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Abstract— In this paper we define a novel index of node
centrality in social networks that extends the recently proposed
Harmonic Influence Centrality (HIC) and that we call Local-
Harmonic Influence centrality (L-HIC). Indeed, when compared
with the HIC, our index shows a local nature that rules out one
pathological behavior of the HIC. Similarly to the HIC, the L-
HIC can be approximated by a distributed message passing
algorithm that is inspired by an analogy between electrical
and social networks on tree graphs. We prove a result that
guarantees convergence on graphs containing at most one cycle.

I. INTRODUCTION

In the study of networks and dynamical processes therein,
one important issue is the identification of the most influen-
tial nodes, i.e. those with the higher ability to drive the others
towards a desired state. Different notions of centrality have
been proposed, depending on the process and the control
objective, see [1], [2], [3], [4], [5].

Inspired by works like [6], [7], [8], [9], we describe an
opinion dynamics model in a network containing stubborn
agents. Regular agents are influenced uniformly by their
neighbors and update their opinions following a local con-
sensus rule that includes a bias.

Given a group of stubborn agents, we wish to identify
among the remaining regular agents the one that, once turned
into a stubborn, would “influence” the network the most. We
formulate an Optimal Stubborn Placement Problem assuming
that, without loss of generality, the given stubborns and the
bias have null opinion, while the “test” stubborn has opinion
one. The solution of this optimization problem can be used
in a greedy sub-optimal routine to place further stubborns
in the network thanks to the submodularity of the harmonic
influence [8].

In order to measure the influence of the test stubborn,
we generalize the Harmonic Influence Centrality index,
introduced in [1], [10] to account for the bias. We call the
new measure Local-HIC: indeed, the opinion dynamic model
has a useful electrical interpretation that justifies the use
of the adjectives local and harmonic in the index name.
In fact, the asymptotic opinion of the regular agents can
be computed as the harmonic electrical potential when the
social graph is interpreted as an electrical network. In this
interpretation, the bias opinion plays the role of reference
potential, localizing the decay of the stubborns influence.
The electrical interpretation also suggests how to design a
message passing algorithm (MPA) to approximate the L-
HIC. Such an MPA is exact and convergent on trees and
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converges on regular graphs, by a direct extension of the
results in [1]. By using our formulation, in this paper we
prove that the MPA converges on any graph containing at
most one cycle. Actually, we believe that our approach can
be extended to general topologies.

Paper Structure: Section II describes the opinion dy-
namic model with the external bias, introduces the Local-
HIC index, and formulates the optimal stubborn placement
problem. Section III discusses the electrical interpretation of
the model, gives the expression of the L-HIC, and studies
its properties. Section IV presents the MPA to compute the
L-HIC, its proof of convergence on unicyclic graphs, and
some simulation results. Section V concludes the paper.

Notation: The set of real and non-negative real numbers
are denoted by R and R+, respectively. Vectors are denoted
with boldface letters and matrices with capital letters. The
all-zero and all-one vectors are denoted by 0 and 1, re-
spectively. The symbol I denotes any identity matrix with
appropriate dimension. The symbol 4 denotes entry-wise ≤
for vectors and matrices. The symbol ≺ is used if the entry-
wise inequality is strict for at least one entry. Given a matrix
Q, Q> denotes its transpose and Q−1 its inverse. Given a
vector v, Diag(v) is the square diagonal matrix with the
entries of v on the main diagonal. The cardinality of the
set S is denoted by |S|. Given the matrix Q ∈ RS×S and
the subsets T, T ′ ⊆ S, QT,T ′ denotes the sub-matrix of Q
that selects the rows and columns corresponding to T and
T ′, respectively. A non-negative matrix Q ∈ RS×S+ is said
to be stochastic, sub-stochastic and strictly sub-stochastic if
Q1 = 1, Q1 4 1 and Q1 ≺ 1, respectively. A matrix Q
is called Schur stable if all its eigenvalues are strictly inside
the unit circle.

II. OPINION DYNAMICS AND OPTIMAL STUBBORN
AGENT PLACEMENT

Consider a simple, undirected and connected graph G =
(I, E) with node set I of cardinality N and edge set E. The
set Ni = {j ∈ I : {i, j} ∈ E} contains the neighbors of i
in G; the degree of i is di = |Ni|. Each node represents an
agent, endowed with a scalar opinion xi[t] of initial value
xi[0] ∈ R, updated at discrete time steps t ∈ N. All opinions
are stacked in the vector x[t] ∈ RI .

The agents are partitioned in two subsets: the set R of
regular agents and the set S of stubborn agents. Stubborn
agents never change their opinions, thus

xS [t] = xS [0] ∀t ∈ N.

Instead, each regular agent updates its opinion to a convex
combination of its own opinion, the opinions of its neighbors,



and the constant external bias xb ∈ R. Consider a sub-
stochastic matrix Q ∈ RI×I+ and a non-negative vector
q ∈ RI+ such that{

Qij = 0⇔ {i, j} /∈ E∑
j Qij + qi = 1

∀i ∈ R . (1)

The weights Qij and qi represent how much agent i trusts
agent j and the bias, respectively. The update rule of the
regular agents takes the compact form

xR[t+ 1] = QR,RxR[t] +QR,SxS [0] + qRxb ∀t ≥ 0,

with initial condition xR[0] and with the following assump-
tion.

Assumption 0: QR,R is a strictly sub-stochastic matrix. •
Thanks to the connectivity of G, this assumption implies that
QR,R is a Schur stable matrix [11, Lemma 5]. Thus, given
xS [0] and xb, the opinions of the regular agents tend to the
limit xR[∞], which is the unique solution of

xR[∞] = QR,RxR[∞] +QR,SxS [0] + qRxb . (2)

The regular agents’ asymptotic opinions xR[∞] are convex
combinations of the opinions xS [0] and the bias xb.

In our model we assume that each regular agent weights
uniformly the influence of his neighbors in G.

Assumption 1: Row by row, the non-zero entries of the
matrix QR,I have the same value. •
Assumption 1 and (1) together are equivalent to the existence
of a non-negative vector γ ∈ RI+ such that for every i ∈ R

Qij =

{
(di + γi)

−1 if j ∈ Ni
0 otherwise

and qi =1−
∑
j Qij = γi(di+γi)

−1. For i /∈ R, the values
Qij and qi have no role and will be chosen at convenience.

To formulate the Optimal Stubborn Agent Placement
(OSAP) problem, given the graph G = (I, E) we fix a subset
Z ⊂ I and the vector γ ∈ RI+. The decision variable is
` ∈ I \ Z: the set of stubborn agents is the disjoint union
S` = Z ∪ {`}. Without loss of generality we assume the
following initial conditions.

Assumption 2: The opinion of the stubborn agents are
xZ [0] = 0 and x`[0] = 1, while the bias is xb = 0. •

The regular agents form the subset R` = I \ S`; their
asymptotic opinions are collected in the vector xR` [∞].
Following [1], we define the influence of ` on the network as
the sum of the asymptotic opinions of all the agents. Thus,
the Local Harmonic Influence Centrality (L-HIC) of ` is

H(`) := 1 + 1>xR` [∞].

The OSAP problem amounts at finding the agent in I \ Z
with highest L-HIC:

`∗ = argmax
`∈I\Z

H(`).

The agent `∗ is the best suited to introduce a new, different
opinion in the social network (with respect to the null bias
and the null opinion of the stubborn agents in Z).

We stress that our formulation of the opinion dynamic
model distinguishes the role of stubborn agents and bias,
with the freedom to give a different weight to the bias; this
choice will be useful in the proofs of Section IV. Note that
the bias can be regarded as an additional stubborn agent, to
which every node may be connected. For γ = 0, we recover
the formulation of [1].

III. THE ELECTRICAL INTERPRETATION

In the light of Assumptions 0 and 1, the opinion dynamic
model of Section II is intimately related to the linear circuit
theory and the asymptotic opinions xR` [∞] can be inter-
preted as electrical potentials.

In general an electrical network is a pair (N , C), where
N = (J, F ) is a simple connected graph and C ∈ RJ×J+

is a non-negative, symmetric matrix “adapted” to it (i.e.
Cij = Cji = 0 ⇔ {i, j} /∈ F ). To each edge {i, j} ∈ F
we assign the electrical conductance Cij and hence we call
C conductance matrix. In the following we describe the
electrical network (N , C) corresponding to the our opinion
dynamic model.

Consider the graph G = (I, E) of the opinion dynamic
model and the vector γ. Given Assumptions 0 and 1, a new
vector γ̃ ∈ RI+ with γ̃R = γR and γ̃S = 1 is always γ̃ � 0.
Consider the extended node set Ib := I ∪ {b} and the new
graph N = (Ib, E∪Eb), obtained adding to G the reference
node b and the edges in Eb = {{b, i} : i ∈ I, γ̃i > 0}.
We remark that the graph N is connected by construction.
Corresponding to G we introduce the adjacency matrix A ∈
{0,1}I×I with Aij = Aji = 1 ⇔ {i, j} ∈ E and the
Laplacian matrix L = Diag(A1)−A. Then, the conductance
matrix C ∈ RIb×Ib+ has entries

CI,I = A, CI,{b} = γ̃, C{b},I = γ̃>, C{b},{b} = 0 (3)

The pair (N , C) is the electrical network corresponding to
our opinion dynamic model: edges between nodes in I have
unit conductance while edges between regular nodes in R
and node b have conductance γi. The conductance of edges
between S and node b will not affect the following analysis.

The asymptotic opinions of the regular agents, solution
of (2), coincide with the electrical potentials that solve the
circuit equations of the network.

Lemma 1: Consider the opinion dynamic model on the
graph G with stubborn agents’ set S, initial opinions x[0]
and bias xb, and let Assumptions 0 and 1 hold. Consider the
electrical network (N , C) as defined above and the vector
with the nodes’ electrical potentials y ∈ RIb . If the potentials
of the node b and the nodes in S are held at yb = xb and
yS = xS [0] respectively, then yR = xR[∞].

Proof: Given the Assumptions 0 and 1, the electri-
cal network (N , C) described above is connected, has a
symmetric conductance matrix C and contains at least one
node with known and fixed potential. The potentials of the
nodes in R ⊂ I ⊂ Ib are uniquely determined using the
Kirchhoff’s current law and the Ohm’s law. The system of



|R| independent node equations is

∀i ∈ R
∑
j∈Ib

Cij(yi − yj) = 0.

Substituting the entries of C (3) and using γ̃R = γR we get

∀i ∈ R
∑
j∈Ni

(yi − yj) + γi(yi − yb) = 0. (4)

Dividing each equation by di + γi > 0 we recognize the
elements Qij and qi

∀i ∈ R
∑
j∈I

Qij(yi − yj) + qi(yi − yb) = 0.

Since qi +
∑
j∈I Qij = 1 for every i ∈ R, we get

∀i ∈ R yi =
∑
j∈R

Qijyj +
∑
j∈S

Qijyj + qiyb

that in compact form is yR = QR,RyR +QR,SyS + qRyb.
If yS = xS [0] and yb = xb, the vector yR coincides with
xR[∞] because it satisfies the set of equations (2).

Assumption 2 sets the values of bias and stubborn agents’
opinion, thus fixing the potentials of the node b and the nodes
in S`. The potential of the nodes in R` can be computed with
the sub-matrix LR`,R` of the Laplacian of G.

Lemma 2: Consider the above electrical network (N , C),
the subset Z ⊂ I and the node ` ∈ I \Z. Let Assumptions 0,
1 and 2 hold. The potentials of the nodes in R` are

yR` = (LR`,R` +Diag(γR`))−1AR`,{`} . (5)
Proof: We rewrite the system (4) as

∀i ∈ R (di + γi)yi −
∑

j∈Ni∩R`

yj =
∑

j∈Ni∩S`

yj + γiyb.

Using yb = 0, y` = 1 and yi = 0 if i ∈ Z ⊂ S`, we get

∀i ∈ R (di + γi)yi −
∑

j∈Ni∩R`

yj = Ai`

since Ai` = 1 ⇔ ` ∈ Ni. Using the sub-matrix LR`,R` of
the Laplacian of G, we recognize that the system above is

(LR`,R` +Diag(γR`))yR` = AR`,{`}

The result follows because the matrix LR`,R` + Diag(γR`)
is invertible: LR`,R` is positive definite [12] (the graph G is
connected and ∅ ⊂ R` ⊂ I) and γR` is non-negative.

Using the electrical interpretation – Lemmas 1 and 2 – we
can compute the L-HIC as

H(`) = 1 + 1>yR`

= 1 + 1>
(
LR`,R` +Diag(γR`)

)−1
AR`,{`}.

The Assumptions 0, 1 and 2 will always hold in the
remaining part of the paper.
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Fig. 1. The L-HIC of the nodes i ≥ 2 in the line graph with 50 nodes,
Z = {1} and bias γ1. Circles correspond to γ = 0.010; squares to γ = 0.
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Fig. 2. The node’s potential in the line graph with 50 nodes, Z = {1},
bias γ1 and ` = 16. The solid line corresponds to γ = 0.010; the dashed
line to γ = 0.

A. The Local Harmonic Influence Centrality

The potentials yR` are said to be the harmonic extension
of the fixed potentials of bias and stubborn nodes to the
regular nodes. For this reason, [1] and [10] call the index
H(`) the Harmonic Influence Centrality (HIC) of node `.

We call our index Local HIC due to the presence of the
bias, as discussed in the following simple example. Let G =
(I, E) be the line graph with N = 50 nodes; let the first end
node be a zero stubborn, e.g. Z = {1}. Assume the bias is
uniform, i.e. γ = γ1 with γ ≥ 0. In the electrical network,
there is a unitary resistance corresponding to any edge in E
while there is a resistance γ−1 between the reference node
b and any node in I \Z. The L-HIC of `, for any γ ≥ 0, is

Hγ(`) := 1 + 1>(LR`,R` + γI)−1AR`,{`} , (6)

the node achieving the highest L-HIC is

`∗γ = argmax
`∈I\Z

Hγ(`)



We stress that H0(`) is the index of [1], [10].
In the Figure 1 we compare Hγ(`) with γ = 0.010 (red

circles) with H0(`) (blue squares), for ` ∈ I \ Z. The full
markers represent the nodes `∗γ and `∗0. In Figure 2 we set
` = 16 and draw the harmonic potential profiles yγ(16)
(solid red line) and y0(16) (blue dashed line).

If γ = 0 the bias does not come into play and we recover
the result of [1]. The potential of every node i with i > ` is
one, regardless of the distance |i−`|, because these nodes are
only connected to the stubborn ` (see Figure 2 for i > 16).
Using electrical computations it is easy to see that H0(`) =
N − `/2 for ` ≥ 2 (as confirmed by Figure 1) and hence
`∗γ = 2. However, fixed ` if N →∞, H0(`) diverges.

Even if γ > 0 is small, the profile of Hγ(`) is quite
different from that of H0(`), see Figure 1. The nodes in
{20, . . . , 40} have a similar value of Hγ(`) and `∗γ 6= 2.
In Figure 2, the potentials of the nodes with i > 16 (red
line) decay with the distance |i − `|. In a very long line
graph (N going to infinity), it is not difficult to show that
the decay would be exponential in |i− `| and hence Hγ(`)
cannot grow unboundedly. This is caused by the uniform
bias, which makes every node connected to the reference
potential. For this reason we use the adjective Local.

Even if the above example shows that HIC and L-HIC can
be arbitrarily far apart for large graphs, the following result
confirms the intuition that HIC and L-HIC can be arbitrarily
close for small γ.

Proposition 3: Let the graph G = (I, E) and the subset
Z ⊂ I be given and assume γ = γ1. For all ` ∈ I \ Z, the
L-HIC Hγ(`) is a Lipschitz continuous function of γ, with
Lipschitz constant independent of `.

Proof: The matrix LR`,R` is symmetric and positive
definite. We denote by λ`i and v`,i, with i ∈ {1, . . . , |R`|},
its ith eigenvalue and orthonormal eigenvector, respectively.
The matrix (LR`,R` + γI)−1 has spectral decomposition

(LR`,R` + γI)−1 =
∑
i(λ

`
i + γ)−1v`,iv`,i

>

that, plugged into the L-HIC Hγ(`) of ` (6), gives

Hγ(`) = 1 +
∑
i(λ

`
i + γ)−11>v`,iv`,i

>
AR`,{`}

= 1 +
∑
ic
`
i(λ

`
i + γ)−1

where the coefficients c`i depend on `. Since λ`i > 0 for every
i and `, the L-HIC is a continuous, differentiable function of
γ ≥ 0. Moreover, given a pair γ, γ′ ≥ 0 we have∣∣Hγ(`)−Hγ′(`)

∣∣ = ∣∣∣∣∣∑
i

c`i

[
1

λ`i + γ
− 1

λ`i + γ′

]∣∣∣∣∣
≤
∑
i

∣∣c`i ∣∣ |γ − γ′|
(λ`i + γ)(λ`i + γ′)

≤ |γ − γ′|
∑
i

∣∣c`i ∣∣ (λ`i)−2 .
Therefore, for any ` ∈ I \ Z

|Hγ(`)−Hγ′(`)| ≤ α |γ − γ′|

with α := max`

(∑
i

∣∣c`i ∣∣ (λ`i)−2) and the thesis follows.

IV. DISTRIBUTED COMPUTATION OF THE L-HIC

This section is devoted to the distributed computation of
the L-HIC index.

The computation of the L-HIC index H(`) by its def-
inition (6) requires the inversion of the matrix (LR`,R` +
Diag(γR`)): this procedure has to be repeated for every node
` ∈ I \ Z to solve the Optimal Stubborn Agent Placement
problem. Thus, this direct method requires global knowledge
of the graph and becomes computationally demanding for
large networks. Hence, it is interesting to develop a dis-
tributed approach, to allow every node in I \ Z to estimate
its own L-HIC index.

We shall make the following assumption.
Assumption 3: Either Z 6= ∅ or γ � 0 or both. Moreover,

the degree of any node z ∈ Z is dz = 1. •
Indeed, the case with Z = ∅ and γ = 0 is trivial: regardless
of the choice of `, the opinion of every agent in I \ {`}
tends asymptotically to one and hence H(`) = N . Moreover,
nodes in Z can be assumed to have degree one without loss
of generality, because otherwise one can simply replace the
stubborn node with degree k with k “copies” of the same
node, each only connected to one of the original neighbors.

We briefly recall some terminology. A tree is a connected
graph T = (I, E) with |I| = |E| − 1. A connected graph
G = (I, E) is unicyclic if |I| = |E|; it is a cycle if moreover
di = 2, ∀i ∈ I .

Inspired by the electrical analogy, the authors of [1],
[10] proposed a Message Passing Algorithm (MPA) for the
distributed estimation of the HIC index, i.e. the L-HIC with
γ = 0 and Z 6= ∅. If the graph G is a tree, the MPA
converges in a finite number of iterations to the exact HIC
values. Moreover, convergence was proved on regular graphs
and conjectured on general graphs.

Using the electrical analogy, we extend the MPA to the
presence of a bias γ < 0. Consider a connected graph G =
(I, E), the subset Z ⊂ I and the bias vector γ ∈ RI+. Let
{i, j} be an edge in E and let t ∈ {0, 1, . . .} be the iteration
counter. At each step, node i sends to node j two messages:
W i→j [t] ∈ [0,1] and Hi→j [t] ∈R+. These two messages can
be interpreted as follows [1].

• If G is a tree and j ≡ `, then W i→j [t] is the time-t
estimate of the potential of i.

• If G is a tree, remove the edge {i, j} and consider the
connected subgraph containing i. Then, Hi→j [t] is the
time-t estimate of the L-HIC index of i in its subgraph.

At t = 0 the MPA starts with the following messages

if i /∈ Z : W i→j [0] = 1, Hi→j [0] = 1;

if i ∈ Z : W i→j [0] = 0, Hi→j [0] = 0.

At every iteration, if i /∈ Z, the messages update with

W i→j [t+1]=
(
1 + γi +

∑
k∈Ni\{j}

(
1−W k→i[t]

))−1
(7)

Hi→j [t+1]=1 +
∑
k∈Ni\{j}W

k→i[t]Hk→i[t], (8)



whereas there is no update if i ∈ Z: W i→j [t + 1] = 0 and
Hi→j [t+ 1] = 0. The estimate of the L-HIC index H(`) is

H`[t] = 1 +
∑
i∈N`

W i→`[t]Hi→`[t].

Next, we show the convergence of the MPA on trees and
prove a theorem that implies the convergence of the MPA
on cycles. Combining the two results, we will finally show
the convergence of the MPA on unicyclic graphs.

We need the following notation. Given the graph G =
(I, E), we denote its size by |G| = |I|. We call leaf any node
of degree one. We call simple path any ordered sequence of
distinct nodes (k1, k2, . . . , kq) (excluding k1 and kq at most),
such that {kp, kp+1} ∈ E for all p ∈ {1, . . . , q−1}. Let G be
a tree and for {i, j} ∈ E consider all the simple paths having
form (j, i, . . .). We let T ij< denote the smallest subgraph of
G containing all such paths, while T <ij is the subgraph of
T ij< without the edge {i, j} and the node j.

Lemma 4: Consider a tree T = (I, E) and let j be a
leaf, with {i, j} ∈ E. The messages W i→j [t] and Hi→j [t]
converge after a finite number of steps. Moreover, W i→j [t]
is non-increasing; limtW

i→j [t] = 1 if and only if Z = ∅
and γI\{j} = 0; and limtH

i→j [t] ≤ |T | − 1.
Proof: Consider any node b 6= j and let a ∈ Nb be

the unique neighbor of b such that there exists a simple path
from b to j containing a. If Nb \ {a} = ∅ then b is a leaf
and the messages W b→a[t] and Hb→a[t] converge by time
t = 1. Note that in any case W b→a[1] ≤ W b→a[0] while
W b→a[1] = 1 if and only if b /∈ Z and γb = 0. Moreover
Hb→a[0] ≤ 1 = |T <ba|.

If Nb \ {a} is non-empty, assume for the induction hy-
pothesis that ∀c ∈ Nb \ {a} the messages W c→b[t] and
Hc→b[t] converge by time sc, W c→b[t] ≤ W c→b[t − 1],
Hc→b[sc] ≤ |T <cb| and finally W c→b[t] = 1 if and only
if for every node k in T <cb, γk = 0 and k /∈ Z. Then,
the messages W b→a[t] and Hb→a[t] converge at time sb =
1+max sc, and W b→a[t+1] ≤W b→a[t] because the update
function is monotone increasing in the messages W c→b[t].
Moreover W b→a[sb] = 1 if and only if for every node k in
T <ba, γk = 0 and k /∈ Z, whereas Hb→a[t] ≤ |T <ba| since
Hc→b[sc] ≤ |T <cb| and |T <ba| = 1+

∑
c |T <cb|. The thesis

then follows by induction.
Lemma 4 guarantees that the L-HIC estimate Hj [t] of any

node j in any tree converges after a finite number of steps.
In fact it is sufficient to apply the lemma to any sub-tree
T <ij with i ∈ Nj .

We prove a theorem that guarantees the convergence of
the MPA on any cycle graph C where Z = ∅ and γ � 0.
For i /∈ Z, we consider the following generalization of the
MPA update laws (7) and (8):

W i→j [t+1]=
(
1+ γi[t]+

∑
k∈Ni\{j}

(
1−W k→i[t]

))−1
(9)

Hi→j [t+1]=1+ βi[t]+
∑
k∈Ni\{j}W

k→i[t]Hk→i[t] (10)

where γi[t] ∈ R+ is monotonically increasing for every i
and non identically zero for at least one i, while βi[t] ∈ R+

converges for every i.

Theorem 5: Consider the cycle C = (J, F ) with J =
{0, . . . , N − 1} and let Z = ∅. Let γ[t] ∈ RJ+ be a sequence
of vectors with γ[t + 1] < γ[t] for every t, such that γi[t]
is not identically zero at least for one i. Let β[t] ∈ RJ+ be
a converging sequence of vectors. The modified MPA with
update rules (9) and (10) converges on C.

Proof: The messages flowing in the edges of C can
be grouped in two independent families: those flowing
“clockwise” and those “counterclockwise”. It is sufficient
to prove that every clockwise message converges to prove
that the modified dynamic (9) and (10) converges. Consider
the clockwise messages and stack them in the two vectors
w[t] ∈ [0, 1]J and h[t] ∈ RJ+ with

wi[t] =W i→i+1[t], hi[t] = Hi→i+1[t]

with index addition “modulo N” (also in the following).
First, we show that limt→∞w[t] ≺ 1. Given the as-

sumption on γ[t], it exists s ≥ 0 such that for t < s,
γ[t] = 0 while γ[s] � 0. Hence, w[t] = 1 for t ≤ s,
while w[s+ 1] ≺ 1. Indeed, it exists j such that γj [s] > 0,
which implies

wj [s+ 1] =
1

1 + γj [s] + (1− wj [s])
=

1

1 + γj [s]
< 1 .

Now, let t ≥ s+1 be such that w[t] ≺ w[t−1] and let i such
that wi[t] < wi[t−1]. Given the monotonicity of γi+1[t], the
strict inequality on node i implies a strict inequality on node
i+ 1 one step later, because

wi+1[t+ 1] =
1

2 + γi+1[t]− wi[t]

<
1

2 + γi+1[t− 1]− wi[t− 1]
= wi+1[t] .

Hence w[t + 1] ≺ w[t], and by induction this inequality
holds for every t ≥ s + 1. The vector w[t] ∈ [0, 1]J thus
converges with wi[∞] < 1 for every i.

Now, consider the matrix M [t] ∈ RJ×J+ such that

∀i ∈ J Mi,i−1[t] = wi−1[t]

while all the other entries are zero. Each matrix M [t] is non-
negative, irreducible and for t ≥ s + 1, M [t]1 ≺ 1, hence
limtM [t] is a Schur stable matrix. The modified update rule
(10) for the vector h[t] has compact form

h[t+ 1] = 1+ β[t] +M [t]h[t]

with h[0] = 1. Using the convergence of β[t] and of
M(t), the convergence of h(t) follows from straightforward
calculus considerations.

Observe that with γ[t] = γ � 0 and β[t] = 0 in the
statement of the Theorem 5 we obtain the MPA with update
rules (7) and (8). Hence, the theorem proves the convergence
of the MPA on cycles.

We are now ready to prove our result on the convergence
of the MPA on unicyclic graphs. Any unicyclic graph G
can be decomposed in a “core” cycle to which several
appendages are connected. Each of these appendages is a
tree and has just one node in common with the cycle. The



key idea is the following. All the messages coming from
the appendages toward the cycle converge in finite time.
Assume j is a node in the cycle and i ∈ Nj is a node
in one appendage: the message W i→j [t] can be seen as an
additional contribution to the bias of j, while the message
Hi→j [t] just add up in the cycle computation. Finally, after
the messages on the cycle have converged, also the messages
flowing back in to the appendages will converge.

Corollary 6: Consider a connected unicyclic graph G =
(I, E), the subset Z ⊂ I and the bias vector γ ∈ RI+. The
MPA with update rules (7) and (8) converges on G.

Proof: Let C = (J, F ) be the unique cycle contained
in G. Take {i, j} ∈ E such that j ∈ J and i 6∈ J . Observe
that the subgraph T ij< is a tree and apply Lemma 4 to
T ij< using the edge {i, j}: we obtain that the messages
W i→j [t] and Hi→j [t] converge in finite time. Let the vectors
γ′[t],β′[t] ∈ RJ+ be defined by

γ′j [t] = γj +
∑
i∈Nj\J(1−W

i→j [t])

β′j [t] =
∑
i∈Nj\JH

i→j [t].

These vectors satisfy the hypothesis of Theorem 5: indeed,
by Assumption 3 there exists in G a node i such that either
i ∈ Z or γi > 0. We thus obtain that any message in C
converge. It remains to prove that the messages going back
in the appendages converge. For every {i, j} ∈ E such
that j ∈ J and i 6∈ J , consider the messages W j→i[t]
and Hj→i[t]. Observe that they are continuous functions
of convergent messages, therefore they converge. By an
inductive argument, all the message in T ij< converge.

Finally, we present some simulation results to compare the
L-HIC and its estimate obtained with the distributed MPA. To
produce the simulation, we generate an Erdős-Rényi random
graph with N = 50 nodes and link probability 0.100 and we
place one null stubborn: the bias vector is uniform with γ =
0.100. The MPA converges and returns an approximation
that overestimates the L-HIC of all the nodes, but cor-
rectly identifies the nodes with highest L-HIC. We illustrate
this fact by Figure 3, where every point has coordinates
(Hγ(`), Hγ(`) MPA). In the plot, the approximate ranking
is correct if the points form a strictly increasing function:
note that the ranking of the 7 nodes with largest L-HIC is
correctly identified by the MPA computation. Furthermore,
Spearman’s rank-order correlation coefficient [13] between
the two series is 0.99549, implying a very high correlation
between the two rankings. This is good news because, in
view of the Optimal Stubborn Placement Problem, we are
more interested in ranking the nodes by their L-HIC than in
obtaining a precise approximation.

V. CONCLUSION

Extending some recent work in distributed influence
maximization [1], in this paper we have introduced the
Local-Harmonic Influence Centrality index and a distributed
message passing algorithm to compute it. We proved the
convergence of this algorithm on any graph that contains
at most one cycle. Our convergence analysis subsumes the
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Fig. 3. Ranking correlation of the L-HIC and its estimate with the MPA on
a Erdős-Rényi random graph, with N = 50 nodes, link probability 0.100,
one null stubborn and bias γ = 0.1001. The coordinates of the crosses are
(Hγ(`), Hγ(`) MPA).

results in [1] and, based on preliminary results that could
not be included in this paper, we envision the possibility to
extend it to general graph topologies.

REFERENCES

[1] L. Vassio, F. Fagnani, P. Frasca, and A. Ozdaglar, “Message passing
optimization of harmonic influence centrality,” IEEE Transactions on
Control of Network Systems, vol. 1, no. 1, pp. 109–120, 2014.
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