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Abstract— In this paper, we consider the robot motion (or
task) planning problem under some given time bounded high
level specifications. We use metric interval temporal logic
(MITL), a member of the temporal logic family, to represent
the task specification and then we provide a constructive way to
generate a timed automaton and methods to look for accepting
runs on the automaton to find a feasible motion (or path)
sequence for the robot to complete the task.

Index Terms— Timed automata, Temporal Logic, Metric
Temporal Logic

I. INTRODUCTION

Motion planning and task planning have gained an enor-
mous thrust in the robotics community in the past decade
or so. Though, motion (task) planning has attracted a great
deal of research in the past few decades, however recently,
researchers have come up with new metrics and methodology
to represent motion and task specifications. Initially, motion
planning for a mobile robot started with the aim of moving
a point mass from an initial position to a final position in
some optimal fashion. With course of time, people started to
consider planning in cluttered domains (i.e. in presence of
obstacles) and also accounted for the dimensionality and the
physical constraints of the robot.

Though we have efficient approaches for general mo-
tion planning, very few are available or scalable to plan
in dynamic environments or under finite time constraints.
Temporal logics have been used greatly to address complex
motion specifications, motion sequencing and timing behav-
iors etc. Historically temporal logic was originated for model
checking, validation and verification in software community
[1] and later on researchers found it very helpful to use
Linear Temporal logic (LTL), Computational Tree logic
(CTL), Signal Temporal logic (STL) etc. for representing
complex motion (or task) specifications. The developments
of tools such as SPIN [2], NuSMV [3] made it easier to
check if a given specifications can be met by creating a
suitable automaton and looking for a feasible path on that
automaton. However, the construction of the automaton from
a given temporal logic formula is based on the implicit
assumption that there is no time constraints associated with
the specification.
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70NANB11H148 and by DARPA (through ARO) grant W911NF1410384.
The authors are with the Department of Electrical and Computer En-
gineering, and the Institute for Systems Research, University of Mary-
land, College Park, Maryland, USA. email: {yzh89, dmaity,
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Currently motion planning for robots is in such a stage
where it is very crucial to incorporate time constraints since
these constraints can arise from different aspects of the
problem: dynamic environment, sequential processing, time
optimality etc. Planning with time bounded objectives is
inherently hard due to the fact that every transition from
one state to another in the associated automaton has to be
carried out, by some controller, exactly in time from an
initial configuration to the final configuration. Time bounded
motion planning has been done in heuristic ways [4], [5]
and also by using mixed integer linear programming (MILP)
framework [6], [7]. In this paper, we are interested in
extending the idea of using LTL for time-unconstrained
planning to use MITL for time-constrained motion planning.
In [8], the authors proposed a method to represent time
constrained planning task as an LTL formula rather than
MITL formula. This formulation reduced the complexity
of EXP-SPACE-complete for MITL to PSPACE-complete for
LTL. However, the number of states in the generated Büchi
automata increases with time steps.

In this paper, we mainly focus on motion planning based
on the construction of an efficient timed automaton from a
given MITL specification. A dedicated controller to navigate
the robot can be constructed for the general planning problem
once the discrete path is obtained from the automaton. The
earlier results on construction of algorithms to verify timing
properties of real time systems can be found in [9]. The
complexity of satisfiability and model checking problems
for MTL formulas has been already studied in [10] and it
has been shown that commonly used real-time properties
such as bounded response and invariance can be decided
in polynomial time or exponential space. More works on the
decidability on MTL can be found in [11] and the references
there in. The concept of alternating timed automata for
bounded time model checking can be found in [12]. [13]
talks about constructing deterministic timed automata from
MTL specifications and this provides a unified framework
to include all the future operators of MTL. The key to
the approach of [13] was in separating the continuous time
monitoring from the discrete time predictions of the future.
We restrict our attention to generate timed automata from
MITL based on the work done in [14]. It is done by
constructing a timed automaton to generate a sequence of
states and another to check whether the sequence generated
is actually a valid one in the sense that it satisfies the given
MITL specification.

The rest of the paper is organized as follows, section II
provides a background on MITL and the timed automata
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Fig. 1. Timed Automata based on cell decomposition and robot dynamics

based approach for MITL. Section III illustrates how the
timed automata can be used to motion synthesis and we also
provide UPPAAL [15] implementation of the same. Section
IV gives some examples on different time bounded tasks and
shows the implementation results. Section V provides a brief
overview of how a continuous trajectory can be generated
from the discrete plan. Finally, we conclude in section VI.

II. PRELIMINARIES

In this paper, we consider a surveying task in an area by a
robot whose motion is abstracted to a graph. In particular for
our particular setup, the robot motion is captured as a timed
automaton (Fig. 1). Every edge is a timed transition that
represents navigation of the robot from one location to other
in space and every vertex of the graph represents a partition
of the space. Our objective is to find an optimal time path
that satisfies the specification given by timed temporal logic.

A. Metric Interval Temporal Logic (MITL)

Metric interval temporal logic is a specification that in-
cludes timed temporal specification for model checking. It
differs from Linear Temporal Logic on the part that it has
constraints on the temporal operators.

The formulas for LTL are build on atomic propositions by
obeying the following grammar.

Definition 2.1: The syntax of LTL formulas are defined
according to the following grammar rules:

φ ::= > | π | ¬φ | φ ∨ φ | Xφ| φUφ
π ∈ Π the set of propositions, > and ⊥(= ¬>) are the
Boolean constants true and false respectively. ∨ denotes
the disjunction operator and ¬ denotes the negation operator.
U represents the Until operator. MITL extends the Until
operator to incorporate timing constraints.

Definition 2.2: The syntax of MITL formulas are defined
according to the following grammar rules:

φ ::= > | π | ¬φ | φ ∨ φ | φUIφ
where I ⊆ [0,∞] is an interval with end points in N ∪
{∞}. UI symbolizes the timed Until operator. Sometimes
we will represent U[0,∞] by U. Other Boolean and temporal
operators such as conjunction (∧), eventually within I (♦I ),
always on I (�I ) etc. can be represented using the grammar
desired in definition 2.2. For example, we can express time
constrained eventually operator ♦Iφ ≡ >UIφ and so on. In
this paper all the untimed temporal logic is transformed into
until operator and all the timed operator is transformed to
eventually within I , to make it easier to generate a timed
automaton.

MITL is interpreted over n-dimensional Boolean ω-
sequences of the form ξ : N → Bn, where n is the number
of propositions.

Definition 2.3: The semantics of any MTL formula φ is
recursively defined over a trajectory (ξ, t) as:
(ξ, t) |= π iff (ξ, t) satisfies π at time t
(ξ, t) |= ¬π iff (ξ, t) does not satisfy π at time t
(ξ, t) |= φ1 ∨ φ2 iff (ξ, t) |= φ1 or (ξ, t) |= φ2

(ξ, t) |= φ1 ∧ φ2 iff (ξ, t) |= φ1 and (ξ, t) |= φ2

(ξ, t) |=©φ iff (ξ, t+ 1) |= φ
(ξ, t) |= φ1UIφ2 iff ∃s ∈ I s.t. (ξ, t + s) |= φ2 and ∀
s′ ≤ s, (ξ, t+ s′) |= φ1.
Thus, the expression φ1UIφ2 means that φ2 will be true
within time interval I and until φ2 becomes true, φ1 must
be true. The MITL operator©φ means that the specification
φ is true at next time instance, �Iφ means that φ is always
true for the time duration I , ♦Iφ means that φ will eventually
become true within the time interval I . Composition of
two or more MITL operators can express very sophisticated
specifications; for example ♦I1�I2φ means that within time
interval I1, φ will be true and from that instance it will
hold true always for a duration of I2. Other Boolean oper-
ators such as implication (⇒) and equivalence (⇔) can be
expressed using the grammar rules and semantics given in
definitions 2.2 and 2.3. More details on MITL grammar and
semantics can be found in [16], [9].

B. MITL and Timed Automata Based Approach

An LTL formula can be transformed into a Büchi au-
tomaton which can be used in optimal path synthesis [17]
and automata based guidance [18]. Similarly, in this paper,
we focus on developing a timed automata based approach
for MITL based motion planning. MITL, a modification of
Metric Temporal Logics (MTL), disallows the punctuation in
the temporal interval, so that the left boundary and the right
boundary have to be different. In general the complexity
of model checking for MTL related logic is higher than
that of LTL. The theoretical model checking complexity
for LTL is PSPACE-complete [19]. The algorithm that has
been implemented is exponential to the size of the formula.
MTL by itself is undecidable. The model checking process
of MITL includes transforming it into a timed automaton
[9] [14]. CoFlatMTL and BoundedMTL defined in [20] are
more expressive fragments of MTL than MITL, which can be
translated to LTL-Past but with exponential increase in size.
SafetyMTL [11] and MTL, evaluated over finite and discrete
timed word, can be translated into alternative timed automata.
Although theoretically, the results suggest many fragments
of MTL are usable, many algorithms developed for model
checking are based on language emptiness check, which are
very different from the control synthesis i.e. finding a feasible
path. From best of our knowledge, the algorithm that is close
to implementation for motion planning is that of [14].

This paper uses the MITL and timed automaton generation
based on [14]. In the following section, the summary of the
transformation and our implementation for control synthesis
are discussed.
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Fig. 2. Logic tree representation of φ.

III. MITL FOR MOTION PLANNING

A. MITL to Timed Automata Transformation

Consider the following requirements: a robot has to even-
tually visit an area A and another area B in time interval
[l, r], and the area A has to be visited first. This can be
captured in the following MITL,

φ = (¬BUA) ∧ (♦[l,r]B)

It can be represented by a logic tree structure, where every
node that has children is a temporal logic operator and every
leaf node is an atomic proposition, as shown in Fig. 2. Every
link represents an input output relationship.

The authors in [14] propose to change every temporal logic
operator into a timed signal transducer, which is a temporal
automaton that accepts input and generates output. Based on
their definition the Input Output Timed Automaton (IOTA)
used in this paper is defined as the following to fit the control
synthesis problem,

Definition 3.1 (Input Output Timed Automaton):
An input output timed automaton is a tuple
A = (Σ, Q,Γ, C, λ, γ, I,∆, q0, F ), where
Σ is the input alphabet, Q is the finite set of discrete states,
Γ is the output alphabet, C is the set of clock variables, and
I is the invariant condition defined by conjunction of
inequalities of clock variables. The clock variables can be
disabled and activated by setting the rate of the clock 0 or
1 in the invariant I .
λ : Q→ Σ is the input function, which labels every state to
an input, while
γ : Q → Γ is the output function, which labels every state
to an output.
∆ is the transition relationship between states which is
defined by (p, q, r, g), where p is the start state, q is the end
state, r is the clock resets, and g is the guard condition on
the clock variables.
q0 is the initial state of the timed automaton.
F is the set of Büchi states that have to be visited infinitely
often.

The transformation of Until operator and timed Eventually
operator is summarized in Figs. 3, 4 and 5. This is based
on [14] with minor changes to match with our definition of
IOTA. In Fig. 3, the timed automaton for pUq is shown. The
inputs outputs of the states are specified in the second line
within the box of each state. pq̄ means the inputs are [1, 0]

sp̄
p̄/γ = 0

s̄pq̄
pq̄/γ = 0

spq̄
pq̄/γ = 1

spq
pq/γ = 1

z > 0|z := 0

z > 0|z := 0

z > 0
z := 0

z > 0|z := 0

z > 0|z := 0

z > 0
z := 0

z > 0
z := 0

z > 0
z := 0

Fig. 3. The timed automaton for pUq. The inputs and outputs of the
states are specified in the second line of each state. pq̄ means the inputs are
[1, 0] and p̄ means the inputs can be [0, 1] or [0, 0], and γ = 1 means the
output is 1. Transitions are specified in the format of guard|reset. In this
case all the transitions have guard z > 0 and reset clock z. All states in
this automaton are Büchi accepting states except spq̄ . The Büchi accepting
states are highlighted.

Gen1

x′1 == 1
∗/γ = 0

Gen0

x′i == 0, y′i == 0, ∀i = 1, . . . ,m

Gen2

y′1 == 1
∗/γ = 1

Gen3

x′2 == 1
∗/γ = 0

Gen4

y′2 == 1
∗/γ = 1

. . . . . .

Gen2m−1

x′m == 1
∗/γ = 0

Gen2m

y′m == 1
∗/γ = 1

∗|y1 := 0

∗|x1 := 0 ∗|y1 := 0

∗|x2 := 0

∗|y2 := 0

∗|x3 := 0
. . .

∗|ym := 0

∗|x1 := 0

Fig. 4. The timed automaton for the generator part of ♦Ia for motion
planning. 2m is the number of clocks required to store the states of the
timed eventually (♦I ) operator. It is computed based on the interval I .
Detailed computation and derivation can be found in [14]. x′i represents the
rate of the clock xi. By setting the rate to be 0, we essentially deactivate
the clock. The ‘∗’ symbol means that there is no value for that particular
input, output or guard for that state. There are no Büchi states since the
time is bounded

and p̄ means the inputs can be [0, 1] or [0, 0], and γ = 1
means the output is 1. Transitions are specified in the format
of g|r. In this case, all the transitions have guard z > 0
and reset clock z. All states in this automaton are Büchi
accepting states except spq̄ . The Büchi accepting states are
highlighted.

The IOTA for timed eventually (♦Ia) is decomposed into
two automata, the generator generates predictions of the
future outputs of the system, while the checker verifies
that the generated outputs actually fit the inputs. Detailed
derivations and verifications of the models can be found in
[14]. The composition between them is achieved through the
shared clock variables. Additional synchronization (‘ch!’) is
added in our case to determine the final satisfaction condition
for the control synthesis. A finite time trajectory satisfies the
MITL, when the output signal of the generator automaton



Chk1

y1 ≤ b
p̄/∗

Chk00

x1 ≤ a
Chk01

y1 ≤ a

Chk2

x2 ≤ a
p/∗

Chk3

z < b− a
& x2 ≤ a
p̄/∗

Chk4

y2 ≤ b
p̄/∗

Chk5

x3 ≤ a
p/∗

Chk6

z < b− a
& x3 ≤ a
p̄/∗

. . . . . .

Chk3m−2

ym ≤ b
p̄/∗

Chk3m−1

x1 ≤ a
p/∗

Chk3m

z < b− a
& x1 ≤ a
p̄/∗

y1 ≥ b|∗ ∗|z := 0

x1 ≥ a|∗
y1 ≥ a|∗ y1 ≥ a

z := 0

x2 ≥ a|∗ch!

y2 ≥ b|∗ ∗|z := 0

x3 ≥ a|∗
. . .

ym ≥ b|∗ ∗|z := 0

x1 ≥ a|∗

Fig. 5. The timed automaton for the checker part of ♦Ia for motion
planning. 2m is the number of clocks required for the timed eventually
(♦I ) operator. There are no Büchi states since the time is bounded

(Fig. 4) includes a pair of raising edge and falling edge
verified by the checker automaton. The transition from Chk2

to Chk4 (Fig. 5) marks the exact time when such falling edge
is verified. This guarantees that the time trajectory before the
synchronization is a finite time trajectory that satisfies the
MITL.

The composition of IOTA based on logic trees such as that
of Fig. 2 is defined similar to [14] with some modifications
to handle cases when logic nodes have two children, for
example the until and conjunction operators.

Definition 3.2 (I/O Composition):
Let A1

1 = (Σ1
1, Q

1
1,Γ

1
1, C1

1 , λ
1
1, γ

1
1 , I

1
1 ,∆

1
1, q

1
10, F

1
1 ), A1

2 =
(Σ1

2, Q
1
2,Γ

1
2, C1

2 , λ
1
2, γ

1
2 , I

1
2 ,∆

1
2, q

1
20, F

1
2 ) be the input sides

of the automaton. If there is only one, then A1
1 is used.

Let A2 = (Σ2, Q2,Γ2, C2, λ2, γ2, I2,∆2, q2
0 , F

2) be the
output side of the automaton. Because of the input output
relationship between them, they should satisfies the condition
that [Γ1

1,Γ
1
2] = Σ2. The composition is an new IOTA such

that,

A = (A1
1,A1

2)⊗(A2) = ([Σ1
1,Σ

1
2], Q,Γ2, C, λ, γ, I,∆, q0, F )

where

Q ={(q1
1 , q

1
2 , q

2) ∈ Q1
1 ×Q1

2 ×Q2,

s.t.(γ1
1(q1

1), γ1
2(q1

2)) = λ2(q2)}

C = (C1
1 ∪ C1

2 ∪ C2), λ(q1
1 , q

1
2 , q

2) = [λ1
1(q1

1), λ1
2(q1

2)],
I(q11 ,q12 ,q2) = I1

(q11 ,q
1
2)
∩ I2

q2 , q0 = (q1
10, q

1
20, q

2
0) and F =

F 1
1 ∩ F 1

2 ∪ F 2.

B. Path Synthesis using UPPAAL

The overall path synthesis framework is summarized as
following,
• First, the robot and the environments are abstracted to

a timed automaton (TA) Tmap using cell decomposition,
and the time to navigate from one cell to another is

estimated based on the robot’s dynamics. For example
Fig. 1.

• Second, MITL formula is translated to IOTA A using
method described in previous section.

• IOTA A is then taken product with the TA Tmap using
the location label. For instance pos1 : B in Fig. 1 will
be taken product with all states in IOTA that do not
satisfy the predicate p(a) but satisfies p(b).

• The resulting timed automata are then automatically
transformed to an UPPAAL [15] model with additional
satisfaction condition verifier. An initial state is chosen
so that the output at that state is 1. Any finite trajectory
which initiated from that state and satisfying the fol-
lowing conditions will satisfy the MITL specification.
Firstly, it has to visit at least one of the Büchi accepting
states, and secondly, it has to meet the acceptance
condition for the timed eventually operator. To perform
such a search in UPPAAL, a final state is added to
allow transitions from any Büchi accepting state to
itself. A verification automaton is created to check the
finite acceptance conditions for every timed eventually
operator.

• An optimal timed path is then synthesized using the
UPPAAL verification tool.

The implementation of the first and the second step is
based on parsing and simplification functions of ltl2ba tool
[21] with additional capabilities to generate IOTA. We then
use the generated IOTA to autogenerate a python script
which constructs the UPPAAL model automatically through
PyUPPAAL, a python interface to create and layout models
for UPPAAL. The complete set of tools1 is implemented in
C to optimize speed.

IV. CASE STUDY AND DISCUSSION

We demonstrate our framework for a simple environment
and for some typical temporal logic formulas. Although our
tool is not limited by the complexity of the environment,
we use a simple environment to make the resulting timed
automaton easy to visualize. Let us consider the timed
automaton from the abstraction in Fig. 1 and the LTL formula
is given as the following,

φ1 = (¬AUB) ∧ (♦A).

This specification requires the robot to visit the area B first
and eventually visit A also. The resulting automaton based
on the methods in the previous section is as shown in Fig. 6.
Each state corresponds to a product state between a state in
Tmap and a state in IOTA A. The Büchi accepting states are
indicated by an additional b in their state names. We obtained
the optimal path by first adding a final state and linking every
accepting states to it, and then using UPPAAL to find one
of the shortest path that satisfies condition “E <> final”.
UPPAAL will then compute one fastest path in the timed
automaton that goes to final state, if one such exists. If such

1The tool is available on https://github.com/yzh89/
MITL2Timed

https://github.com/yzh89/MITL2Timed
https://github.com/yzh89/MITL2Timed


Fig. 6. The Resulting timed automaton in UPPAAL of φ1. The purple colored texts under the state names represent I . The green colored texts along the
edges represent guard conditions, while the blue ones represent clock resets. The Büchi accepting states are represented by a subscript b in state names.

exists, this feasible path is a finite trajectory that satisfies
the specification. In this paper, we are more interested in
planning a path that satisfies MITL, so finite time trajectory
is a valid solution. The initial states of the automaton is
loc0 which is the only state at pos0 that outputs 1. The
optimal trajectory is loc0 → loc2 → loc7 → loc6b, in the
product automaton. This trajectory means that the optimal
way for a robot to satisfy the LTL is to traverse the map in
the following order, pos0→ pos1 : B → pos0→ pos3 : A.

In the second test case, the environment stays the same
and the requirement is captured in a MITL formula φ2

φ2 = �♦[0,2]A

This requires the robot to perform periodic survey of area
A every 2s. The resulting timed automata are shown in Fig.
7 and Fig. 8. As we discussed earlier, if a synchronization
signal (ch!) is sent, the falling edge for output of generator
automaton is detected and verified. This marks the end of a
finite trajectory that satisfies the MITL constraints. We used
the automaton in Fig. 8 (b) to receive such signal. Similar
to the LTL case, we ask UPPAAL to find a fastest path that
leads to the final states in Fig. 8(a) and 8(b) if such exists.

The optimal trajectory in this case is (loc19, loc28) →
(loc3, loc28) → (loc3, loc22b), which corresponds to
(pos0, t ∈ [0, 1]) → (pos3 : A, t ∈ [1, 2]) → (pos0, t ∈
[2, 3]). Then this trajectory repeats itself.

All the computations are done on a computer with 3.4GHz
processor and 8GB memory. Both of the previous examples
require very small amount of time (< 0.03s). We also
tested our implementation against various other complex
environments and MITL formulas. The Table I summarizes
our results for complex systems and formulas. The map we

TABLE I
COMPUTATION TIME FOR TYPICAL MITL FORMULA

MITL Map Transformation Num of Timed Synthesis
Formula Grid Time Automata Transitions Time
φ1 2x2 < 0.001s 22 0.016s
φ2 2x2 0.004s 69 0.018s
φ3 2x2 0.40s 532 0.10s
φ4 2x2 0.46s 681 0.12s
φ1 4x4 0.004s 181 0.062s
φ1 8x8 0.015s 886 0.21s
φ2 8x8 0.015s 1795 0.32s

demonstrated earlier is a 2x2 map (Fig. 1), we also examine
the cases for 4x4 and 8x8 grid maps. The used temporal logic
formulas are listed below. The time intervals in the formula
is scaled accordingly to the map size.

φ3 = ♦[0,4]A ∧ ♦[0,4]B

φ4 = ♦[2,4]A ∧ ♦[0,2]B

It can be seen from the Table I that our algorithm works
very well with common MITL formulas and scales satisfac-
torily with the dimensions of the map.

V. CONTINUOUS TRAJECTORY GENERATION

In this section, we briefly talk about generating a con-
tinuous trajectory from the discrete motion plan obtained
from the timed automaton. Let us consider the nonholonomic
dynamics of a unicycle car as given in (1).

˙xy
θ

 = u

cos θ
sin θ

0

+ ω

0
0
1

 (1)



Fig. 7. This shows one of the resulting timed automata in UPPAAL of φ2 corresponding to the checker of timed eventually operator and untimed always.
Some of the edges are further annotated by synchronization signal (ch!).

(a) (b)

Fig. 8. Fig. (a) shows the other timed automata of φ2 corresponding to the generator of timed eventually. Fig. (b) shows the verification timed automaton,
that checks if the falling edge of generator is ever detected, i.e. if a synchronization signal (ch!) has happened. This signal marks the end of a full eventually
cycle. Similar to the LTL case, we ask UPPAAL to check for us the following property, if there is a trajectory that leads to the final states in (a) and
(b). The optimal path in this case is (loc19, loc28)→ (loc3, loc28)→ (loc3, loc22b). The states are products of states of Fig. 7 and Fig. (a). This path
corresponds to (pos0, t ∈ [0, 1])→ (pos3 : A, t ∈ [1, 2])→ (pos0, t ∈ [2, 3]) in physical space. Repeating this path will satisfy φ2.



Fig. 9. Workspace and the continuous trajectory for the specification φ1.
The initial location is the top-left corner cell (I).

where ω and u are the control inputs. It should be noted
that the above nonholonomic dynamics is controllable and
we assume no constraints on the control inputs at this point.
The above sections provide the sequence of cells to be visited
in the grid like environment (Fig. 9).

The output of the timed automaton are treated as the time-
stamped way points for the robot to move. We have to assure
that the robot moves from one way point to the next with
the given initial and final time and at the same time, the
trajectory should remain within the associated cells.

Since our environment is decomposed in rectangular cells,
the robot will only move forward, turn right, turn left and
make a U-turn. We synthesize a controller that can make the
robot to perform these elementary motion segments within
the given time.

For moving forward the input ω is chosen to be 0 and the
velocity u is tuned so that the robot reaches the final position
in time. For turning left and turning right ω is chosen to take
positive and negative values respectively so that a circular arc
is traversed. Similarly the U-turn is also implemented so that
the robot performs the U-turn within a single cell.

Let us denote the state of the system at time t by the
pair (q, t) i.e. x(t) = q1, y(t) = q2 and θ(t) = q3 where
q = [q1, q2, q3]. Then we have the following lemma on the
optimality of the control inputs.

Lemma 5.1: If ū(t) and ω̄(t), t ∈ [0, 1] is a pair of
control inputs s.t. the dynamics moves from the state (q0, 0)
to (q1, 1), then u(t0 + t) = 1

λ ū( tλ ) and ω(t0 + t) = 1
λ ω̄( tλ )

move the system from (q0, t0) to (q1, t0 + λ) for any λ > 0.
Moreover, if ū and ω̄ move the system optimally, i.e.

J(ū, ω̄) = min
u(·),w(·)

∫ 1

0

[r1u
2(t) + r2w

2(t)]dt (2)

then u and ω given above are also optimal for moving the
system from (q0, t0) to (q1, t0 + λ), i.e.

J1(u, ω) = min
u1(·),w1(·)

∫ t0+λ

t0

[r1u
2
1(t) + r2w

2
1(t)]dt. (3)

Proof: Let us first denote

G(q) =

cos(θ(t)) 0
sin(θ(t)) 0

0 1


where q = [x(t), y(t), θ(t)]. Therefore, dynamics (1)

can be written as q̇ = G(q)

[
u
ω

]
. Let us now consider

q̄(t) = [x(t0 + λt), y(t0 + λt), θ(t0 + λt)]. Therefore,

˙̄q = λG(q̄)

[
u(t0 + λt)
ω(t0 + λt)

]
. Using the definition of u

and ω in the lemma, we get ˙̄q = G(q̄)

[
ū
ω̄

]
By the

hypothesis of the lemma, ū and ω̄ move the system from
(q0, 0) to (q1, 1) i.e. from [x(t0), y(t0), θ(t0)] = q0 to
q1 = q̄(1) = [x(t0 + λ), y(t0 + λ), θ(t0 + λ)].

For optimality, let the proposed u, ω be not optimal and
u∗ and ω∗ are optimal ones i.e.∫ t0+λ

t0

[r1u
∗2(t)+r2ω

∗(t)
2
]dt ≤

∫ t0+λ

t0

[r1u
2(t)+r2ω

2(t)]dt

(4)
Now let us construct ū∗(t) = λu∗(t0 + λt) and ω̄∗(t) =
λω∗(t0 + λt).

Therefore from (4),∫ 1

0

[r1u
∗2(t0 + λs) + r2ω

∗2(t0 + λs)]ds

≤
∫ 1

0

[r1u
2(t0 + λs) + r2ω

2(t0 + λs)]ds

∫ 1

0

[r1ū∗
2
(s) + r2ω̄∗

2
(s)]ds ≤

∫ 1

0

[r1ū
2(s) + r2ω̄

2(s)]ds

(5)
But, by the hypothesis, ū and ω̄ are optimal and hence∫ 1

0

[r1ū∗
2
(s) + r2ω̄∗

2
(s)]ds ≥

∫ 1

0

[r1ū
2(s) + r2ω̄

2(s)]ds

(6)
Combining (5) and (6) we get,∫ 1

0

[r1ū∗
2
(s) + r2ω̄∗

2
(s)]ds =

∫ 1

0

[r1ū
2(s) + r2ω̄

2(s)]ds

(7)
After changing the dummy variables inside integration

again, one can obtain

∫ t0+λ

t0

[r1u
∗2(s)+r2ω

∗2(s)]ds =

∫ t0+λ

t0

[r1u
2(s)+r2ω

2(s)]ds

(8)
Hence the proposed u and ω are optimal whenever ū and

ω̄ are optimal.
Remark 5.2: Lemma 5.1 states that if the controls for

elementary motions from initial time 0 to final time 1 are
synthesized, then by properly scaling and shifting in the time
and scaling the magnitude, controls for any movement from
any initial time to any final time can be synthesized without
further solving any optimization problem.



VI. CONCLUSION

In this paper, we have presented a timed automaton based
approach to generate a discrete plan for the robot to perform
temporal tasks with finite time constraints. We implemented
the algorithm in an efficient and generic way so that it can
translate the time constraints and temporal specifications to
timed automaton models in UPPAAL and synthesize the path
accordingly. We then demonstrated our algorithm in grid
type environments with different MITL formulas. We have
considered grid type of environment for our case studies,
but it can be generalized to most of the motion planning
problems when the environment can be decomposed into
cells. We also provide a brief overview of how an optimal
continuous trajectory can be generated from the discrete plan.
For future works, we are considering to extend the work to
include dynamic obstacles as well as for multiagent system.
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