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Abstract— This study is concerned with an observer who
desires to inform optimally a distant agent regarding a physical
stochastic process in the environment. We consider that the
observer has a constraint on the energy resource for the directed
communication to the agent. The information we are interested
in is the change in the knowledge possessed by the agent about
the state of the process. We find the maximum information
that can be transferred from the observer to the agent over
a finite horizon subject to a bound on the total energy of the
observer. We show that the maximum information is the optimal
value of a mixed-integer nonlinear optimization problem. We
obtain lower and upper bounds on the maximum information
and also a suboptimal admissible solution based on a semi-
definite programming. Moreover, we propose an optimized
event-triggering mechanism based on a linear matrix inequality
which yields event-driven sampling. Numerical and simulation
results are presented for simple stable and unstable systems.

Index Terms—Maximum Information, Nonuniform Sam-
pling, Time-Varying Precision, Time-Varying Quantization.

I. INTRODUCTION

This study is concerned with an observer who desires
to inform optimally a distant agent regarding a physical
stochastic process in the environment. If the observer is
not constrained in terms of energy, medium, security, etc.,
then it should transmit its measurements continually with the
highest rate and quality. On the contrary, here we consider
that the observer has a constraint on the energy resource for
the directed communication to the agent, i.e., the observer
stops operating when its energy is depleted. An example is
a wireless sensor network that relies on a capacity-limited
cell, and wishes to have an extended duration of operation. In
this situation, the observer should transmit measurements that
contain more valuable information. The information we are
interested in is the change in the knowledge possessed by the
agent about the state of the process. We find the maximum
information that can be transferred from the observer to the
agent over a finite horizon subject to a bound on the total
energy of the observer. Applications of this study include
environmental monitoring, planetary exploration, wearable
sensing, teleoperation, and many other examples of net-
worked systems.

In our problem, the observer transmits its measurements
through a binary channel, and the decision making takes
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Fig. 1. Three layers of source encoding/decoding.

place inside a source encoder. Fig. 1 illustrates three lay-
ers of source coding in digital communication. We use
a continuous-discrete time linear dynamical model for the
system, and consider the energy resource as a hard constraint.
We employ nonuniform sampling and time-varying precision
and quantization to enable the observer to transmit measure-
ments that contain more valuable information, and show that
the maximum information is the optimal value of a mixed-
integer nonlinear optimization problem. The main contribu-
tions of this paper are as follows: we obtain lower and upper
bounds on the maximum information and also a suboptimal
admissible solution based on a semi-definite programming
(SDP); moreover, we propose an optimized event-triggering
mechanism based on a linear matrix inequality (LMI) which
yields event-driven sampling.

The outline of this paper is as follows. After a brief
literature survey and an introduction on notation, the problem
formulation is presented in Section II. We study the opti-
mization problem for maximizing the information in Section
III. In Section IV, we derive bounds on the information. In
Section V, we propose an event-triggering mechanism for
sampling. We illustrate numerical and simulation results in
Section VI. Concluding remarks are made in Section VII.

A. Related Work

There is a large and growing literature on nonuniform
sampling and sensor scheduling in estimation theory. Meier
et al. [1] extend the work of Kushner [2] by looking at the
measurement control problem subject to measurement cost
and constraints, and by proposing dynamic programming
(DP) and the gradient method as computational procedures.
Recently, Rabi et al. [3] study optimal sampling as a stopping
time problem for a scalar system under a finite transmis-
sion budget constraint. Molin and Hirche [4] investigate
the optimal design for sampling in a scalar system with a
communication cost by considering a two-player problem.



Sijs and Lazar [5] study event-driven sampling based on
measurements with an asymptotic bound on the error covari-
ance; whereas Trimpe and D’Andrea [6] propose an event-
triggering mechanism based on the error covariance, and
study its asymptotic properties.

Moreover, Baras and Bensoussan [7] study sensor schedul-
ing in nonlinear filtering of diffusion processes with switch-
ing cost. Savkin et al. [8] address the sensor scheduling
problem for continuous-time linear systems, while Krish-
namurthy and Evans [9] consider the problem for hidden
Markov models. Later, Gupta et al. [10] propose a stochastic
strategy for the sensor selection problem. Sandberg et al. [11]
study sensor scheduling with communication cost for sensors
with different qualities and time-delays. Wu and Arapostathis
[12] look at the sensor scheduling problem over an infinite
horizon for partially observable Markov decision processes,
while Ny et al. [13] consider the infinite horizon problem
for continuous-time linear systems.

In this paper, the system should decide on sampling times,
precision modes, and quantization step-sizes while there is
a constraint on its energy resource. The maximization of
information problem, as we will see, is an NP-hard optimiza-
tion problem. We propose an efficient SDP-based algorithm
in order to obtain bounds on the maximum information. In
addition, we shed light on the event-driven sampling problem
by casting it as a special case of a general problem.

B. Notation

In this paper, we represent an n dimensional vector with
x = [x1, . . . , xn]T where xi is its ith component. We write
xT to denote the transpose of the vector x. The identity
matrix with dimension n is denoted by In. We use x1:k to
denote the sequence {x1, . . . , xk}. We write δt−t′ and δss′ to
denote the Dirac and Kronecker delta functions, respectively.
We write p(x) to denote the probability distribution of the
stochastic variable x. The normal distribution with mean µ
and covariance σ2 is denoted by N(µ, σ2). For matrices A
and B, we write A � 0 and B � 0 to mean that A and B
are positive definite and positive semi-definite, respectively.

II. PROBLEM FORMULATION

A. Physical Process and Source Encoder Models

We use a continuous-discrete time model [14] to describe
our system. This is due to the fact that the state of the process
evolves in continuous time, and that the measurements are
obtained at discrete instants of time. Consider a stochastic
continuous-time physical process in the environment which
is generated by the following linear stochastic differential
equation:

ẋt = Atxt +Btwt (1)

where xt ∈ Rn is the state of the system at time t, At

and Bt are state and input matrices at time t, and wt ∈
Rm is a white noise process with zero mean and covariance
Qtδt−t′ where Qt � 0. The initial state x0 is assumed to
be a Gaussian vector with zero mean and covariance P0. An
observer who desires to inform a distant agent regarding the

state of the process employs a source encoder to transmit its
measurements in the form of a sequence of bits.

In particular, first a sampler that is equipped with a sensor
samples the process at time instants ts for s = 1, 2, . . . ,M
where M can be infinite over the time horizon [0, T ]. The
measurement model of the sensor is given by

ys = Csxs + vs (2)

where ys ∈ Rp is the output of the sampler at time instant
ts, Cs is the output matrix at time instant ts, xs is the state
of the process at time instant ts, and vs is a white noise
sequence with zero mean and covariance (R + ∆Rs)δss′

where R is the base covariance of the sensor, ∆Rs is the
mode parameter, and R+ ∆Rs � 0.

Remark 1: The sensor is assumed to have different pre-
cision modes. At time instant ts, the mode of the sensor is
specified by the pair (Cs,∆Rs).

The sample ys is then quantized by a uniform quantizer.
We model the quantizer output by

zs = ys + ns (3)

where zs is the quantizer output at time instant ts and ns is an
uncorrelated white additive noise sequence with zero mean
and covariance ∆q2sIpδss′/12 where ∆qs is the quantization
step-size. We use the convention ∆q0 = 0 for the ideal
quantization. The validity of the additive white noise model
for quantization and the related conditions are studied in [15].

Remark 2: In our setting (i.e. single observer and deci-
sion maker), sampling and quantization are mathematically
commutable operations. It makes no difference whether a
signal is first sampled and then the samples are quantized,
or vice versa. This is not necessarily the case when multiple
observers and decision makers are involved.

Finally, an encoder codes the quantized sample zs. The
bits encoding the codewords of zs are then transmitted to
the agent through a noiseless zero-delay binary channel.
Therefore, at time t ≥ ts the set of measurements z1:s is
available to the agent. Through this study, the agent assumes
that the observer is trustable and that measurements are never
compromised.

Remark 3: In this setting, the decision making takes place
inside the source encoder, and the set of decision variables
is D = {∆t1:M ,∆R1:M ,∆q1:M} where ∆t1:M with ∆ts =
ts−ts−1 and t0 = 0 is the set of time intervals, ∆R1:M is the
set of mode parameters, and ∆q1:M is the set of quantization
step-sizes.

B. Fisher Information Matrix Dynamics

The conditional distribution p(xt|z1:s) = N(x̂t, Pt),
which is Gaussian given the system’s model introduced
before, evolves in time due to the system dynamics, and is
updated at time instants ts due to the measurements.

Consider the transformation It = P−1
t and İt = −ItṖtIt

where It is the Fisher information matrix (FIM) [16]. Fol-
lowing the Kolmogorov forward equation [14], which in our
case reduces to the propagation of the conditional mean and
conditional covariance matrix of the state, the rate of change



of the FIM during the interval [ts−1, ts), in which there are
no measurements, is obtained as

İt = −AT
t It − ItAt − ItBtQtB

T
t It, t ∈ [ts−1, ts) (4)

with initial condition Is−1 = I(s−1)− + ∆Is−1 where we
mean by Is− the left hand side limit of It as t tends to ts
from the left.

In addition, following the Bayes’ rule [14], the change
in the FIM at the time instant ts, when a measurement is
available, is obtained as

∆Is = Is − Is− = CT
s R̄

−1
s Cs , Gs (5)

where

R̄s = R+ ∆Rs +
∆q2s
12

Ip (6)

and Gs is called quality matrix.
Remark 4: The time evolution of the FIM in the

continuous-discrete time iterative filtering problem is charac-
terized by the jump dynamics defined by the equations (4),
(5). Hence, given the decision set D and the initial FIM the
whole trajectory of the FIM can be obtained.

C. Measure of Information

Let the agent’s knowledge regarding the state of the
process given the measurements at times ts, ts ≤ t, be
represented by the conditional distribution p(xt|z1:s) =
N(x̂t, Pt). The differential entropy [16] of the knowledge
is given by

H(xt|z1:s) =
1

2
log
[
(2πe)n det I−1

t

]
(7)

where n is the dimension of xt.
Definition 1 (Information from agent’s perspective):

Information is the change in the knowledge possessed by
the agent about the state of the process given the transmitted
measurements over the time interval [t0, t] with t ≥ ts, i.e.,

Πt , H0 −H(xt|z1:s) (8)

where H0 is the entropy at the reference time t0.
In fact, this information has a destination (i.e., the agent)

and is defined with respect to an epoch (i.e., time t0).
Remark 5: Stochastic dynamical systems evolve in the

direction in which entropy increases. The dissipated infor-
mation is the amount of information loss through the natural
evolution of the system. However, the entropy can decrease
as a result of measurements. The mutual information between
the state and a measurement is the amount of information
gain about the state provided by that measurement.

For maximizing the cumulative information about the state
of the process, from the measurements, which is the integral
of the information defined in (8) over the time horizon [0, T ],
we can minimize the following cost function:

JCT(I0,D) =

∫ T

0

H(xt|z1:s) dt (9)

where I0 is the initial FIM.

D. Energy Constraint Set

We consider that the observer has a constraint on the
energy resource for the directed communication to the agent.
Let e be the total amount of energy available to the observer
over the time horizon [0, T ]. We define the energy constraint
set C (e) as a function of the total energy as follows

C (e) =
{

D
∣∣ M∑
s=1

ρ(∆Rs,∆qs) ≤ e
}

(10)

where ρ(∆Rs,∆qs) is the energy consumed per measure-
ment and transmission.

Remark 6: Given that ∆Rs and ∆qs are selected from
finite sets, ρ(∆Rs,∆qs) associated to each setting can be
evaluated.

The constraint set confines the set of admissible decision
variables. The properties of the constraint set are:

i) C (e1) ⊆ C (e2) if e1 ≤ e2,
ii) D ∈ C (0) implies M = 0,

iii) There exists D ∈ C (∞) such that ∆ts → 0, ∆qs → 0,
and ∆Rs corresponds to the highest precision mode for
all s = 1, 2, . . . ,M ,

where (iii) implies that the observer can transmit its mea-
surements continually with the highest rate and quality.

E. Objective

Now, we are able to express the main problem of this
paper.

Problem 1: Given the system defined by the equations
(4), (5), design a source encoder parametrized by D that
maximizes the integral of the information defined in (8)
subject to the bound e on the total energy over the time
horizon [0, T ].

Equivalently,

minimize JCT(I0,D) (11)
subject to D ∈ C (e),

given the FIM dynamics.

III. MAXIMIZATION OF INFORMATION

We discretize the time variable with tk = kε and N =
T/ε where ε is time discretization step-size. Let ∆Rs and
∆qs take values in finite sets with cardinalities L1 and L2

respectively, then the quality matrix Gs takes values in a
finite set with cardinality L = L1L2; i.e., we have Gk ∈
{G1, . . . , GL}. We define a logical variable δik as

δik =

{
1, if tk = ts and Gk = Gi,
0, otherwise. (12)

Notice that by specifying δ = {δ11 , . . . , δLN} the decision set
D is determined.

Using the Euler method and the equation (12), we write
the FIM dynamics by the following difference equation

Ik =− εAT
k−1Ik−1 − εIk−1Ak−1 + Ik−1 (13)

− εIk−1Bk−1Qk−1B
T
k−1Ik−1 +

L∑
i=1

Giδik.



Furthermore, following equation (12) the energy constraint
set is described by

N∑
k=1

L∑
i=1

eiδik ≤ e, (14)

where ei is the energy level associated with Gi. To guarantee
unique selection of a precision mode and of a quantization
step-size, the following condition is necessary

L∑
i=1

δik ≤ 1. (15)

Moreover, from equations (7), (9), the cost function in
discrete time is defined as

JDT(I0,D) =
ε

2

N∑
k=0

[
n log2 2πe− log2 det Ik

]
. (16)

Then, the optimal decision set δ∗ is obtained by solving the
following finite horizon mixed-integer nonlinear optimization
problem:

minimize ψ1(I0, δ) = −
N∑

k=0

log2 det Ik (17)

subject to Ik = −εAT
k−1Ik−1 − εIk−1Ak−1 + Ik−1

− εIk−1Bk−1Qk−1B
T
k−1Ik−1 +

L∑
i=1

Giδik,

N∑
k=1

L∑
i=1

eiδik ≤ e,
L∑

i=1

δik ≤ 1,

with variables Ik � 0 and δik ∈ {0, 1} for all k =
1, 2, . . . , N , and with initial condition I0. Notice that the
cost function ψ1(I0, δ) incorporates the non-constant parts
of the cost function in (16).

Proposition 1: The optimization problem in (17) is feasi-
ble, and the global minimum is achievable.

Proof: δik = 0 for all i and k is an admissible solution
for which the cost function in (17) is finite and the problem is
feasible. The parameter set of all allowed solutions is finite,
and therefore there exists a global minimum.

Proposition 2: Let JDT(I0,D∗) be the optimal value of
the cost function in (16) corresponding to the solution of the
discrete-time optimization problem in (17) and JCT(I0,D∗)
be the optimal value of the continuous-time optimization
problem in (11). Then, for any γ > 0 there exists time
discretization step-size ε > 0 such that∣∣JCT(I0,D

∗)− JDT(I0,D
∗)
∣∣ ≤ γ. (18)

Proof: The error in the (instantaneous) FIM with
respect to the reference case (when ε → 0) decreases when
ε decreases. This implies that the error between the costs
JDT(I0,D∗) and JCT(I0,D∗) also decreases. Hence, we can
find ε such that the error between the costs is less than γ.

In order to compute the optimal solution of the optimiza-
tion problem in (17), one can use the branch and bound
(BB) algorithm [17]. In the BB algorithm (described in

Algorithm 1), a queue (initially contains the feasible set)
is iteratively divided into disjoint subsets. In each iteration,
a subset is selected, and a lower bound and an upper bound
(the cost of a feasible solution) of the subset are calculated.
A subset is pruned from the queue if its lower bound is
worse than the best achieved upper bound, if its subproblem
is infeasible, or if its lower bound is equal to its upper
bound. Otherwise, it is branched into children. The algorithm
stops when the queue is empty or the gap between the best
achieved upper and lower bounds is less than a specific
tolerance ε0.

Algorithm 1 Branch and Bound Algorithm
0. Initialize Queue to the feasible set and J∗ =∞
1. Take a node off Queue
2. For the selected node

2.1 Obtain a lower bound JLB
2.2 Obtain a feasible solution X with JUB
2.3 If JUB < J∗ then J∗ := JUB and save X
2.4 If JLB > J∗ or JLB = JUB then prune the node;
otherwise branch the node into children

3. Terminate if J∗ − JLB ≤ ε0, otherwise go to Step 1.

However, the BB algorithm is computationally expensive.
In the next section, we develop an efficient algorithm for
obtaining a suboptimal solution of the optimization problem
in (17). The bounds obtained in the next section can also be
used in Algorithm 1.

IV. BOUNDS ON THE INFORMATION AND A SUBOPTIMAL
SDP-BASED SOLUTION

We utilize an SDP relaxation [18] to obtain a lower bound
on the optimal value of the optimization problem in (17). In
addition, based on this SDP we find a suboptimal admissible
solution.

Theorem 1: A lower bound on the optimal value of the
optimization problem in (17) is given by the following SDP:

minimize ψ2(I0, δ) = −
N∑

k=0

log2 det Ik (19)

subject to Ik = −εAT
k−1Ik−1 − εIk−1Ak−1 + Ik−1

− εDk−1 +

L∑
i=1

Giδik,[
Dk Ik
Ik (BkQkB

T
k )−1

]
� 0,

N∑
k=1

L∑
i=1

eiδik ≤ e,
L∑

i=1

δik ≤ 1,

with variables Ik � 0, Dk � 0, and δik ∈ [0, 1] for all
k = 1, 2, . . . , N , and with initial conditions I0 and D0 =
I0B0Q0B

T
0 I0.

Proof: Fist note that the function − log2 det Ik is
convex in Ik. Following the optimization problem in (17), we
relax the integrality constraint to δik ∈ [0, 1]. Then, we aim at



relaxing the quadratic term in the FIM dynamics. Since this
equality constraint does not influence the set of admissible
decisions δik, such a relaxation does not violate the feasibility
of the problem. By defining Dk = IkBkQkB

T
k Ik, we have

Ik =− εAT
k−1Ik−1 − εIk−1Ak−1 + Ik−1 (20)

− εDk−1 +

L∑
i=1

Giδik

which is a linear equation. We substitute the new constraint
Dk = IkBkQkB

T
k Ik with its convex relaxation, i.e., Dk −

IkBkQkB
T
k Ik � 0. This nonlinear convex inequality can be

converted into an LMI by using the Schur complement:[
Dk Ik
Ik (BkQkB

T
k )−1

]
� 0. (21)

Substituting the constraints (13) and δik ∈ {0, 1} with the
constraints (20), (21), and δik ∈ [0, 1] in the optimization
problem in (17), and following the convexity of the cost
function we obtain the relaxed problem (19) which yields a
lower bound for the original problem.

We can use the lower bound provided by Theorem 1 in
an approximation algorithm (described in Algorithm 2) to
obtain a suboptimal admissible solution.

Algorithm 2 SDP-Based Approximation Algorithm
1. Solve the SDP in (19) and obtain δik
2. For k = 1 : N

2.1 Find δ+k = maxi{ε0, δik} (where ε0 is a small value)
2.2 For i = 1 : L

2.2.1 If δik < δ+k then δik := 0
3. Solve the SDP in (19) with all new constraints enforced
in Step 2.2.1 and obtain δik
4. Find the M highest δik such that

∑M
s=1

∑L
i=1 e

idδise≤e;
set them to 1 and the rest to 0.

The cost corresponding to the solution given by Algorithm
2 is an upper bound on the optimal value of the optimization
problem in (17).

A. Information Envelope

We can obtain lower and upper bounds on the FIM if there
is no constraint on the energy expenditure. A lower bound
on the FIM is given by

Vk = −εAT
k−1Vk−1 − εVk−1Ak−1 + Vk−1 (22)

− εVk−1Bk−1Qk−1B
T
k−1Vk−1

and an upper bound on the FIM is obtained by

Sk = −εAT
k−1Sk−1 − εSk−1Ak−1 + Sk−1 (23)

− εSk−1Bk−1Qk−1B
T
k−1Sk−1 +

L∑
i=1

Gi

with initial conditions V0 = S0 = I0.
We define the information envelope associated with the

system as a region with boundaries specified by the infor-
mation corresponding to Vk and Sk.

V. AN OPTIMIZED LMI-BASED EVENT-TRIGGERING
MECHANISM

In this section, we assume that Gs = G0 with the
associated energy level e0 is fixed. We propose an event-
triggering mechanism based on an LMI which yields event-
driven sampling. The LMI-based event-triggering mechanism
that we are interested in is described by

δk =

{
0, if Ik � Θ,
1, otherwise, (24)

where Θ is a threshold on the FIM. In the following,
we optimize this threshold by exploiting the optimization
problem in (17).

The inequality in (24) can be converted into the following
two constraints:

λmax(Θ− Ik)(1− δk) ≤ 0, (25)
λmax(Θ− Ik)δk ≥ 0, (26)

where λmax(Θ−Ik) is the maximum eigenvalue of the matrix
Θ−Ik. Adding the constraints (25), (26) to the optimization
problem in (17), we have

minimize ψ3(I0,Θ) = −
N∑

k=0

log2 det Ik (27)

subject to Ik = −εAT
k−1Ik−1 − εIk−1Ak−1 + Ik−1

− εIk−1Bk−1Qk−1B
T
k−1Ik−1 +G0δk,

λmax(Θ− Ik)(1− δk) ≤ 0,

λmax(Θ− Ik)δk ≥ 0,

N∑
k=1

e0δk ≤ e,

with variables Ik � 0, Θ � 0, and δk ∈ {0, 1} for all
k = 1, 2, . . . , N , and with initial condition I0. The optimal
threshold Θ∗ of the event-triggering mechanism in (24) is
obtained by solving this optimization problem.

Proposition 3: Assume that Gs =G0 is fixed. The optimal
value of the optimization problem in (27) is greater than or
equal to that of the optimization problem in (17), i.e.,

ψ1(I0, δ
∗) ≤ ψ3(I0,Θ

∗). (28)
Proof: Adding the new constraints (25) and (26) re-

duces the size of the feasible set of the optimization problem
in (17). Therefore, ψ1(I0, δ

∗) ≤ ψ3(I0,Θ
∗).

VI. AN ILLUSTRATIVE EXAMPLE

In this section, we present numerical and simulation results
for simple stable and unstable systems.

Example 1: Consider a stable and an unstable system
with dynamics defined by the equations (1), (2), (3) with
At = −0.1, 0.1 for the stable and the unstable systems
respectively, Bt = 1, Cs =

√
0.1, Qt = 0.5, and P0 = 2. The

discretization step-size is ε = 0.1, the horizon is N = 40, the
total energy is e = 42, and the cost is ψ = −

∑N
k=0 log2 Ik.

The quality matrices are G1 = 0.08, G2 = 0.09 (which
specify quantization step-sizes and precision parameters)
with energy levels e1 = 5, e2 = 6. We used the BB, the
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Fig. 2. Information diagrams for the stable system with the associated
costs ψBB = 18.12, ψSDP = 18.17, and ψLMI = 20.19. The shaded area
represents the information envelope.
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Fig. 3. Information diagrams for the unstable system with the associated
costs ψBB = 45.24, ψSDP = 45.50, and ψLMI = 48.71. The shaded area
represents the information envelope.

SDP, and the approximation algorithms introduced in this
paper to obtain the maximum information and its lower and
upper bounds. For the stable system, the optimal cost and
its lower and upper bounds are ψBB = 17.55, ψLB = 17.28,
and ψUB = 18.22, respectively; and for the unstable system
they are ψBB = 44.51, ψLB = 44.01, and ψUB = 45.33,
respectively. Furthermore, we compare the optimal sampling
obtained by the BB algorithm with the SDP-based and the
LMI-based samplings for G0 = 0.08. Notice that in this
example the LMI reduces to a linear inequality. Fig. 2 and 3
show the information diagrams with the optimal, the SDP-
based, and the LMI-based samplings for the stable and the
unstable systems, respectively. The associated costs for the
stable system are ψBB = 18.12, ψSDP = 18.17, and ψLMI =
20.19 (with Θ∗ = 0.70); and for the unstable system they
are ψBB = 45.24, ψSDP = 45.50, and ψLMI = 48.71 (with
Θ∗ = 0.41). It is observed that the optimized LMI-based
event-driven sampling is worse than the optimal sampling.

VII. CONCLUSION

In this paper, we studied the maximum information that
can be transferred from an observer to an agent over a finite

horizon while there is a limitation on the energy resource of
the observer for the directed communication to the agent. We
formulated the maximization of information problem, and
developed an efficient algorithm for obtaining bounds on the
optimal value and a suboptimal solution of this problem.
We proposed an optimized event-triggering mechanism based
on an LMI, and showed that the performance of the LMI-
based event-driven sampling is inferior to that of the optimal
sampling.
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