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Abstract— Virtual Reference Feedback Tuning (VRFT) is
a well established tool to design model-reference controllers
directly from input-output data. A major drawback of the
method lies in that the variance of the controller is high,
due to the instrumental variable method employed to obtain
unbiased estimates. Recent results on the use of kernel-based
regularization in system identification showed that a good bias-
variance trade-off can be found by suitably tuning a penalty
term in the identification criterion within a Bayesian frame-
work. In this paper, we apply such a regularization approach
to the VRFT method and we show that significant performance
improvement can be obtained also for controller design. A
benchmark example is used to illustrate the effectiveness of
the proposed approach.

I. INTRODUCTION

In modern model-based control design, a model of the
plant is first identified from data or developed from first
principles and then used to design a feedback controller
satisfying some closed-loop requirements, typically stabil-
ity, reference tracking or disturbance rejection performance.
Within this context, various controller design approaches
have been proposed [6]. In fixed-order model reference
control, a controller-order reduction step is also needed
before implementation [1].

Unfortunately, the resulting controller is not necessarily
optimal when connected to the plant, as the closed-loop
performance is limited by modeling errors. Therefore, several
direct data-driven controller tuning techniques have been
proposed to avoid the problem of undermodeling and to
facilitate the design of fixed-order controllers, both iteratively
e.g. [12], [13] and non-iteratively e.g. [2], [23]. In all the
above approaches, only the final control cost is taken into
account and the controller is directly obtained from data,
without first deriving a model of the system.

Among all, the Virtual Reference Feedback Tuning (VRFT
[2]) method is a noniterative approach, which is based on
simple least squares formulas and instrumental variables.
Within this framework, linear-in-the-parameters controllers,
like PIDs, can be rapidly designed and recalibrated with new
experiments.

Various examples have shown the effectiveness of the
VRFT approach in simulation and real-world applications,
see e.g. [7], [8]. However, since the method is based on

+ Dipartimento di Elettronica, Informazione e Bioingegneria, Po-
litecnico di Milano, via Ponzio 34/5, 20133 Milano (Italy). Email to:
name.surname@polimi.it.

∗ Department of Information Engineering, University of
Padova, Via Gradenigo 6/b, 35131 Padova, Italy. Email to:
chiuso@dei.unipd.it.

errors-in-variables estimation [21], it is not statistically effi-
cient, i.e. the Cramér-Rao lower bound cannot be achieved
[24].

To enhance the statistical performance of the methods,
it has been shown in [10] that the VRFT design can be
reformulated as an L2-regularized optimization problem. By
suitably tuning the L2 penalty term in the cost function,
the quality of the resulting controller can be significantly
improved, as L2-regularization is very suited to cope with
high variance estimation problems [5]. The regularization
term of [10] is tuned based on data-driven convex-concave
procedures, whereas the a-priori knowledge of the system
cannot be exploited.

A different perspective in regularization can be followed,
according to the Bayesian point of view introduced for
system identification in [18] and its follow-up (see, e.g. [17]).
Specifically, the idea of the above papers is to recast the iden-
tification of the impulse response of a system into an infinite-
dimensional space learning problem, instead of considering
finite-dimensional parameterization. Within this framework,
regularization techniques correspond to impose certain prior
distributions on the impulse response parameters, thus further
enhancing the quality of the estimate. To the best of the
authors’ knowledge, the same philosophy will be applied in
this work for the first time to data-driven controller design.

Then, the aim of this paper is two-fold: (i) to apply the
Bayesian approach in [18] to tune the kernel of regularized
VRFT and use priors on the system also for controller
identification, (ii) to show that such a Bayesian perspective
may outperform the existing regularized VRFT introduced
in [10].

The outline of the paper is as follows. In Section II,
the VRFT method is briefly recalled. In Section III, the
regularized version of VRFT is introduced in the Bayesian
framework, where the main tuning parameters are presented
and discussed. The optimal regularization term is derived in
Section IV, to obtain the best achievable performance. The
regularized methods will be compared to standard VRFT and
to the method [10] on the benchmark example [14] in Section
V. The paper is ended by some concluding remarks.

II. THE VRFT METHOD

Consider the unknown LTI SISO stable plant G(q−1),
where q−1 denotes the backward shift operator. The control
problem considered in this paper is to design a linear,
fixed-order controller K(q−1, ρ), parameterized through ρ,
for which the closed-loop system matches a user-defined
reference model M(q−1).
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More specifically, we consider a linear controller param-
eterization

K(q−1, ρ) = βT (q−1)ρ, (1)

where β(q−1) is a vector of n linear discrete-time transfer
operators, each one defined as

βi(q
−1) =

q−i

1− q−1 , i = 0, . . . , n− 1. (2)

More formally, our aim is to find ρ minimizing the
(filtered) H2-norm of the difference between the reference
model and the closed-loop system achieved with K(q−1, ρ),
namely

Jmr(ρ) =

∥∥∥∥∥
(

GK(ρ)

1 +GK(ρ)
−M

)
W

∥∥∥∥∥
2

2

, (3)

where W (q−1) is a user-defined frequency-weighting filter.
The goal can be interpreted as to find the minimizer of the

L2-norm of the matching error signal ε in Figure 1, when the
reference signal is a white noise of unit variance. From now
on, under the assumption that M is achievable, i.e. if there
exists a controller in the considered controller class such that
M is exactly obtained in closed-loop, the minimizer of (3)
will be referred to as “optimal controller” and will be denoted
by Ko(q

−1) = K(q−1, ρo) = βT (q−1)ρo .

GK(ρ)

M

u yrv ev
v

yo W
ε

Fig. 1. Model reference control problem.

Consider now that an open-loop collection of input-output
(I/O) data {u(t), y(t)}t=1,...,N collected from the system is
available and let the output y(t) be affected by a zero mean
white noise v(t) of variance σ2.

In standard model-based approaches, the above objective
can be achieved by identifying from data a model Ĝ of the
plant and designing a model-based controller K(Ĝ) as

K̂ =
M

Ĝ(1−M)
. (4)

In this work, the case where the controller is directly
derived from the data collection without identifying Ĝ is
instead considered. Notice that in the model-based approach,
although M is supposed here to be achievable, Ko can be
derived from (4) only when Ĝ = G, i.e. when there are no
modeling errors.

The idea of Virtual Reference Feedback tuning was first
proposed in [11] with the name of Virtual Reference Direct
Design (V RD2) and subsequently fixed and extended in [2],
[3] and [9] respectively for LTI, nonlinear and LPV systems.

The main idea to minimize (3) without identifying G(q−1)
is to build a “virtual” closed-loop system, where the input

and output signals are equal to u(t) and y(t) and the closed-
loop transfer function is assumed to correspond to M(q−1).
From such loop, the so-called “virtual reference” rv(t) and
“virtual error” ev(t) signals can be computed as

rv(t) = M−1(q−1)y(t), ev(t) = rv(t)− y(t),

as illustrated in Figure 2. The control design issue is then

GK

M−1

u yrv ev

v

yo

Fig. 2. The VRFT rationale for the calculation of the “virtual” signals.

reduced to an identification problem, where the optimal
controller is the one that generates u(t) when fed by ev(t).
The criterion to be minimized is then

JNvr(ρ) =
1

N

N∑
t=1

(
uL(t)−K(q−1, ρ)eL(t)

)2
, (5)

where uL(t) = L(q−1)u(t), eL(t) = L(q−1)ev(t) and
L(q−1) is a suitable prefilter such that (5) is equal to the
second-order Taylor expansion of (3) in the neighborhood
of the minimum point [2]. More specifically, the frequency
response of L(q−1) must be such that

L(e−jω) =
M(e−jω)

(
1−M(e−jω)

)
W (e−jω)

Φ
1/2
u (ω)

, (6)

where Φ
1/2
u (ω) denotes a spectral factor of Φu(ω).

For the final estimate not to be biased, basic instrumental
variables (IV) [15] are used to counteract the effect of noise.

The final formula to find the optimal controller reads

ρ̂IVN = R−1N FN , (7)

where

RN =
1

N

N∑
t=1

ϕ2(t)ϕT (t), FN =
1

N

N∑
t=1

ϕ2(t)u(t), (8)

and

ϕ(t) = β(M−1 − 1)Ly(t)

= β(M−1 − 1)LGu(t) + β(M−1 − 1)Lv(t)

= ϕo(t) + ϕ̃(t) (9)
ϕ2(t) = β(M−1 − 1)Ly2(t), (10)

being y2(t) the output of a second experiment on the
plant G. Since M is assumed to be achievable with the
given controller parameterization, we have u(t) = ϕTo (t)ρo.
According to the theory in [2], the second experiment must
be performed using the same input sequence u(t) of the first
one, such that the only difference between y(t) and y2(t) is
a different realization of the noise v(t).
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III. BAYESIAN REGULARIZATION

In its classical formulation, the VRFT method provides
a consistent estimate of the optimal controller, that means
that, as N goes to infinity, the minimum of the data-driven
criterion coincides with Ko. Since the method relies on IV
techniques to cope with measurement noise, the variance of
the parameter estimate is much larger than the Cramér-Rao
lower bound [24]. However, since the final goal in practice
is the minimization of (3) for a given N and not to find
an unbiased controller, the bias and variance effects can be
balanced via suitable trade-off tuning.

The problem can be faced from a Bayesian perspective,
analogously to what has been recently done in system
identification [20]. In particular, the works presented in [18]
and [17] show that the identification of the impulse response
of stable systems can be reinterpreted as a function learning
problem in a space of function, called Reproducing Kernel
Hilbert Space (RKHS), which is endowed with particular
smoothness properties.

In our case, the controller parameterization in (1) can be
rewritten as

K(q−1, ρ) =
1

1− q−1
n−1∑
i=0

ρiq
−i =

1

1− q−1 K̄(q−1, ρ),

(11)
with an obvious definition for K̄(q−1, ρ). Therefore, the
problem can be seen as a FIR identification problem, where
the (maybe high order) FIR to be identified is K̄(q−1, ρ) and
the ρi’s represent the Markov parameters of the controller
(without the integral part).

In a Bayesian framework, such parameters can be seen
as the realization of a gaussian process with zero mean and
covariance matrix Π, namely

ρ ∼ N (0,Π) , (12)

where Π(t, τ) = E [ρtρτ ] is called kernel from now on.
Selecting the shape of such a kernel allows to define the
prior knowledge about the controller, i.e. ρ.

In previous works (see [20] and references therein), it has
been shown that the Bayesian estimate of ρ corresponds to
minimizing the regularized cost function

ρ̂N = arg min
ρ

[
JNvr(ρ) + ρTDρ

]
, (13)

where D ∈ Rn×n is a matrix to be tuned based on the
knowledge (or tuning) of the kernel Π as

D−1 =
Π

σ2
.

Notice that (13) generally provides a biased estimate of Ko.
The problem is how to parameterize and design Π. In

case of stable optimal controller (it is always the case in
well-posed model reference control problems), the variance
of ρt is expected to tend to zero exponentially, with a certain
decay rate α, because the impulse response of a stable system
annihilates for large time t. Moreover, if the impulse response
is supposed to be smooth, the neighbour coefficients have

positive correlation. From these two hypotheses, the so called
Stable Spline Kernel can be built as

ΠSS(t, τ) = λ

(
e−α(t+τ+max[t,τ ])

2
− e−3αmax[t,τ ]

6

)
,

(14)
where λ is a scaling factor.

The structure of ΠSS is defined as a function of some
hyperparameters, specifically α and λ. This formulation
transforms the problem of estimation of a (potentially infi-
nite) number of FIR coefficients into the estimate of a limited
number of variables concerning the correlation among the
coefficients.

Such hyperparameters can be estimated according to the
empirical Bayes approach [20], which relies on the marginal
likelihood maximization of the data with respect to α, λ.

Other forms of the kernel matrix can be considered.
For istance, if the impulse response of the controller is
non-smooth and rapidly varying, it is necessary to include
the case of negative correlation between impulse response
coefficients. In this case, a suitable choice of the kernel can
be the High Frequency Stable Spline defined as

ΠHF (t, τ) = λ

{
max (e−αt, e−ατ ) if t+ τ is even
−max (e−αt, e−ατ ) if t+ τ is odd.

(15)
Another kernel is the Diagonal correlated

ΠDC(t, τ) = λε(t+τ)/2θ|t−τ |, (16)

where λ ≥ 0 is the scale factor, 0 ≤ ε ≤ 1 accounts for
the exponential decay rate along the diagonal, and |θ| ≤ 1
describes the correlation across the diagonal. The tuned
correlated kernel TC is a particular case of DC kernel,
where θ =

√
ε

ΠTC(t, τ) = λεmax(t,τ). (17)

Finally, DI is a simple diagonal kernel

ΠDI(t, τ) = λdiag (µ0, . . . , µn−1) . (18)

In the latter case, there are no particular hypotheses on the
impulse response function to estimate and every element
of the matrix µi has to be evaluated as a hyperparameter.
A more detailed analysis of the available kernel choices is
provided in [19] and [4].

IV. OPTIMAL KERNEL SELECTION

In this section, the ideal kernel for VRFT is found,
following the analogous result for system identification in
[5], as the one minimizing the Mean Square Error of the
estimate. This kernel will constitute an upper bound for the
achievable performance and will be a useful tool to evaluate
the estimates with the different kernels.

The regularized VRFT estimate reads

ρ̂rIVN = (RN +D)
−1
FN = (RN +D)

−1
RN ρ̂

IV
N . (19)

Consider the accuracy of the standard IV estimate as pre-
sented in [22]. Under the hypothesis that optimal controller
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Ko belongs to the considered class, the instrumental variable
based estimate is such that

E
[
ρ̂IVN

]
= ρo, (20)

and the asymptotic covariance matrix is given by

E[
(
ρ̂IVN − ρo

) (
ρ̂IVN − ρo

)T
] = σ2R−1o (W1 +W2)R−1o ,

(21)
where

Ro =
1

N

N∑
t=1

ϕo(t)ϕ
T
o (t),

W1 = lim
N→∞

1

N

N∑
t=1

[
H∗(q−1)ϕo(t)

] [
H∗(q−1)ϕo(t)

]T
,

(22)
W2 = E

{
[H∗(z)ϕ̃2(t)] [H∗(z)ϕ̃2(t)]

T
}
, (23)

with ϕ̃2(t) = ϕ2(t)− ϕo(t) and

H∗(q−1) = Ko(q
−1)

(
1−M(q−1)

)2
. (24)

Now, as in [5], the MSE matrix of ρ̂rIVN can be calculated
with respect to the true impulse response coefficients vector
ρo. From the asymptotic value of the estimate,

E
[
ρ̂rIVN

]
= (Ro +D)

−1
Roρo, (25)

it is possible to define the bias of ρ̂rIVN as

ρrIVbias = E
[
ρ̂rIVN

]
− ρo = − (Ro +D)

−1
Dρo. (26)

Then, defining ρ̃ as

ρ̃ = ρ̂rIVN − E
[
ρ̂rIVN

]
= (RN +D)

−1
RN ρ̂

IV
N − (Ro +D)

−1
Roρo,

(27)

the expression of the variance of the regularized estimate
becomes

E
[
ρ̃ρ̃T

]
= (Ro +D)−1RoE[

(
ρ̂IVN − ρo

)(
ρ̂IVN − ρo

)T
]Ro (Ro +D)−1

= (Ro +D)−1 [σ2 (W1 +W2)
]
(Ro +D)−1 .

(28)

Finally, it is possible to compute the mean square error of
ρ̂rIVN as

MSE = E
[
ρ̃ρ̃T

]
+ ρrIVbias

(
ρrIVbias

)T
= (Ro +D)−1

[
σ2 (W1 +W2) +Dρoρ

T
oD
]
(R0 +D)−1

=
(
D−1Ro + I

)−1
[
D−1WD−1 + ρoρ

T
o

] (
D−1Ro + I

)−1
,

(29)

where W = σ2(W1 +W2).
The MSE expression (29) is very similar to Equation (22)

of [20], which is valid in case of additive noise on the output.
Now the additive noise is on the input of the system to
identify, namely the virtual error ev(t), which comes from
the noisy output of the system y(t). It follows that in (29),
W replaces Ro. However, the following Proposition holds.

Proposition 1: Let the MSE of the controller estimate be
as in (29). The optimal kernel minimizing the MSE is given
by

Πo = ρoρ
T
o . (30)

Proof: The proof follows the line of the proof of
Lemma 2 in [5]. It suffices to observe that Πo makes the
MSE smaller than with any other Π also in (29), for any
positive semi-definite matrix W .

The above results means that the optimal regularization
term for controller identification (in a errors-in-variable
framework) corresponds to

D−1o =
ρoρ

T
o

σ2

and coincides with the one used in system identification
where the input is noiseless and the output is noisy.

V. SIMULATION EXAMPLE

In order to evaluate the performance of the regularized
VRFT control strategy, the benchmark example of [14] is
considered. Let the plant be

G(q−1) =
0.28261q−3 + 0.50666q−4

A(q−1)
, (31)

where A(q−1) = 1 − 1.41833z−1 + 1.58939z−2 −
1.31608z−3+0.88642z−4. Now take the feedback controller

Ko(q
−1) =

5∑
k=0

ρokq
−k

1− q−1 , (32)

where ρo = [0.2045; 0.2715; 0.2931; 0.1643; 0.0084]T and
consider the reference model built as

M(q−1) =
G(q−1)Ko(q

−1)

1 +G(q−1)Ko(q−1)
,

Notice that, by construction, M is achievable if the controller
class

K(q−1) =

5∑
k=0

ρkq
−k

1− q−1 , (33)

is selected for control design. Finally, select W (q−1) = 1.
Let a pseudo-random-bounded-signal (PRBS) of N = 512

samples be used to feed the system and the signal-to-noise
ratio SNR = var [y0(·)] /σ2 = 5. A Monte Carlo simulation
over 100 experiments is then performed. The experiments
are carried out by considering the same input u and different
realizations of the noise v.

The Bode diagrams for the closed-loop systems result-
ing from the standard VRFT formula in (7) are shown
in Figure 3. Notice that, as already observed, the method
is not statisticaly efficient and the estimator suffers from
high variance. Furthermore, in some experiments (i.e., for
particular realizations of the noise) the identified controller
leads to unstable closed loop system. In these situations,
for internal stability to be guaranteed, the (conservative)
H∞ constraint in [23] should be added to the optimization
problem.

In this scenario, regularization could help to enhance
the statistical performance of the design, by reducing the
variance at the price of introducing a small bias.
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Fig. 3. Frequency responses of the achieved closed-loop systems over 100
experiments: the classical VRFT approach.

First of all, Π has to be tuned, whatever its hyperpa-
rameterization is. In classical system identification scenario,
this is carried out by maximizing the marginal likelihood
of the output data (corrupted by the noise) with respect to
λ and α (empirical Bayes approach). Although controller
identification is an errors-in-variable problem (the noise
actually affects the input while the output of the controller
u is noiseless), it will be shown here that this established
technique provides a good tuning of the kernel matrix also
in this case (the input noise can be seen - approximately -
as an equivalent noise on the output).

Let consider different kernels. At each run, the tuning
of each Π is accomplished by employing the MATLAB R©

function arxRegul of the System Identification Toolbox (see
[16]).

For what concerns the estimate of σ2, such a parameter is
instead selected by using a low bias (i.e., high order) estimate
of the plant model Ĝ:

σ̂2 =
1

N

N∑
t=1

(
y(t)− Ĝ(q−1)u(t)

)2
. (34)

It should be here remarked that the information given by
the estimate of the plant, does not make the design method
model-based, since Ĝ is not directly used to compute the
controller but only employed to find the best regularization
term. Another way to proceed could be to consider σ2 as a
further hyperparameter.

The final simulation results show that the regularized
version of VRFT outperforms the standard approach. In
Figure 4, a boxplot with the model reference costs in
all the situations is illustrated. In this example, the High
Frequency Stable Spline kernel provides the best regularized
performance, which is very close to the optimal regularized
VRFT in terms of bias, whereas all regularized approaches
are better than the classical method in terms of variance.

The additional performance improvement given by the
HF kernel is obviously example dependent. However, this
result is very important as it shows that, whenever we

Fig. 4. Closed-loop model matching performance(3) for classical and
regularized VRFT (with different kernels).

Fig. 5. Frequency responses of the achieved closed-loop systems over 100
experiments: the regularized VRFT approach with the HF kernel.

have some (even rough) information about the plant, such
information can be exploited to further improve the statistical
performance of the estimate. In this example, it is sufficient
to know that the system is resonant and that we expect the
optimal control law to properly compensate the output oscil-
lations (because we selected a non-resonant M ). Therefore,
HF kernel becomes a good choice as it allows to model
the impulse response of an oscillatory system and accurately
matches the optimal controller.

The Bode plots of the closed loop system obtained with the
HF-regularized identified controller are reported in Figure 5
to be compared with the standard performance of Figure 3.

Finally, the bayesian estimate is compared to the regular-
ized approach in [10]. In Figure 7, it is evident that such
an approach is outperformed by the approach proposed here.
This can be also appreciated in Figure 4 (the approach in
[10] is denoted as Reg CC, standing for the Convex-Concave
procedure required to tune the kernel).

Notice that both the above presented regularized ap-
proaches are not far from the ideal performance given in
Figure 6.
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Fig. 6. Frequency responses of the achieved closed-loop systems over 100
experiments: the regularized VRFT approach with the optimal kernel.

Fig. 7. Frequency responses of the achieved closed-loop systems over 100
experiments: the regularized VRFT approach with the kernel in [10].

VI. CONCLUSIONS

Regularization is a well-established tool for finding the
best bias-variance trade-off in estimation problems. The
increase of performance in system identification has been
adequately proven and, in particular, the Bayes perspective
gave an interesting insight to suitably tune the regularization
term.

In this paper, the Bayesian approach to regularization is
applied to the VRFT method for direct data-driven design of
feedback controllers. Regularization has already been shown
to be a useful tool in this context, as VRFT is based on
IV estimates, which suffer from high variance. The main
results of this paper are two: (i) the optimal regularization
term has the same form of that used in system identification
given in [5]; (ii) the bayesian approach for regularization
may outperform the existing approach for regularized VRFT
in [10]. The latter observation holds especially when a-priori
knowledge of the system dynamics is available to suitably
address the selection of the kernel.

In future work, we will further investigate the use of the
marginal likelihood approach in data-driven control design.
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