
An O (logN) Parallel Algorithm for
Newton Step Computations

with Applications to Moving Horizon
Estimation

Isak Nielsen and Daniel Axehill∗

October 11, 2018

Abstract

In Moving Horizon Estimation (mhe) the computed estimate is found
by solving a constrained finite-time optimal estimation problem in real-
time at each sample in a receding horizon fashion. The constrained es-
timation problem can be solved by, e.g., interior-point (ip) or active-set
(as) methods, where the main computational effort in both methods is
known to be the computation of the search direction, i.e., the Newton
step. This is often done using generic sparsity exploiting algorithms or
serial Riccati recursions, but as parallel hardware is becoming more com-
monly available the need for parallel algorithms for computing the Newton
step is increasing. In this paper a tailored, non-iterative parallel algorithm
for computing the Newton step using the Riccati recursion is presented.
The algorithm exploits the special structure of the Karush-Kuhn-Tucker
system for the optimal estimation problem. As a result it is possible to
obtain logarithmic complexity growth in the estimation horizon length,
which can be used to reduce the computation time for ip and as methods
when applied to what is today considered as challenging estimation prob-
lems. Promising numerical results have been obtained using an ansi-c
implementation of the proposed algorithm running on true parallel hard-
ware. Beyond mhe, due to similarities in the problem structure, the al-
gorithm can be applied to various forms of on-line and off-line smoothing
problems.

∗I. Nielsen and D. Axehill are with the Division of Automatic Control, Linköping University,
SE-58183 Linköping, Sweden, isak.nielsen@liu.se, daniel.axehill@liu.se.

ar
X

iv
:1

51
0.

03
11

0v
2 

 [
m

at
h.

O
C

] 
 2

0 
O

ct
 2

01
5



1 Introduction
One of the most widely used advanced control strategies in industry today is
Model Predictive Control (mpc). In each sample, the mpc strategy requires
the solution of a constrained finite-time optimal control (cftoc) problem on-
line, which creates a need for efficient optimization algorithms. It is well-known
that the resulting optimization problem obtains a special structure that can be
exploited to obtain high-performance linear algebra for computing Newton steps
in various setups, see e.g. [1–12]. A problem which turns out to have similar
problem structure is the Moving Horizon Estimation (mhe) problem, [13,14]. In
mhe, the state-estimate is again obtained as the solution to a highly structured
optimization problem solved on-line in a receding horizon fashion. In the same
spirit as mpc adds the possibility for optimal control under constraints, mhe
adds the possibility for optimal estimation under constraints. It has been shown
that problem structure can be exploited also for this application in [13–15].
The optimization problem that is solved on-line in mhe can be shown to have
a similar structure to the one in so-called smoothing, [13, 16]. In smoothing,
measurements are available along the entire time window of estimation, which
means that non-causal estimation can be performed. From a computational
point of view, mhe can be interpreted as repeatedly solving smoothing problems
in a receding horizon fashion and only the last state estimate is actually returned
as an estimate (analogously to that only the first computed control signal is
applied in mpc). Depending on the type of system and problem formulation, the
mhe problem can be of different types. mhe can be applied to linear, nonlinear or
hybrid systems. Often, the computational effort spent when solving the resulting
optimization problem boils down to solving Newton-system-like equations that
can be associated with an unconstrained finite-time optimal control (uftoc)
problem, [14].

In recent years, the need for parallel algorithms for solving control and es-
timation problems has increased. While much effort in research has been spent
on this topic for mpc, [17], parallelism for estimation is a less explored field.
For the mpc application, an extended Parallel Cyclic Reduction algorithm is
introduced in [18] which is used to reduce the computations to smaller systems
of equations that are solved in parallel. The computational complexity of this
algorithm is reported to be O (logN), where N is the prediction horizon. In [19]
and [20] a time-splitting approach to split the prediction horizon into blocks is
adopted. The subproblems are solved in parallel using Schur complements, and
the common variables are computed by solving a dense system of equations
serially. In [21] a splitting method based on Alternating Direction Method of
Multipliers (admm) is used, where some steps of the algorithm can be computed
in parallel. In [22] an iterative three-set splitting quadratic programming (qp)
solver is developed. In this method several simpler subproblems are computed
in parallel and a consensus step using admm is performed to obtain the final
solution. A parallel coordinate descent method for solving mhe problems is
proposed in [23]. In [24, 25] a tailored algorithm for solving the Newton step
directly (non-iteratively) in parallel for mpc is presented. In that work several



subproblems are solved parametrically in parallel by introducing constraints on
the terminal states, but the structure is not exploited when the subproblems are
solved. In [26], it is shown how the Newton step can be computed in parallel
while simultaneously exploiting problem structure. In [27] a generic message-
passing parallel algorithm for distributed optimization with applications to, e.g.,
control and estimation, is presented.

The main contribution in this paper is to extend the use of the parallel
structure exploiting numerical algorithms for computing Newton steps for mpc
presented in [26, 28] to the mhe and smoothing problems. Furthermore, the
performance of the algorithm when solving mhe problems is illustrated using
an ansi-c implementation of the proposed algorithm that is executed truly in
parallel on a physical computer cluster. The proposed algorithm can replace
existing serial algorithms at the computationally most demanding step when
solving various forms of finite horizon optimal estimation problems in practice.
The algorithm is tailored for mhe problems and exploit the special structure of
the kkt system for such problems. The classical serial Riccati method exploits
the causality of the problem and for that reason it is not obvious that it can be
split and parallelized in time, especially without involving an iterative consensus
step. The main idea is to exploit the problem structure in time and divide the
mhe problem in smaller subproblems along the prediction horizon. Consensus
is reached directly (non-iteratively) by solving a master problem. This overall
structure is similar to what is done in [26], but the result is here extended to
the mhe problem. A more detailed presentation of the work in [24] and [26] is
given in [28].

In this paper Sn++ (Sn+) denotes symmetric positive (semi) definite matrices
with n columns, Zi,j , {i, i+ 1, . . . , j} and symbols in sans-serif font (e.g. x)
denote vectors or matrices of stacked components. Furthermore, I denotes the
identity matrix of appropriate dimension, and the product operator is defined
as

t2∏
t=t1

At ,

{
At2 · · ·At1 , t1 ≤ t2
I, t1 > t2.

(1)

2 Problem Formulation
The mhe problem is solved by solving the corresponding inequality constrained
optimization problem. This can be done using different types of methods, where
some common ones are primal and primal-dual interior-point (ip) methods and
active-set (as) methods. In these types of methods the main computational
effort is spent when computing the search directions, [29, 30], which is inter-
preted as solving a sequence of equality constrained qp problems, [2, 14, 15].



The equality constrained convex qp problem has the structure

min.
x,w,v

1

2
(x0 − x̃0)

T
P̃−1
0 (x0 − x̃0) +

1

2

Nmhe∑
k=0

[
wk − w̃k
vk − ṽk

]T [
Q̃w,k Q̃wv,k
Q̃Twv,k Q̃v,k

]−1 [
wk − w̃k
vk − ṽk

]
s.t. xk+1 = Akxk +Bkwk + ak, k ∈ Z0,Nmhe

yk = Ckxk + vk + dk, k ∈ Z0,Nmhe ,

(2)

where xk ∈ Rnx is the state, wk ∈ Rnw is the process noise, vk ∈ Rny is
the sensor noise and yk ∈ Rny is the measured output, [14]. x̃0 and P̃0 are
the initial state estimate and covariance matrix, respectively, and w̃k and ṽk
are the nominal values for wk and vk, respectively. Here, the problem (2) is
considered to be a deterministic optimization problem. However, a stochastic
interpretation of this problem is found in, e.g., [16]. It is shown in, e.g., [14]
that the qp problem (2) can equivalently be written in the form of a uftoc
problem. This is done by eliminating the variable vk from the objective function
using the measurement equation, and by defining a new state variable x−1 , x̃0
and its corresponding process noise w−1 , x0 − x̃0, which gives the relation
x0 = x−1 +w−1. Furthermore, by shifting time-indices by introducing t , k+ 1
and N , Nmhe + 2, the problem (2) can equivalently be written in the form of
a uftoc problem, which here will be denoted P(N), i.e.,

min.
x,w

N−1∑
t=0

(
1

2

[
xt
wt

]T
Qt

[
xt
wt

]
+ lTt

[
xt
wt

]
+ ct

)
+

1

2
xTNQx,NxN + lTNxN + cN

s.t. x0 = x̃0

xt+1 = Atxt +Btwt + at, t ∈ Z0,N−1.

(3)

For t = 0 and t = N , the problem matrices are given by

Q0 =

[
Qx,0 Qxw,0
QTxw,0 Qw,0

]
,

[
0 0

0 P̃−1
0

]
, l0 , 0, c0 , 0, (4a)

A0 , I, B0 , I, a0 , 0, Qx,N , 0, lx,N , 0, cN , 0. (4b)

By defining ỹt , yt − dt − ṽt and[
Wt St
STt Vt

]
,

[
Q̃w,k Q̃wv,k
Q̃Twv,k Q̃v,k

]−1

, (5)



the problem matrices for t ∈ Z1,N−1 are given by

Qt =

[
Qx,t Qxw,t
QTxw,t Qw,t

]
,

[
CTt VtCt −CTt St
−STt Ct Wt

]
∈ Snx+nw

+ , (6a)

lt ,

[
lx,t
lw,t

]
=

[
CTt (Stw̃t − Vtỹt)
STt ỹt −Wtw̃t

]
, (6b)

ct ,
1

2
w̃Tt Wtw̃t − ỹTt Stw̃t +

1

2
ỹTt Vtỹt. (6c)

For the derivation of the problem matrices, see, e.g., [14].

Remark 1. In both ip and as methods the solution to the original constrained
mhe problem is obtained by solving a sequence of uftoc problems in the form
in (3). The number of problems in this sequence is independent of how these
uftoc problems are solved. Since the main computation time is consumed when
the uftoc problems are solved, the overall relative performance gain for solving
the entire sequence of problems in order to solve the constrained mhe problem
is roughly the same as the relative performance gain obtained when solving a
single uftoc problem.

3 Serial Riccati Recursion
The optimal solution to the uftoc problem (3) is computed by solving the set
of linear equations given by the associated Karush-Kuhn-Tucker (kkt) system.
For this problem structure, the kkt system has a very special form that is almost
block diagonal and it is well known that it can be factored efficiently using a
Riccati factorization [9]. The Riccati factorization is used to factor the kkt
coefficient matrix, followed by backward and forward recursions to compute the
primal and dual variables. The computational complexity when solving the kkt
system using the Riccati recursion is reduced from roughly O

(
N2
)
−O

(
N3
)
to

O (N) compared to solvers that do not exploit sparsity. The Riccati recursion
is given by algorithms 1-3, where Ft, Pt ∈ Snx

+ , Gt ∈ Snw
++, Ht ∈ Rnx×nw and

Kt ∈ Rnw×nx , [9]. For more background information on Riccati factorizations,
see, e.g., [1], [2] or [9].

4 Problem Decomposition and Reduction
By examining algorithms 1 and 2, it can be seen that given Pti+1

, Ψti+1
and c̄ti+1

the factorization and backward recursion can be computed for 0 ≤ t ≤ ti+1.
Furthermore, if these algorithms have been executed, it follows from Algo-
rithm 3 that given xti the forward recursion can be computed for the interval
ti ≤ t ≤ ti+1. Hence, provided that Pti+1 , Ψti+1 , c̄ti+1 and xti are known for
i ∈ Z0,p for some p, it is possible to compute the Riccati recursion and the pri-
mal and dual solution in each interval ti ≤ t ≤ ti+1 with i ∈ Z0,p independently
from the other intervals. This property will be used to decompose the problem.



Algorithm 1 Riccati factorization
1: PN := Qx,N
2: for t = N − 1, . . . , 0 do
3: Ft+1 := Qx,t +ATt Pt+1At
4: Gt+1 := Qw,t +BTt Pt+1Bt
5: Ht+1 := Qxw,t +ATt Pt+1Bt
6: Compute and store a factorization of Gt+1.
7: Compute a solution Kt+1 to

Gt+1Kt+1 = −HT
t+1

8: Pt := Ft+1 −KT
t+1Gt+1Kt+1

9: end for

Algorithm 2 Backward recursion
1: ΨN := −lx,N , c̄N := cN
2: for t = N − 1, . . . , 0 do
3: Compute a solution kt+1 to

Gt+1kt+1 =
(
BTt Ψt+1 − lw,t −BTt Pt+1at

)
4: Ψt := ATt Ψt+1 −Ht+1kt+1 − lx,t −ATt Pt+1at
5: c̄t := c̄t+1 + 1

2a
T
t Pt+1at −ΨT

t+1at
− 1

2k
T
t+1Gt+1kt+1 + ct

6: end for

Algorithm 3 Forward recursion
1: x0 := x̃0
2: for t = 0, . . . , N − 1 do
3: wt := kt+1 +Kt+1xt
4: xt+1 := Atxt +Btwt + at
5: λt := Ptxt −Ψt

6: end for
7: λN := PNxN −ΨN

The decomposition of the time-horizon is similar to what is done in partial
condensing, which is introduced in [31]. In partial condensing, state variables
in several batches along the prediction horizon are eliminated, and the resulting
control problem can be interpreted as a problem with shorter prediction horizon
but larger control input/process noise dimension. In the parallel approach in
this paper, due to the property described above, the partial condensing of the
independent batches can be performed in parallel. Furthermore, by utilizing
the problem structure in the batches it is possible to also reduce the control
input/process noise dimension.

4.1 Divide into independent intervals
Decompose the uftoc problem (3) by dividing the prediction horizon into p+1
intervals, or batches. This is done by introducing the batch-wise variables xi



and wi as

xi =
[
xT0,i · · · xTNi,i

]T
,
[
xTti · · · xTti+1

]T
, (7)

wi =
[
wT0,i · · · wTNi−1,i

]T
,
[
wTti · · · wTti+1−1

]T
, (8)

where Ni is the length of batch i, t0 = 0 and xNi,i = x0,i+1.
By following the reasoning in the introduction of this section it is possible

to compute the Riccati recursion and the optimal value in batch i if x̂i , xti ,
P̂i+1 , Pti+1

, Ψ̂i+1 , Ψti+1
and ĉi+1 , c̄ti+1

are known. Hence, if these variables
are known for all batches i ∈ Z0,p, the solution to the original problem (3) can
be computed from p+ 1 independent subproblems in the uftoc form

min.
xi,ui

Ni−1∑
t=0

(
1

2

[
xt,i
wt,i

]T
Qt,i

[
xt,i
wt,i

]
+ lTt,i

[
xt,i
wt,i

]
+ ct,i

)
+

1

2
xTNi,iP̂i+1xNi,i − Ψ̂T

i+1xNi,i + ĉi+1

s.t. x0,i = x̂i

xt+1,i = At,ixt,i +Bt,iwt,i + at,i, t ∈ Z0,Ni−1,

(9)

using p + 1 individual Riccati recursions. Here Qt,i, lt,i, ct,i, At,i, Bt,i and at,i
are defined consistently with xi and wi.

4.2 Eliminate local variables in a subproblem
A detailed description of the elimination of local variables in the subproblems is
given in [26, 28]. However, a shortened version including all the main steps are
given here for completeness. It is shown that even when P̂i+1, Ψ̂i+1 and ĉi+1

are not known in (9), it is possible to eliminate local variables and reduce the
sizes of the individual subproblems. The core idea with this approach is that the
unknowns P̂i+1 and Ψ̂i+1 will indeed influence the solution of the subproblem,
but as is shown in [26,28], the resulting degree of freedom is often very limited
compared to the dimension of the full vector wi. The constant ĉi+1 affects the
optimal value of the cost function but not the solution. The elimination of
variables can be done separately for the p+ 1 subproblems, which opens up for
a structure that can be solved in parallel. In the remaining part of this section
the subindices i in (9) are omitted for notational brevity, i.e., Ψ̂i+1 is written
Ψ̂ etc.

It will now be shown how the structure in the subproblem (9) can be ex-
ploited to eliminate local variables in an interval. The elimination of local
variables and reduction of the subproblems will be simplified by using a pre-
liminary feedback policy which is computed using the Riccati recursion. The
use of this preliminary feedback is in principle not necessary, but it will later
be seen that the main computationally demanding key computations can be
performed more efficiently by using it. To compute the preliminary feedback,
let the uftoc problem (9) with unknown P̂, Ψ̂ and ĉ be factored and solved for



the preliminary choice P̂ = 0, Ψ̂ = 0 and ĉ = 0 using algorithms 1 and 2. The
resulting optimal policy for P̂ = 0 and Ψ̂ = 0 is then w0,t = k0,t+1 + K0,t+1xt
for t ∈ Z0,N−1. The subindex ”0” denotes variables that correspond to this
preliminary solution.

It will now be investigated how wt and the cost function are affected when
P̂ 6= 0, Ψ̂ 6= 0 and ĉ 6= 0. Let the contribution to wt from the unknown P̂ and
Ψ̂ be denoted w̄t ∈ Rnw . Using the preliminary feedback, which is optimal for
P̂ = 0 and Ψ̂ = 0, wt can be written

wt = k0,t+1 +K0,t+1xt + w̄t, t ∈ Z0,N−1. (10)

Note that w̄t is an arbitrary nw-vector, hence there is no loss of generality in
this assumption. From now on, the policy (10) is used in the subproblem, and
it will be shown that the degree of freedom in w̄ can be reduced. It is shown
in [26,28] that the uftoc problem (9) can be written

min.
x0,w̄,xN

1

2
xT0 Q̂xx0 + l̂Tx x0 +

1

2
w̄T Q̄w̄w̄ + c̄0,0

+
1

2
xTN P̂xN − Ψ̂TxN + ĉ

s.t. x0 = x̂

xN = Âx0 + Sw̄ + â,

(11)

when using the preliminary feedback (10). Here

Q̂x , P0,0, l̂x , −Ψ0,0, (12a)

Q̄w̄ ,

G0,1

. . .
G0,N

 , Â ,
N−1∏
t=0

(At +BtK0,t+1) , (12b)

S ,
[∏N−1

t=1 (At +BtK0,t+1)B0 . . . BN−1

]
, (12c)

â ,
N−1∑
τ=0

N−1∏
t=τ+1

(At +BtK0,t+1) (aτ +Bτk0,τ+1), (12d)

and P0,0, Ψ0,0 and c̄0,0 are computed by algorithms 1 and 2 with the preliminary
choice P̂ = 0, Ψ̂ = 0 and ĉ = 0.

The problem (11) is a uftoc problem with prediction horizon 1 and Nnw
control inputs. The equations that define the factorization of the kkt system
of (11) are

F̂ = P0,0 + ÂT P̂Â, (13a)

Ḡ = Q̄w̄ + ST P̂ S, H̄ = ÂT P̂ S, (13b)

ḠK̄ = −H̄T , Ḡk̄ = ST
(

Ψ̂ − P̂â
)
. (13c)



These can be used to compute the optimal solution of (11) to obtain the optimal
w̄. Using (13b), the first equation in (13c) can be written as(

Q̄w̄ + ST P̂ S
)

K̄ = −ST P̂Â. (14)

In [26,28] it is shown that it is possible to reduce the number of equations and
reducing the degree of freedom of w̄ by exploiting the structure in (14). To do
this, let U1 ∈ RNnw×n1 with n1 ≤ nx be an orthonormal basis for R

(
ST
)
, i.e.,

the range space of ST . Then, by introducing K̂ ∈ Rn1×nx to parametrize the
feedback matrix as

K̄ = Q̄−1
w̄ U1K̂, (15)

and inserting this choice of K̄ into (14) gives(
U1 + ST P̂ SQ̄−1

w̄ U1

)
K̂ = −ST P̂Â. (16)

Furthermore, by multiplying (16) with the full rank matrix UT1 Q̄−1
w̄ from the

left gives (
UT1 Q̄−1

w̄ U1 + UT1 Q̄−1
w̄ ST P̂ SQ̄−1

w̄ U1

)
K̂ = −UT1 Q̄−1

w̄ ST P̂Â, (17)

which is equivalent to the system of equations (14).
Now, by introducing the variables

Q̂w , UT1 Q̄−1
w̄ U1 ∈ Sn1

++, B̂ , SQ̄−1
w̄ U1 ∈ Rnx×n1 , (18)

Ĝ , Q̂w + B̂T P̂B̂, Ĥ , ÂT P̂B̂, (19)

eq. (17) can be written as
ĜK̂ = −ĤT . (20)

Remark 2. The preliminary feedback in (10) results in a block-diagonal Q̄w̄

with blocks given by G0,t+1 for t ∈ Z0,N−1. Hence, Q̂w and B̂ can be computed
efficiently using block-wise computations where the factorizations of G0,t+1 from
computing K0,t+1 can be re-used.

By using analogous calculations, the structure can be exploited also in the
second equation in (13c) to reduce it to

Ĝk̂ = B̂T
(

Ψ̂ − P̂â
)
, (21)

with k̂ ∈ Rn1 . Hence, (13) can equivalently be written as

F̂ = Q̂x + ÂT P̂Â, (22a)

Ĝ = Q̂w + B̂T P̂B̂, Ĥ = ÂT P̂B̂, (22b)

ĜK̂ = −ĤT , Ĝk̂ = B̂T
(

Ψ̂ − P̂â
)
, (22c)



which can be identified as the factorization of the kkt system of a uftoc
problem in the form (11) but with input signal dimension nŵ = n1 ≤ nx.
Hence (22) defines the optimal solution to a smaller uftoc problem. This
important result is summarized in Theorem 1, which is repeated from [26, 28]
(where the subindices i in (9) are again used).

Theorem 1. A uftoc problem given in the form (9) with unknown P̂i+1, Ψ̂i+1

and ĉi+1 can be reduced to a uftoc problem in the form

min.
x0,i, xNi,i

, ŵi

1

2
xT0,iQ̂x,ix0,i +

1

2
ŵTi Q̂w,iŵi + l̂Tx,ix0,i + ĉi

+
1

2
xTNi,iP̂i+1xNi,i − Ψ̂T

i+1xNi,i + ĉi+1

s.t. x0,i = x̂i

xNi,i = Âix0,i + B̂iŵi + âi,

(23)

where x̂i, x0,i, xNi,i ∈ Rnx and ŵi ∈ Rnw , with nw ≤ nx. Âi and âi are defined
in (12b) and (12d), respectively, and Q̂x,i, Q̂w,i, l̂x,i and B̂i are given by (12a)
and (18), and ĉi , c̄0,0 where c̄0,0 is defined as in (11).

Proof. The proof is given in [26] and [28].

To avoid computing the orthonormal basis U1 in practice a transformation
K̂ = T L̂, where T ∈ Rn1×nx has full rank and U1T = ST , can be used. By
using this choice of K̂ in (17) and then multiplying from the left with TT , the
matrices Q̂w, B̂ and (20) can instead be written

Q̂w = B̂ , SQ̄−1
w̄ ST and ĜL̂ = −ĤT , (24)

where Ĝ and Ĥ are defined as in (19) but with the new Q̂w and B̂. The
uftoc problem corresponding to (22) then obtains an (possibly) increased con-
trol signal dimension nŵ = nx ≥ n1 compared to when Q̂w and B̂ are defined
as in (18), but with the advantage that Q̂w and B̂ can be easily computed.
Analogous calculations can be made for k̂.

Remark 3. If ST is rank deficient then U1 ∈ RNnw×n1 has n1 < nx columns.
Hence Ĝ is singular and L̂ non-unique in (24). How to cope with this is described
in, e.g., [9, 28].

For the last subproblem with i = p, the variables P̂p+1 = Qx,Np,p, Ψ̂p+1 =
−lx,Np,p and ĉp+1 = cNp,p in (9) are in fact known. Hence, the last subproblem
can be factored directly and all variables but the initial state can be eliminated.

The formal validity of the reduction of each subproblem i ∈ Z0,p−1 is given by
Theorem 1, while the computational procedure is summarized in Algorithm 4,
which is basically a Riccati factorization and backward recursion as in algo-
rithms 1 and 2. Here Q̂w,i and B̂i are computed as in (24).



Algorithm 4 Reduction using Riccati factorization
1: PN := 0, ΨN := 0, c̄N := 0
Q̂w := 0, DN := I, dN := 0

2: for t = N − 1, . . . , 0 do
3: Ft+1 := Qx,t +ATt Pt+1At
4: Gt+1 := Qw,t +BTt Pt+1Bt
5: Ht+1 := Qxw,t +ATt Pt+1Bt
6: Compute and store a factorization of Gt+1.
7: Compute a solution Kt+1 to: Gt+1Kt+1 = −HT

t+1

8: Compute a solution kt+1 to
Gt+1kt+1 = BTt Ψt+1 − lw,t −BTt Pt+1at

9: Ψt := ATt Ψt+1 −Ht+1kt+1 − lx,t −ATt Pt+1at
10: Pt := Ft+1 −KT

t+1Gt+1Kt+1

11: Compute a solution Lt+1 to: Gt+1Lt+1 = −BTt Dt+1

12: Dt :=
(
ATt +KT

t+1B
T
t

)
Dt+1

13: dt := dt+1 +DT
t+1(at +Btkt+1)

14: Q̂w := Q̂w + LTt+1Gt+1Lt+1

15: end for
16: Â := DT

0 , B̂ := Q̂w, â := d0
Q̂x := P0, l̂x := −Ψ0, ĉ := c̄0

4.3 Constructing the master problem
According to Theorem 1 and the theory presented in Section 4.2, all subproblems
i ∈ Z0,p−1 can be reduced to depend only on the variables x̂i, xNi,i and ŵi,
and subproblem i = p depends only on x̂p. The variable ŵi represents the
unknown part of wt,i that are due to the initially unknown P̂i+1 and Ψ̂i+1. Using
the definition of the subproblems and the property xNi,i = x0,i+1 = x̂i+1 that
were introduced in the decomposition in Section 4.1, the reduced subproblems
i ∈ Z0,p can be combined into a master problem which is equivalent to the
problem in (3). By using the notation from Section 4.2, the master problem can
be written

min.
x̂,ŵ

p−1∑
i=0

(
1

2

[
x̂i
ŵi

]T
Q̂i

[
x̂i
ŵi

]
+ l̂Tx,ix̂i + ĉi

)
+

1

2
x̂Tp Q̂x,px̂p + l̂Tx,px̂p + ĉp

s.t. x̂0 = x̄0

x̂i+1 = Âix̂i + B̂iŵi + âi, i ∈ Z0,p−1.

(25)

This is a uftoc problem in the same form as (3) but with shorter prediction
horizon p < N and block-diagonal Q̂i. The dynamics equations x̂i+1 = Âix̂i +
B̂iŵi + âi are due to the relation

x̂i+1 = x0,i+1 = xNi,i = Âix̂i + B̂iŵi + âi. (26)

Hence, a uftoc problem P(N) can be reduced to a uftoc problem P(p) in
the same form but with shorter prediction horizon and possibly fewer variables



dimension in each time step. Each subproblem is reduced individually using an
algorithm based on the Riccati recursion.

5 Computing the Riccati Recursion in Parallel
The reduction of the individual subproblems according to Section 4.2 can be
performed in parallel. To reach consensus between all subproblems in order
to solve the original problem (3), the master problem (25) can be solved to
obtain P̂i+1, Ψ̂i+1, ĉi+1 and the optimal x̂i for i ∈ Z0,p. When these variables
are computed, the independent subproblems can be solved in parallel using
algorithms 1-3 with the initial x0,i = x̂i, P̂i+1, Ψ̂i+1 and ĉi+1 for i ∈ Z0,p.

To compute P̂i+1, Ψ̂i+1, ĉi+1 and x̂i the master problem (25) can be solved
serially using the Riccati recursion. However, (25) can instead itself be reduced
in parallel in an upward pass until a uftoc problem with a prediction horizon
of pre-determined length is obtained. This top problem is then solved, and the
solution is propagated down in the tree in a downward pass until the subprob-
lems of the original problem (3) are solved. This procedure is shown in Fig. 1,
where Pki (Nk

i ) denotes subproblem i in the form (9) at level k in the tree. The
number of steps in the upward and downward pass are known a-priori and can
be determined by the user.

Since the subproblems at each level can be reduced and solved in parallel
and the information flow is between parent and children in the tree, the Riccati
recursion can be computed in parallel using the theory proposed in this paper.

P0
0 (N0

0 ) P0
i (N0

i ) P0
j (N0

j ) P0
p0(N0

p0)

P1
0 (N1

0 ) P1
p1(N1

p1)

Pm0 (Nm
0 )

P(N) :

P(p0) :

P(pm−1) :

Figure 1: The original uftoc problem P(N) can be reduced repeatedly using
Riccati recursions. When the solution to the top problem is computed, it can
be propagated back in the tree until the bottom level is solved.

The uftoc problem (3) is reduced in parallel in several steps in Algorithm 5
to a uftoc problem with prediction horizon pm−1. Assume, for simplicity, that
all subproblems are of equal batch length Ns and that N = Nm+1

s for some
integer m ≥ 1. Then, provided that Nm

s computational units are available, the
reduction can be made in m steps, i.e., the reduction algorithm has O (logN)
complexity growth.



Algorithm 5 Parallel reduction of uftoc problem
1: Set the maximum level number m
2: Set the number of subproblems pk + 1 for each level k ∈ Z0,m with pm = 0
3: for k := 0, . . . ,m− 1 do
4: parfor i = 0, . . . , pk do
5: Create subproblem Pki (Nk

i )
6: Reduce subproblem Pki (Nk

i ) using Algorithm 4
7: Send Âki , B̂ki , âki , Q̂kx,i, Q̂kw,i, l̂kx,i and ĉki to parent
8: end parfor
9: end for

When the reductions of the subproblems are completed, Algorithm 6 is ap-
plied to solve each subproblem i ∈ Z0,pk−1

at level k using algorithms 1-3 with
the optimal x̂k+1

i , P̂ k+1
i+1 , Ψ̂k+1

i+1 and ĉk+1
i+1 from the respective parent. The algo-

rithm starts by solving the top problem P(pm−1) in Fig. 1, and the solution is
passed to its children. By solving the subproblems at each level and passing the
solution to the children at the level below in the tree, the subproblems P0

i (N0
i ),

i ∈ Z0,p0 at the bottom level can finally be solved individually. All subproblems
can be solved using only information from their parents, and hence each level
in the tree can be solved in parallel.

By using the definition of the local variables, the optimal primal solution to
the original uftoc problem (3) can be constructed from the solutions to the
subproblems at the bottom level. The dual variables can be computed from
all P 0

t,i and Ψ0
t,i from the subproblems at the bottom level. Hence there are no

complications with non-unique dual variables as in [24] when using the algorithm
presented in this paper. The propagation of the solution from the top level to
the bottom level can be made in m+1 steps provided that Nm

s processing units
are available. Since both algorithms 5 and 6 are solved in O (logN) complexity,
the Riccati recursion and the solution to (3) can be computed with O (logN)
complexity growth.

Algorithm 6 Parallel solution of uftoc problem
1: Get the top level number m and pk:s from Algorithm 5
2: Initialize x̂m0 := x̄
3: for k := m,m− 1, . . . , 0 do
4: parfor i := 0, . . . , pk do
5: Solve subproblem Pki (Nk

i ) using algorithms 1-3
6: if k > 0 then
7: Send P̂ kt,i, Ψ̂k

t,i, ĉ
k
t,i and x̂kt,i to each children

8: end if
9: end parfor

10: end for
11: Get the solution of (3) from the solutions of all P0

i (N0
i )

Beyond what is presented here, as was observed already in [32], standard



parallel linear algebra can be used for many computations in the serial Riccati
recursion in each subproblem to boost performance even further. This has
however not been utilized in this work.

6 Numerical results
In the presented experiments from Matlab, parallel executions of the algo-
rithms are simulated by executing them serially using one computational thread
but still using the same information flow as for an actual parallel execution. The
total computation time has been estimated by summing over the maximum com-
putation time for each level in the tree, and hence the communication overhead
is neglected. The influence of the communication overhead is discussed in the
end of this section. The performance when computing the solution to (3) of
the parallel Riccati algorithm proposed in this work is compared with both the
serial Riccati recursion and, as a reference for linear problems, the well-known
rts smoother (see, e.g., [16]). The rts smoother is only implemented in Mat-
lab. In all results presented in this section Ns = 2 has been used in the parallel
algorithm.

Remark 4. Different batch lengths can be used for each subproblem in the tree.
How to choose these to minimize computation time is not investigated here.
However, similarly as in [31], the optimal choice depends on, e.g., the problem
and the hardware on which the algorithm is implemented.

In Matlab the algorithms have been compared when solving mhe problems
(or computing Newton steps for inequality constrained mhe problems) in the
form (2) for systems of dimension nx = 20, nw = 20 and ny = 20, see Fig. 2.
It can be seen that the parallel Riccati algorithm outperforms the serial Riccati
for N & 20 and the rts smoother for N & 30.

An ansi-c implementation has been run on a computer cluster consisting of
nodes with 8-core Intel Xeon E5-2660 @ 2.2 GHz cpus with communication over
tcp/ip on Gigabit Ethernet. The computations were performed on resources
provided by the Swedish National Infrastructure for Computing (snic) at nsc.
The implementation is rudimentary and especially the communication setup can
be improved, but the implemented algorithm serves as a proof-of-concept that
the algorithm improves performance in terms of computation times for compu-
tations on real parallel hardware, taking communication delays into account.
The computation times when solving mhe problems in the form (3) for systems
of order nx = 20, nw = 20 and ny = 20 are seen in Fig. 3, where it is clear that
the parallel algorithm solves a problem with N = 512 approximately as fast as
the serial algorithm solves the same one for N = 64, and the break even is at
N ≈ 24. This computational speed-up can be important in smoothing problems
and in mhe problems where long horizons are often used, [2].

The communication overhead is approximately 20% for this problem size,
and it has been observed that communication times are roughly the same re-
gardless of problem size. This indicates that there is a significant communication



Prediction horizon
101 102 103

T
im

e 
[s

]

10-4

10-3

10-2

10-1

100
Computation time: MATLAB

Parallel
RTS
Serial

Figure 2: Computation times when solving mhe problems of order nx = 20,
nw = 20 and ny = 20. The parallel Riccati algorithm outperforms the serial
Riccati algorithm for N & 20 and the rts smoother for N & 30.

latency, and reducing these can significantly improve performance of the ansi-c
implemented algorithm.

7 Conclusions
In this paper it is shown that the Newton step that is required in many methods
for solving mhe problems can be computed directly (non-iteratively) in paral-
lel using Riccati recursions that exploit the structure from the mhe problem.
The proposed algorithm obtains logarithmic complexity growth in the estima-
tion horizon length. Results from numerical experiments both in Matlab as
well as in ansi-c on real parallel hardware show that the proposed algorithm
outperforms existing serial algorithms already for relatively small values of N .
Future work includes the possibility to improve performance and reduce com-
munication latencies by using more suitable hardware such as, e.g., Graphics
Processing Units (gpus) or Field-Programmable Gate Arrays (fpgas).



Prediction horizon
101 102

T
im

e 
[s

]

10-3

10-2

Computation time: ANSI-C

Serial
Parallel

Figure 3: Computation times for ansi-c implementation using problems of order
nx = 20, nw = 20 and ny = 20. The parallel Riccati algorithm outperforms
the serial for N & 24 and it computes the solution to an mhe problem with
N = 512 approximately as fast as for N = 64 using the serial algorithm.

References
[1] H. Jonson, “A Newton method for solving non-linear optimal control prob-

lems with general constraints,” Ph.D. dissertation, Linköpings Tekniska
Högskola, 1983.

[2] C. Rao, S. Wright, and J. Rawlings, “Application of interior-point methods
to model predictive control,” Journal of Optimization Theory and Applica-
tions, vol. 99, no. 3, pp. 723–757, Dec. 1998.

[3] A. Hansson, “A primal-dual interior-point method for robust optimal con-
trol of linear discrete-time systems,” IEEE Transactions on Automatic Con-
trol, vol. 45, no. 9, pp. 1639–1655, Sep. 2000.

[4] R. Bartlett, L. Biegler, J. Backstrom, and V. Gopal, “Quadratic program-
ming algorithms for large-scale model predictive control,” Journal of Pro-
cess Control, vol. 12, pp. 775–795, 2002.

[5] L. Vandenberghe, S. Boyd, and M. Nouralishahi, “Robust linear program-
ming and optimal control,” Department of Electrical Engineering, Univer-
sity of California Los Angeles, Tech. Rep., 2002.



[6] M. Åkerblad and A. Hansson, “Efficient solution of second order cone
program for model predictive control,” International Journal of Control,
vol. 77, no. 1, pp. 55–77, 2004.

[7] D. Axehill and A. Hansson, “A mixed integer dual quadratic programming
algorithm tailored for MPC,” in Proceedings of the 45th IEEE Conference
on Decision and Control, San Diego, USA, Dec. 2006, pp. 5693–5698.

[8] D. Axehill, A. Hansson, and L. Vandenberghe, “Relaxations applicable to
mixed integer predictive control – comparisons and efficient computations,”
in Proceedings of the 46th IEEE Conference on Decision and Control, New
Orleans, USA, 2007, pp. 4103–4109.

[9] D. Axehill, “Integer quadratic programming for control and communica-
tion,” Ph.D. dissertation, Linköping University, 2008.

[10] D. Axehill and A. Hansson, “A dual gradient projection quadratic program-
ming algorithm tailored for model predictive control,” in Proceedings of the
47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008,
pp. 3057–3064.

[11] M. Diehl, H. Ferreau, and N. Haverbeke, Nonlinear Model Predictive Con-
trol. Springer Berlin / Heidelberg, 2009, ch. Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation, pp. 391–417.

[12] A. Domahidi, A. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones,
“Efficient interior point methods for multistage problems arising in receding
horizon control,” in IEEE Conference on Decision and Control (CDC),
Maui, USA, Dec. 2012, pp. 668 – 674.

[13] C. Rao, “Moving horizon strategies for the constrained monitoring and
control of nonlinear discrete-time systems,” Ph.D. dissertation, University
of Wisconsin-Madison, 2000.

[14] J. Jørgensen, “Moving horizon estimation and control,” Ph.D. dissertation,
Technical University of Denmark (DTU), 2004.

[15] N. Haverbeke, M. Diehl, and B. De Moor, “A structure exploiting interior-
point method for moving horizon estimation,” in Decision and Con-
trol, 2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, Dec 2009,
pp. 1273–1278.

[16] T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation. Prentice Hall
Upper Saddle River, NJ, 2000, vol. 1.

[17] G. Constantinides, “Tutorial paper: Parallel architectures for model predic-
tive control,” in Proceedings of the European Control Conference, Budapest,
Hungary, 2009, pp. 138–143.



[18] D. Soudbakhsh and A. Annaswamy, “Parallelized model predictive control,”
in Proceedings of the American Control Conference, Washington, DC, USA,
2013, pp. 1715–1720.

[19] Y. Zhu and C. Laird, “A parallel algorithm for structured nonlinear pro-
gramming,” in 5th International Conference on Foundations of Computer-
Aided Process Operations, vol. 5, 2008, pp. 345–348.

[20] P. Reuterswärd, Towards Pseudospectral Control and Estimation, ser. ISSN
0280–5316, 2012, licentiate Thesis.

[21] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method for
optimal control,” in IEEE Transactions on Control Systems Technology,
vol. 21, no. 6. IEEE, 2013, pp. 2432–2442.

[22] G. Stathopoulos, T. Keviczky, and Y. Wang, “A hierarchical time-splitting
approach for solving finite-time optimal control problems,” in Proceedings
of the European Control Conference, Zurich, Switzerland, July 2013, pp.
3089–3094.

[23] T. Poloni, B. Rohal’-Ilkiv, and T. Johansen, “Parallel numerical optimiza-
tion for fast adaptive nonlinear moving horizon estimation,” in 10th IEEE
International Conference on Networking, Sensing and Control (ICNSC),
April 2013, pp. 40–47.

[24] I. Nielsen and D. Axehill, “An O(log N) parallel algorithm for Newton step
computation in model predictive control,” in Proceedings of the 19th IFAC
World Congress, Cape Town, South Africa, Aug. 2014, pp. 10 505–10 511.

[25] ——, “An O(log N) parallel algorithm for Newton step computation in
model predictive control,” arXiv preprint arXiv:1401.7882, 2014.

[26] ——, “A parallel structure-exploiting factorization algorithm with applica-
tions to model predictive control,” Dec. 2015, accepted for publication at
the 54th IEEE Conference on Decision and Control.

[27] S. Khoshfetrat Pakazad, A. Hansson, and M. Andersen, “Distributed
primal-dual interior-point methods for solving loosely coupled problems
using message passing,” arXiv:1502.06384v2, 2015.

[28] I. Nielsen, On Structure Exploiting Numerical Algorithms for Model Pre-
dictive Control, ser. Linköping Studies in Science and Technology. Thesis,
2015, no. 1727.

[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press, 2004.

[30] J. Nocedal and S. Wright, Numerical Optimization. Springer-Verlag, 2006.

[31] D. Axehill, “Controlling the level of sparsity in MPC,” Systems & Control
Letters, vol. 76, pp. 1–7, 2015.



[32] D. Axehill and A. Hansson, “Towards parallel implementation of hybrid
MPC – a survey and directions for future research,” in Distributed Deci-
sion Making and Control, ser. Lecture Notes in Control and Information
Sciences, R. Johansson and A. Rantzer, Eds. Springer Verlag, 2012, vol.
417, pp. 313–338.


	1 Introduction
	2 Problem Formulation
	3 Serial Riccati Recursion
	4 Problem Decomposition and Reduction
	4.1 Divide into independent intervals
	4.2 Eliminate local variables in a subproblem
	4.3 Constructing the master problem

	5 Computing the Riccati Recursion in Parallel
	6 Numerical results
	7 Conclusions

