An average
solving time of 213us was obtained. It appears that the
cumulative number of sCG iterations per time step is
quite low, which is a result of our preconditioning. This
is interesting, as sCG iterations are one of the main
computational burdens in Algorithm 1.

VI. CONCLUSIONS

A novel real-time algorithm applicable to economic
NMPC has been presented. It has been shown that stability of
the suboptimality error is guaranteed under mild assumptions
on the algorithm parameters. The computational complexity
of the algorithm has been analysed and it has been shown
to scale favourably with the horizon length and the state
and input dimensions. Finally, efficacy of the scheme has
been demonstrated via real-time ENMPC on a bioreactor.
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