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Cooperative Indoor Positioning by Exchange of Bluetooth Signals and
State Estimates Between Users

Martin Karlsson1, Fredrik Karlsson2

Abstract— This paper presents a Bayesian indoor positioning
system for smartphones based on the strengths of WiFi and
Bluetooth signals. A framework for improving the performance
of existing positioning methods with the help information
sharing between users is proposed and evaluated. Bluetooth
signals are sent between users, and the signal strengths contain
information about their relative distances, which is used to
evaluate the probability distribution functions of their states.
A particle filter is used for the state estimation, together with
an unscented transform to propagate probability distributions
through nonlinearities.

I. INTRODUCTION

The importance of generic, accurate, positioning systems
is increasing, due to the numerous applications and services
it enables. For most environments outdoor, the Global Posi-
tioning System (GPS) provides sufficient position estimates
[1]. In urban and indoor areas, however, the GPS signals are
usually too weak to provide meaningful information. Instead,
several other methods, usually relying on sensor fusion of
some form, have been developed. See, e.g., [2], [3], [4]
and [5] for some interesting examples of this, and [6] for
an introductory overview of the field of indoor positioning.
Previous methods range from using only one portable device,
to attaching several sensors on different parts of the user’s
body, as in [7].

Signal strengths from closely located access points com-
bined with pedestrian dead reckoning has also been imple-
mented, e.g. as described in [8] and [9].

Meanwhile, communication between smartphones in the
form of mesh networking [10] is becoming increasingly
ubiquitous, usually with the purpose of increasing wireless
Internet accessibility.

Also positioning with the help of Bluetooth is getting
increasingly popular, but with the requirement that the en-
vironment has to be equipped with a mesh of Bluetooth
beacons, which is different from the concept presented here.
Examples can be found in [11], [12] and [13].

In this paper, we propose a method for promoting existing
indoor positioning algorithms, where applicable. Specifically,
we augment the method described in [9] in a, to the best
of our knowledge, novel way, by letting the users share
information about their states as well as sending Bluetooth
signals to each other and measure the strengths of these. This
additional information is herein shown to decrease the error
of the position estimates. At the same time, no additional
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requirements on the equipment and environment are implied,
which is an important advantage.

II. NOTATIONS

For convenience, we here provide a list of some of the
quantities used in this paper:

(x, y) - user position coordinates
t - time step
ϕ - heading direction
∆ϕ - change of heading direction
P (d) - signal strength at distance d

These notations will be explained in more detail later on,
but this list may serve as a short reference.

III. METHOD

The foundation of the positioning method is the approach
described in [9]. That approach is herein extended with
information exchange between different users.

A particle filter, which is well described in [14], is used to
fuse the sensor data. It yields an approximation of the poste-
rior probability distribution p(xt|ν1:t), where xt is the state
at time step t, and ν1:t represents the measurement data from
time 1 to t. In this method, the states consist of the position
coordinates, and the direction of movement. In each particle
filter iteration, modeled WiFi and Bluetooth signal strengths
are determined for each particle, based on its current set
of states. The particle weights are then determined based
on the probability of the difference between modeled and
measured signal strengths. Particles with large weights, i.e.
those with high congruity between modeled and measured
measurements, have higher probability of sustaining and
multiplying in the particle filter resampling step. The state
update is performed each time the pedestrian dead reckoning
algorithm registers that the user has taken one step, which,
while walking, generally occurs more frequently than the
signal strengths are obtained. Between two consecutive steps,
each particle has its states modified based on the following
user motion model.

xi+1 = xi + (l + ri) · cosϕi (1)
yi+1 = yi + (l + ri) · sinϕi (2)
ϕi = ϕi + ∆ϕi + vi (3)

Here, x and y are the position coordinates, ϕ is the
direction of movement, l is the step length, and rit and vit
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are zero-mean Gaussian random variables. Further, ∆ϕ is the
rotation around the vertical axis as estimated by the algorithm
for pedestrian dead reckoning described in [9], and i is the
number of the physical step taken by the user, within time
step t. In an entire particle filter iteration, the states will
hence evolve according to

xt+1 = xt +

n∑
i=1

(l + rit) · cosϕit (4)

yt+1 = yt +

n∑
i=1

(l + rit) · sinϕit (5)

ϕt+1 = ϕt +

n∑
i=1

∆ϕit + vit, (6)

where n is the number of steps taken by the user within the
iteration time.

In order to include the information from the WiFi access
points, the measured signal strength is compared to the model

log10(P (d)) = log10(P (d0))− 20 log10

[
d

d0

]
− αd+ e,

(7)

where P (d) is the received signal strength, d0 is the reference
distance of 1 meter, d is the distance between the receiver and
the transmitter, and e is zero-mean Gaussian measurement
noise. More details are described in [15] and [16].

Initial experiments have shown that the Bluetooth signals
behave similar to WiFi 2.4 GHz, which seems reasonable
since they operate on the same frequency. The major dif-
ference is that the Bluetooth signals are transmitted with
a lower intensity, and has shorter range in general. It is
approximately 15 m, but very dependent on the environment.
Furthermore, the model of signal strengths between two users
is slightly more involved than that of a signal from an access
point, due to the uncertainty of the position of a transmitting
user. In addition to the noise e, the position (xtr, ytr) of the
transmitting user will in this case be a random variable with a
certain mean and variance, which will have to be propagated
through the nonlinear function (7) in order to compute the
probabilities of the particles. (The time dependency has been
omitted to keep the notation uncluttered.) This is achieved
by using the unscented transform [17], according to which
sample points χ and corresponding weights w should be
chosen from the probability distribution of (xtr, ytr). These
are chosen according to

χ0 = µ, ω0 = κ
n+κ

χj = µ+ (
√

(n+ κ)Σ)j , ωj = 1
2(n+κ)

χn+j = µ− (
√

(n+ κ)Σ)j , ωn+j = 1
2(n+κ)

where n is the dimension of the input probability distri-
bution, j = 1, 2...n, κ is a tuning parameter, Mj denotes
column j of the matrix M , µ denotes the mean and Σ
the covariance matrix of the probability distribution. These

points are to be propagated through the nonlinearity (7),
and then the corresponding weighted mean and variance of
the modeled Bluetooth signal strength at the receiving user
are determined. Finally, these values are used to weight the
particles of the receiving user. This procedure should be done
in both ways, for all users that are in range of each other.

IV. SIMULATIONS

In order to evaluate the method, simulations were per-
formed in the Julia programming language [18]. The envi-
ronment resembles an open office building called Glasgow,
situated in Lund, Sweden. An example floor plan is shown in
Figure 6. Please note, however, that these differ for different
floors. Glasgow has 20 WiFi access points on each floor,
and in the simulations, they are positioned according to the
arrangement on the top floor. Further, walls and furniture are
assumed to be unknown in the models, in order to preserve
generality.

Two different situations were considered. Firstly, a group
of 10 users move together as a group through the floor (see
Figure 1). Secondly, 100 users perform uncorrelated random
walks (see Figure 4). The cases are described in more detail
in the following subsections.

A. Users as a group

Initially, the users were spread randomly around point
(x, y) = (20, 5) m. Then, they moved in the approximate
direction of (-1,1), followed by a right turn, and finally they
moved across the floor in the approximate direction of (1,0).
The reason for the directions being approximate is that the
movement contained a random part as well as a deterministic
one.

For the state estimation, the users were assumed to use
pedestrian dead reckoning combined with measurements
from WiFi and Bluetooth. The results are shown in Figure
1, 2 and 3, as well as in Table I.

This was then compared to the same case, with all parame-
ters kept the same, but where only pedestrian dead reckoning
and WiFi were used. This is the method described in [9]. This
resulted in significantly larger positioning errors, as shown
in Figure 3 and Table I.

TABLE I
AVERAGE AND MAXIMUM POSITION ERROR, TAKEN OVER ALL USERS

AND ALL TIME STEPS, FROM THE SIMULATION OF 10 USERS WALKING

AS A GROUP. SEE ALSO FIGURE 3, WHERE THE AVERAGE USER ERROR IS

PLOTTED AGAINST TIME STEP.

Method Average error Maximum error
Bluetooth not included 1.0249 m 3.9435 m
Bluetooth included 0.7388 m 2.5618 m

B. Uncorrelated random walks

Many situations can be thought of where pedestrian dead
reckoning data are not available, e.g due to absence of
gyroscope or accelerometer, or when something other than
a pedestrian should be positioned. In order to take this into
account, simulations were performed where no information
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Fig. 1. The ground truth and estimated positions of 10 users walking in a
group from the region marked ’Start’ to the one marked ’Stop’. Due to the
randomness in the generation of the true trajectory, the users diverge slightly
from each other. Both pedestrian dead reckoning, WiFi and Bluetooth were
used for the state estimation shown in this plot. See also Figure 2, where
the data of one user was selected and displayed for a clearer view.
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Fig. 2. This plot is similar to Figure 1, but with data from only one of
the users shown, in order to get a less cluttered version.
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Fig. 3. The position error averaged over all users, plotted against the time
steps, from the simulation of 10 users walking as a group. Note that since
the errors are averaged, the maximum values seen here are much lower than
those shown in Table I. The average error values, however, correspond.

about direction was assumed. Instead, the movement was
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Fig. 4. The ground truth and estimated positions from the simulation with
uncorrelated random walks. The simulation covered 100 users, but in order
to keep the image clearer, only the data from 25 of these are shown herein.
Note that due to the limited signal range, a certain user will receive signals
only from close peer users and access points.

modeled as a random walk, according to

xt+1 = xt + δxt (8)
yt+1 = yt + δyt (9)

where δxt and δyt are Gaussian random variables with zero-
mean and a standard deviation of 2 m. In this scenario,
100 users were initially spread randomly across the area.
Then, each user performed a random walk, independently,
for 10 time steps. The movement is shown in Figure 4.
This time, the positioning was carried out using both WiFi
and Bluetooth, and for comparison, it was also done with
WiFi only. The results are shown in Figure 4 and 5, as
well as Table II. Also in this setup, the cooperative behavior
decreases the error significantly.

TABLE II
AVERAGE AND MAXIMUM POSITION ERROR, TAKEN OVER ALL USERS

AND ALL TIME STEPS, FROM THE SIMULATION OF 100 USERS WALKING

RANDOMLY. SEE ALSO FIGURE 5, WHERE THE AVERAGE USER ERROR IS

PLOTTED AGAINST TIME STEP.

Method Average error Maximum error
Bluetooth not included 1.7288 m 7.7817 m
Bluetooth included 1.3357 m 6.6836 m

V. DISCUSSION

The proposed method increases the positioning perfor-
mance for the scenarios addressed here, which seems rea-
sonable since more information is included. It should, how-
ever, be stated that far from all possible indoor positioning
scenarios have been investigated, and real-world experiments
remain as future work (see Section VII). Nevertheless, the
work presented here should serve as a proof of concept, and
hopefully as an idea to build on.

Both the simulation of the ground truth data and the
estimation methods are stochastic, and hence the results
vary slightly from one simulation to another. However, the
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Fig. 5. The position error averaged over all users, plotted against the time
steps, from the simulation of 100 users walking randomly. Note that since
the errors are averaged, the maximum values seen here are much lower than
those shown in Table II. The average error values, however, correspond.

Fig. 6. A map of one of the floors in the Glasgow building, situated in Lund,
Sweden, as displayed in the smartphone indoor positioning application
SonyMap [19]. The simulations in this paper are based on this environment.
The state estimation in SonyMap is implemented as described in [9], and it
remains as future work to augment the application according to the method
described here.

simulations were repeated several times to verify that the
results presented here are representative.

The WiFi signals from access points and Bluetooth signals
from peer users are treated in similar manners, but WiFi
signals provide more accurate information, since the access
points are assumed to be known, while the states of the peer
users are described by approximate probability distributions.
This is taken into account by the unscented transform.
However, the same principle can be used when the positions
of WiFi access points are uncertain, for example as a result of
mapping by crowd sourcing, or simultaneous mapping and
localization (SLAM). One should then, however, take into
account that it is known that the access points do not move,
as oppose to the users.

In order to perform the sensor fusion, there are several
alternatives to the particle filter and the unscented transform
used here. One could, for instance, use an extended Kalman
filter instead of the particle filter. Both of these estimations
can handle nonlinear systems, but the particle filter has
the advantage of being able to approximate any probability
density function in the state space, which is why it was
chosen. Further, a cubature transform [20] could be used
instead of the unscented transform.

One could also consider to linearize Equation (7). This
would be computationally cheaper, but slightly less accurate.

During the work presented here and in [9], attempts
were made to model the user step length as another state
to be estimated. This came with the price of increased
computational cost, without any significant improvement of
the accuracy.

VI. CONCLUSIONS

In this paper, we have presented a method for indoor
positioning. The main contribution is the framework for
sending Bluetooth signals, as well as data about the states,
between users, in order to get more information for the sensor
fusion algorithm. Simulations have been run to evaluate the
method, both for the case where pedestrian dead reckoning
has been available, and where it has not. WiFi signals from
known access points have served as a foundation for both
cases considered. It is demonstrated that the cooperative be-
havior described here promotes the performance of the state
estimation significantly, which forms a win-win relationship
between the users.

VII. FUTURE WORK

As a next step in this work, real-world data should be
acquired. Smartphones should be used to

• Receive WiFi signals
• Receive and transmit Bluetooth signals
• Log gyroscope and accelerometer

while the ground truth positions are observed externally for
evaluation of the method. The data should then be used to
reconstruct the user trajectories offline.

Subsequently, the state estimation in the smartphone appli-
cation SonyMap (see [19] and Figure 6) should be augmented
to include Bluetooth signals between users. Currently, the
application performs one particle filter iteration every few
seconds, whereas the computation run time is much shorter.
Further, including the Bluetooth signals does not imply
enough additional computational cost for this to be critical.
Hence, this seems to be a computationally feasible ambition.

It is expected that the performance is dependent on the
number of users involved. For the extreme case of one user
only, the algorithm is equivalent to the case where only WiFi
is used. No significant improvement could be seen in the
simulations for trials with less than five users. However, it
remains as future work to investigate the relation between
performance and number of users more thoroughly.
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