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Abstract— We propose a hierarchical Model Predictive Con-
trol (MPC) strategy for energy management in plugin hybrid
electric vehicles. An inner feedback loop addresses the problem
of optimally tracking a given reference trajectory for the battery
state of charge over a short future horizon using knowledge of
the predicted driving cycle. The associated receding horizon op-
timization problem is solved using a projected Newton method.
The controller is compared with existing approaches based on
Pontryagin’s Minimum Principle and the effects of imprecise
knowledge of the future driving cycle are discussed. An outer
feedback loop generates the state of charge reference trajectory
by solving approximately the optimal control problem for the
entire driving cycle. By considering averages of the driver
demand over longer time intervals the required number of
prediction steps is reduced such that the outer loop problem can
also be efficiently solved using the proposed Newton method.
Advantages over approaches that assume a linearly decreasing
state of charge reference trajectory are discussed.

I. INTRODUCTION

The automotive industry has been steadily moving towards
a stronger electrification of the powertrain over the recent
years [1], with a particular focus currently on Plugin Hybrid
Electric Vehicles (PHEVs), in which the battery is typically
charged prior to the trip and steadily emptied towards the
end of the trip. While the efficiency of PHEVs relative
to conventional vehicles relies on many factors, it is in
particular dependent on how the engine load point is shifted
by utilizing the electric machine in order to minimize a
strategic objective over a driving cycle (such as fuel and/or
emissions) and reaching a desired energy level at the end
of the driving cycle. This problem has been tackled by a
variety of methods [2], but in particular methods based on
optimal control formulations have been successful. These can
be grouped into three classes: methods based on dynamic
programing (DP) [3], [4], methods based on the Pontryagin
Minimum Principle (PMP) [5], [6] and those based on Model
Predictive Control (MPC) [7].

Methods based on DP result in the global optimum for
a given driving cycle, but are computationally expensive,
since the complexity typically scales exponentially with
relevant problem dimensions (in particular with horizon
length). Either the price to be paid is the burden of a high
computational time for solving an online DP or the burden of
high memory storage requirements for offline map-based DP
approaches. Methods based on PMP, in particular the Equiv-
alent Consumption Minimization Strategy (ECMS) [5], are
suitable candidates for production vehicles since the required
optimization is usually only performed at the current time
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instant for a constant co-state. Unfortunately, the optimal
co-state is highly sensitive to the driving cycle and therefore
the method requires careful initialization and adaptation of
the co-state in order to ensure that the target state can be
reached [8]. In contrast, the advantage of MPC approaches
is that the required tuning for ECMS methods is avoided and
that information about the future driving cycle obtained from
the navigation unit can be readily incorporated.

The contributions of this paper are as follows. First, a
nonlinear MPC (NMPC) scheme is proposed using a spe-
cialised projected Newton method. This minimizes at each
sampling instant a quadratic approximation of predicted fuel
consumption, which is derived from the predicted driving
cycle, subject to an end-point constraint on state of charge
and pointwise-in-time bounds on electrical power. The ap-
proach provides a more general and more accurate treatment
than [7], where the NMPC problem is approximated directly
as a (linearly constrained) quadratic programming problem.
Secondly, the NMPC method is applied to the charge sustain-
ing and charge depleting optimal control problem for a short
horizon, in which the short-horizon target state is determined
from a linearly decreasing reference trajectory for the state
of charge, as proposed in the context of PMP in [9] (known
as ”blended mode”).

The third contribution is a two-level MPC framework to
overcome the limitations of a linearly decreasing reference
state, since in the presence of changing predicting driving
conditions, such as altitude variations, a linear profile can
be significantly suboptimal [10]. We propose to solve a low-
sampling rate MPC problem for the entire driving cycle to
obtain the long-term reference state trajectory (high level
MPC) and feed this to a short-horizon MPC controller (low
level MPC). Simulation results demonstrate the advantages of
MPC over adaptive ECMS in particular in terms of tracking
performance in charge depleting operation.

II. MODELLING AND PROBLEM FORMULATION

This paper considers a parallel hybrid electric vehicle
configuration as illustrated in Figure 1. This system consists
of an electric motor and a combustion engine, both of which
contribute additively to the gearbox input torque (i.e. if
a clutch is present for disconnecting the engine from the
gearbox, this is assumed to be permanently closed and we
do not consider a pure electric driving mode). Further, the
engine shaft speed ωeng and electric motor shaft speed ωem

are identical, i.e. ωeng = ωem = ω. This can be summarized
in the following expression for the driver demand, Pdrv:

Pdrv = Peng + Pem = Tengω + Temω (1)



where Peng, Teng and Pem, Tem are the power/torque de-
mands for the engine and electric motor, respectively.

Our goal is to minimize a primary objective over a
driving cycle with predefined driver power demand and speed
profiles. To this end, we consider the minimization of a
quasistatic map that depends on the instantaneous engine
power Peng and engine speed ωeng . In this paper we focus on
minimizing fuel consumption and hence we assume a static
fuel power map, Pf , (see e.g. [7]):

Pf = Pf (Peng, ω) = hLHV ṁf (Peng, ω) (2)

where ṁf is the fuel flow rate and hLHV denotes the lower
heating value of the fuel. Secondly, the losses incurred in
the conversion of electrical power, Pb, to mechanical power,
Pem, of the electric machine are assumed to be given by a
static map (e.g. [7]):

Pb = Pb(Pem, ω). (3)

Both maps Pf (Peng, ω) and Pb(Pem, ω) are assumed to be
available to the controller, for example in the form of lookup
tables. Furthermore the mapping between the rate of change
of energy stored in the battery, Ps, and the electrical power,
Pb, is determined using an equivalent electrical circuit model
of the battery [2]:

Ps =
U2
OC

2R

[
1−

√
1− 4R

U2
OC

Pb

]
(4)

where UOC is the open circuit voltage of the battery and R
corresponds to the internal resistance.

In line with standard optimal control approaches to the
strategic power split problems in hybrid vehicles [2], the
lower level powertrain dynamics are neglected and only the
battery energy content E is considered as the relevant state
variable. Changes in the energy level result from the battery
usage Ps:

Ė = −Ps (5)

The energy management problem consists of the minimiza-
tion of the primary objective (2) over a driving cycle (given
information about the current and future driver demand
Pdrv and the current and future longitudinal vehicle speed
v). We assume that a gear selection is performed using a
separate powertrain function and is therefore not considered
in the energy management problem. We therefore assume
that for a given vehicle speed v and driver demand Pdrv a
corresponding engine speed ω is known. Relevant constraints
in the context of this problem are given by the dynamics (5),
by the actuator input constraints and state path constraints
and state boundary conditions on the battery energy level.
We consider an optimal control formulation as the following
constrained optimization problem [2], [7]:

minimize
Peng(t), t∈[0,T ]

∫ T

0

Pf (Peng(t), ω(t)) dt (6a)

subject to Ė(t) = −Ps(t) (6b)

Pmin
eng ≤ Peng(t) ≤ Pmax

eng (6c)
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Fig. 1. Power flows in parallel hybrid vehicle configuration

Pmin
em ≤ Pem(t) ≤ Pmax

em (6d)
Emin ≤ E(t) ≤ Emax (6e)
E(0) = Einit (6f)
E(T ) = Eterm (6g)

which is to be performed subject to the algebraic constraints
(1), (2), (3), (4), and for given trajectories w(t), Pdrv(t)
for 0 ≤ t ≤ T , where T denotes the length of the driving
cycle. Through appropriate choice of terminal conditions
the above problem formulation can be employed in both
charge sustaining (CS) and charge depleting (CD) modes1

of operation, namely E(T ) = Eterm = Einit for CS and
E(T ) = Eterm < Einit for CD, respectively.

III. CONTROL ALGORITHMS

The solution of the PHEV optimal energy management
problem is likely to be affected by inaccuracies arising
from discrepancies between the assumed and actual future
driving cycles, and from model approximations resulting
from the use of quasistatic maps to represent the fuel power
map and electrical losses. To reduce the effects of these
sources of uncertainty we propose a Model Predictive Con-
trol implementation that provides feedback by recomputing,
repeatedly, online, the optimal predicted future power flows
using current information on the state of charge of the
battery and the driving cycle. This section describes the basic
MPC optimization, techniques for its online solution, and a
hierarchical approach for handling long prediction horizons.
We begin by translating the optimal control problem (6) into
an approximate discrete time MPC formulation.

For a sampling interval δ, let yk denote the value of
Pdrv(t+ kδ) predicted at time t, for k = 0, 1, . . . , N , where
Nδ = T − t, and define xk as the k steps ahead predicted
value of Peng at time t. For a given engine speed profile
ω(t), t ∈ [0, T ], we approximate the fuel power map (2)
appearing in the objective function (6a) in terms of a time-
varying quadratic function of the engine power demand:
Pf

(
Peng(t+ kδ), ω(t+ kδ)

)
≈ fk

(
Peng(t+ kδ)

)
= fk(xk),

where
fk(xk) = α2,kx

2
k + α1,kxk + α0,k (7)

with αi,k = αi

(
ω(t+kδ)

)
for i = 0, 1, 2 and k = 0, . . . , N .

We also approximate the mapping (3) between the electrical
power Pb and the mechanical power Pem in the electric
machine as a time-varying quadratic function of motor power

1Here CD is understood to mean a strategy that aims to reach the target
energy level at the end of the driving cycle.



demand: Pb

(
Pem(t+ kδ), ω(t+ kδ)

)
≈ hk

(
Pem(t+ kδ)

)
=

hk(yk − xk), where

hk(yk − xk) = β2,k(yk − xk)2 + β1,k(yk − xk) + β0,k (8)

with βi,k = βi
(
ω(t+ kδ)

)
for i = 0, 1, 2 and k = 0, . . . , N .

The MPC approach of [7] approximates the optimiza-
tion (6) as a quadratic program through the use of a quadratic
approximation of the overall map from Pf to Ps and by
specifying the decision variables as the predicted samples
of Ps. However the two quadratic approximations (7)-(8)
and the equivalent electrical circuit model of the battery (4)
provide more accurate representations of the power flows
in the powertrain. In addition, by defining the variables in
the optimization as the predicted samples, xk, of Peng , the
current formulation allows the bounds (6c,d) on Peng, Pem to
be imposed via simple bounds on the decision variables xk.

To simplify the presentation we neglect the bounds (6d) on
Pem and the upper bound on Peng in (6c). These constraints
are rarely active in normal operation, but if needed they
can be imposed as upper and lower bounds on the decision
variables xk and handled by a straightforward extension of
the method proposed below for imposing the lower bounds
of (6c). The lower bounds on Peng in (6c) are needed in
this formulation, however, since they reflect the fact (which
is not implicit in the quadratic fuel map approximation
(7)) that energy dissipated during engine-braking (i.e. when
Peng < 0) is not recoverable.

In the following development we also neglect the energy
storage bounds (6e). Unlike the case of the bounds (6c,d)
this simplification is not introduced here only to streamline
presentation. Instead it is motivated by the practical consider-
ation that the constraints on stored energy are usually inactive
since the upper and lower limits of state of charge are not
reached by HEVs under normal operating conditions [11].

With these considerations, a discrete time approximation
of the problem (6) over the interval [t, T ] is given by

minimize
xk≥0

k=0,...,N

N∑
k=0

fk(xk) (9a)

subject to
N∑

k=0

gk(yk − xk) ≤ ∆E (9b)

where ∆E = (E(t) − Eterm)/δ and the functions gk are
defined for all k by

gk(yk − xk) =
U2
OC

2R

[
1−

√
1− 4R

U2
OC

hk(yk − xk)

]
(10)

Let Xk = {x : x ≥ 0 and hk(yk − x) ≤ U2
OC/4R} denote

the domain of fk(·) and gk(yk − ·). We make the following
convexity assumptions on fk and gk.

Assumption 1: For all k and all x ∈ Xk, fk(x) is strictly
convex and gk(yk − x) is convex in x.

Remark 1: The definitions of fk, hk and gk in (7), (8) and
(10) imply that Assumption 1 holds if, for all k, α2,k > 0
and β2,k ≥ 0.

The problem (9) has the form of a continuous nonlinear

knapsack problem, for which many solution methods are
available (see e.g. [12]). To exploit convexity we propose
an approach with rapid convergence properties based on
the projected Newton method [13]. Before discussing this
approach, we first note that the optimization is decoupled at
k = 0, . . . , N if the energy constraint (9b) is inactive. In this
case the optimal solution is given for all k by

xk = [x0k]+, x0k = − 1
2α1,k/α2,k (11)

where, for any real vector z, we define [z]+ as the projection

[z]+ = max{0, z}.

Therefore it is relatively easy to determine whether the
constraint (9b) is inactive at the solution of (9) by checking
the condition:

N∑
k=0

gk
(
yk − [x0k]+

)
≤ ∆E. (12)

To initialize the solution when the constraint (9b) is active
we consider a simplified problem in which the bounds
xk ≥ 0 are ignored and the losses in the battery and electric
motor are neglected, i.e. Ps = Pb = Pem and hence
gk(yk − xk) = yk − xk. Defining the Lagrangian function

L(x, p) =

N∑
k=0

fk(xk) + p

[ N∑
k=0

gk(yk − xk)−∆E

]
, (13)

where x = (x0, . . . , xN ) and p ≥ 0 is the costate variable
(namely the Lagrange multiplier associated with constraint
(9b)), the optimality conditions ∇xL = 0, ∇pL = 0 are
equivalent to

f ′k(xk)− p g′k(yk − xk) = 0 ∀k (14a)
N∑

k=0

gk(yk − xk) = ∆E. (14b)

For the simplified problem these conditions yield

2α2,kxk + α1,k − p = 0 ∀k
N∑

k=0

(yk − xk) = ∆E

from which we obtain the closed form solution [7]:

x̂k = 1
2 (p̂− α1,k)/α2,k ∀k (15a)

p̂ =

∑N
k=0 yk + 1

2

∑N
k=0(α1,k/α2,k)−∆E

1
2

∑N
k=0(1/α2,k)

(15b)

where α2,k > 0 for all k by Assumption 1. An initial guess
of the solution of (9) and the corresponding costate is then
provided by ([x̂]+, p̂).

Returning to the original problem which includes the
bounds xk ≥ 0 and incorporates electrical and mechanical
losses in the model, we define a projected Newton iteration
as follows. Let

A = {k : xk = 0 and f ′(0)− p g′(yk) > 0}, (16)

so that A denotes the set of indices at which the constraint



xk ≥ 0 is active, and define (∆x,∆p) as the solution of[
D v
vT 0

] [
∆x
∆p

]
=

[
φ

∆E −
∑N

k=0 gk(yk − xk)

]
(17)

where

D = diag{d0, . . . , dN}, dk = f ′′k (xk) + p g′′k (yk − xk) ∀k

v = (v0, . . . , vN ), vk =

{
−g′k(yk − xk), k /∈ A
0, k ∈ A

φ = (φ0, . . . , φN ), φk = −f ′k(xk) + p g′k(yk − xk) ∀k

Then the update at each iteration is given by

x← [x + ∆x]+ (18a)
p← p+ ∆p (18b)

Remark 2: The solution of (17) is given by

∆x = D−1(φ− v∆p) (19a)

∆p =
vTD−1φ+

∑N
k=0 gk(yk − xk)−∆E

vTD−1v
(19b)

and the implied computation scales linearly with N since D
is diagonal. Moreover it is only necessary to compute ∆xk
for k /∈ A since (16) ensures that [xk + ∆xk]+ = 0 for all
k ∈ A.

The following result, which is based on [13], describes the
convergence properties of the iteration (18).

Proposition 1: Let x∗ and p∗ denote respectively the opti-
mal argument of (9) and the optimal value of the costate, and
assume that p∗ ∈ (0,∞). Then (x, p) is a fixed point of the
iteration (18) if and only if (x, p) = (x∗, p∗). Furthermore
the iteration converges superlinearly in a neighbourhood of
(x∗, p∗) if no constraints are weakly active at the solution.

Proof: At a minimum point of (9) the solution (x∗, p∗)
must satisfy the first order conditions

f ′k(x∗k)− p∗g′k(yk − x∗k) = 0 if x∗k > 0 (20a)
f ′k(0)− p∗g′k(yk) ≥ 0 if x∗k = 0, (20b)

and, since p∗ > 0, we must also have
N∑

k=0

gk(yk − x∗k) = ∆E. (20c)

Furthermore, if p∗ > 0, then at least one k does not belong to
the active set A∗ = {k : x∗k = 0 and f ′(0)− p∗ g′(yk) > 0}
at the solution, and if p∗ is finite, then g′k(yk − x∗k) must be
non-zero for some k ∈ A∗.

From (20a,b) we have φk = −f ′k(x∗k)+p∗g′k(yk−x∗k) = 0
for all k /∈ A∗ and since p∗ ∈ (0,∞) implies v 6= 0 by
the preceding argument, it follows from (19b) that ∆p = 0.
Hence (19a) implies that ∆xk = 0 for all k /∈ A∗ so (x∗, p∗)
must be a fixed point of (18).

Conversely, if (x, p) is a fixed point of (18), then ∆xk = 0
for all k /∈ A and ∆p = 0, so from (17) we can conclude
that φk = −f ′k(xk) + p g′k(yk − xk) = 0 for all k /∈ A
and

∑N
k=0 gk(yk − xk) = ∆E. Also (16) gives xk = 0

and f ′k(xk) − p∗g′k(yk − xk) > 0 for all x ∈ A. Therefore
the first order conditions are satisfied and by convexity

(Assumption 1) (x, p) must be optimal.
To complete the proof we note that if there are no weakly

active constraints at the solution of (9), then there must exist
a neighbourhood of (x∗, p∗) within which the active set is
constant, so the iteration (17)-(18) coincides with Newton’s
method applied to the subspace {x : xk = 0∀k ∈ A}.
A superlinear convergence rate can then be shown using
the standard arguments for unconstrained optimization (see
e.g. [14]).

Stronger convergence results may be obtained under less
restrictive assumptions if ∆x and ∆p are multiplied by a
variable stepsize parameter α in (18). For a similar problem
formulation, it is shown in [13] that α can be chosen at each
iteration so as to ensure convergence to the optimal solution
starting from any feasible initial point. In the current context
this modification appears to be unnecessary since simulation
results demonstrate consistent and rapid convergence of the
iteration with a fixed stepsize α = 1 (see Section IV).
The linear constraints of (6c,d) and more general convex
constraints can be incorporated in this framework [15], [12].

A summary of the MPC algorithm is as follows.
Algorithm 1: At each sampling instant t:

(i). Given the current and terminal battery energy levels
E(t), Eterm and the postulated future driver power
and speed demands Pdrv, ω, determine ∆E and the
quadratic approximations fk and gk for k = 0, . . . , N .

(ii). Compute the solution (11) of problem (9) without the
energy constraint (9b). If (12) is satisfied go to step (v).

(iii). Compute the initial estimate (15) of the constrained
solution.

(iv). Perform the iteration (17)-(18) until |∆p| is less than
a given tolerance ε

(v). Implement Peng(t) = x0 and Pem(t) = Pdrv(t)− x0.

The preceding controller setup assumes that the prediction
horizon of the MPC optimization (9) extends across the
entire driving cycle. When applied to problems with realistic
journey times this is likely to result in excessively long
prediction horizons. For example the optimization (9) uses
1800 decision variables to optimize a driving cycle of 30 min
with a sampling interval of 1 s; problems of this size are
unlikely to be solvable within time constraints by current
embedded hardware systems.

One way around this difficulty is to use a prediction
horizon much shorter than the driving cycle and to assume a
given reference trajectory for the battery stored energy. This
is analogous to the approach that was proposed for PMP
in [9], with a state of charge profile that varies linearly with
time. A predefined reference trajectory of this kind can be
used to determine the terminal stored energy Eterm in the
MPC optimization solved in steps (ii)-(iv) of Algorithm 1.
Choosing the horizon, N , of (9) to be in the range 50–
100 will then optimize performance over a future interval
of 1–2 min (for which the predicted driver power and speed
demands are likely to be relatively accurate) while allowing
the battery stored energy to track a linearly varying profile.
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A. Two-level Hierarchical MPC

Although computationally convenient, MPC strategies
based on predefined reference trajectories for the battery state
of charge can be highly suboptimal when the optimal stored
energy profile deviates from the assumed reference. For
example, failure to account for changes in vehicle altitude
in the design of the reference trajectory has a significant
effect on the performance of PMP approaches (see e.g. [10]),
and as discussed in Section IV, the same is true of MPC
strategies. Furthermore, although it may not be possible to
predict the driver power and speed demands with a high
degree of accuracy over a long horizon, relevant information
such as the predicted variation in altitude is likely to be
available from a navigation unit.

To make use of this information we therefore propose a
hierarchical MPC scheme consisting of an outer loop MPC
optimization over a long prediction horizon and an inner loop
short horizon MPC optimization. The prediction horizon of
the outer loop covers the entire driving cycle and therefore
shrinks, whereas that of the inner loop is held constant over
the duration of the driving cycle. Consequently the outer and
inner loop optimization problems are likely to involve similar
numbers of decision variables at the start of the driving cycle.

The outer loop optimization is formulated using a long
sampling interval, which is greater than that of the inner
loop by a factor of e.g. r = 50, and with predicted power
and speed demands averaged over each of these sampling
intervals. The optimal battery stored energy profile computed
by the outer loop is used to generate the reference target
Eterm for the inner loop (Fig. 2). Both inner and outer loop
optimizations can be implemented using Algorithm 1 with
the modification that, for the outer loop, step (v) should
determine the target terminal state of charge for the current
inner loop optimization.

IV. SIMULATIONS

This section presents the results of simulations performed
using data for a 1800 kg passenger vehicle with a parallel
hybrid electric configuration. The hybrid powertrain consists
of a 100 kW gasoline internal combustion engine, a 50 kW
AC electric motor and a 21.5 Ah lithium-ion battery. We
consider the FTP-75 driving cycle with and without altitude
variations. The altitude variations take the form of a positive
gradient (2◦) for the first half of the driving cycle, followed

by a negative gradient (−2◦) for the remainder. In both cases
the battery SOC is initially at 60% and the target SOC at the
end of the driving cycle is set at 50%.

Three variants of the MPC algorithm described in Sec-
tion III are considered: (i) a single loop controller with a
shrinking prediction horizon that covers the entire driving
cycle; (ii) a single loop controller with a horizon of 50 sample
intervals and a linearly varying SOC reference; (iii) a two-
level MPC strategy with an inner loop prediction horizon
of 50 sample intervals and a shrinking horizon outer loop
optimization with a sampling interval equal to 50 inner loop
sample intervals. These are compared with two controllers
based on Pontryagins Minimum Principle applied to the
optimal control problem (6): (i) PMP with fixed costate
variable p which is chosen to be optimal for the given driving
cycle; and (ii) PMP with costate adapted online via propor-
tional feedback of the error in SOC relative to a linearly
varying reference. Both PMP variants are implemented by
minimizing the associated Hamiltonian online (see [10] for
details); the Hamiltonian is computed online directly from
the fuel power map and the maps describing losses in the
electric motor and the battery using interpolation.
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Fig. 3. Variation of battery SOC for driving cycle with zero gradient

For any given driving cycle, the PMP controller with a
fixed costate optimized offline for that driving cycle nec-
essarily achieves the best possible performance. Therefore,
by comparing PMP with the response of the single loop
shrinking horizon MPC strategy we obtain an indication of
the effects of the approximation errors that are introduced by
the quadratic maps in (7) and (8). For these two strategies, the
SOC profiles remain at all times within 1.5% of each other
(Fig.s 3 and 4) and the average fuel consumptions also lie
within 1.5% (Table I), indicating that these approximations
cause a degree of suboptimality no greater than 1.5%.

The PMP strategy with costate adaptation via proportional
control and a linear SOC reference performs slightly better



than the single loop MPC with linear SOC reference for the
zero gradient case (Fig. 3 and Table I). This is because the
initial costate and the proportional feedback gain were tuned
specifically for the zero gradient driving cycle. Although both
strategies are close to optimal for a gradient of zero, they
both fail to achieve the desired target SOC for the non-zero
gradient. This can be attributed to the over-cautious strategy
that results from the linear SOC reference while travelling
uphill in the first half of the driving cycle. Choosing a large
proportional gain for the costate adaptation causes instability,
and the lack of accurate control of the costate adaptation
makes the PMP strategy perform slightly worse than the
single loop MPC in the case of non-zero gradients.
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Fig. 4. Variation of battery SOC for driving with ±2◦ gradient

The combined outer and inner loop MPC strategy works
well for both zero and non-zero road gradients, and gets
close to the optimal fuel consumption achieved by PMP with
fixed costate in all cases. This near-optimal performance is
obtained without the need for the extensive offline tuning that
is required to find the optimal costate for the PMP approach.
Furthermore the inner and outer loop MPC strategy demon-
strates a degree of robustness to uncertainty in the driving
cycle: perturbations of ±20% in the predicted driver power
and speed demand result in just a few percent suboptimality.

TABLE I
Mean fuel consumption (kg/100km); null indicates target SOC not reached

Gradient: 0◦ Gradient: ±2◦

PMP (P-Controller, linear reference) 3.82 –
PMP 3.80 4.26
MPC (linear reference) 3.88 –
MPC (outer & inner loop) 3.87 4.33
MPC (shrinking horizon) 3.85 4.27

The performance of the outer and inner loop MPC strategy
is even more remarkable when its computational requirement
is taken into account. Table II compares the online computa-
tion times required at each time step for PMP (fixed costate)

and two-level MPC; Mean and Max denote the average and
greatest computation times over the whole cycle. This shows
that the computational requirement of the two-level MPC
strategy is comparable to that for the PMP strategy.

TABLE II
Computation times (ms) at individual time steps

Mean Max
PMP 24 119
MPC (inner loop) 10 76
MPC (outer loop) 6 36
MPC (outer & inner loop) 16 112

V. CONCLUSIONS

A nonlinear MPC strategy provides near-optimal energy
management for plugin hybrid electric vehicles. The pro-
posed hierarchical strategy avoids the offline tuning that is
required by ECMS methods and does not suffer from the
suboptimality caused by a predefined reference trajectory for
the battery state of charge. Future work will investigate more
general cost functions, for example incorporating emissions
objectives, and more general constraints such as probabilistic
constraints on energy usage when statistical information is
available on the predicted driving cycle.
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