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Sequential convex relaxation for convex optimization with bilinear
matrix equalities∗

Reinier Doelman1,2 and Michel Verhaegen1

Abstract— We consider the use of the nuclear norm operator,
and its tendency to produce low rank results, to provide a
convex relaxation of Bilinear Matrix Inequalities (BMIs). The
BMI is first written as a Linear Matrix Inequality (LMI) subject
to a bi-affine equality constraint and subsequently rewritten
into an LMI subject to a rank constraint on a matrix affine
in the decision variables. The convex nuclear norm operator is
used to relax this rank constraint. We provide an algorithm that
iteratively improves on the sum of the objective function and
the norm of the equality constraint violation. The algorithm is
demonstrated on a controller synthesis example.

I. INTRODUCTION

Many controller synthesis techniques can be efficiently
solved using convex optimization and LMIs. Examples in-
clude static state-feedback controllers and dynamic output
feedback controllers. The crucial last step in deriving these
LMIs is usually a convexification step that hinges on sub-
stituting decision variables that only appear in products, or
more involved transformations, see for example [1], [2], [3].
If no convexification step is known, the control designer
is usually left solving a BMI, which in many cases is an
NP-hard problem [4]. However, this does not exclude the
possibility of efficient algorithms for finding local minima
to the optimization problem.

A rough distinction can be made in global and local
optimization algorithms, see [5] and the references therein.
Many global optimization algorithms are of a Branch and
Bound-type, for example [6], [7], but since the problem is
NP-hard the computational complexity and run time of these
algorithms remains an issue.

Local optimization algorithms can be very intuitive. A dual
iteration method, [8], could start from any feasible solution
to the BMI, fix one of the bilinear variables and optimize
over the others. Subsequently fix the other bilinear variables
and and repeat this procedure. There is however no guarantee
of convergence of this procedure to a local minimum [9], [6],
[10].

Other local optimization algorithms include path-following
methods [11], [12] that include a linearization step, and,
relevant to this work, rank minimization (rank constrained)
methods [13], [14], [15].

The convex relaxation proposed in this paper requires less
variables to be introduced to the problem than similar ap-
proaches in literature. Furthermore, we propose two iterative
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algorithms that do not require a feasible solution to the BMI
as a starting point.

A. Notation

Let Rn×m denote the set of real-valued matrices of size
n×m and let X ∈ Sn, X � 0 denote a symmetric positive
semidefinite matrix X of size n × n. R+ denotes the set
of real and positive scalars. rank (X) denotes the rank of
matrix X and ‖X‖∗ denotes its nuclear norm. X+ is the
notation used for the Moore-Penrose pseudoinverse of a
matrix X , and X⊥ denotes the orthogonal complement of
X , i.e. X⊥X = 0, X⊥X⊥T � 0. In relation to optimization
problems, an overbar X̄ denotes the optimal value of decision
variable X . In symmetric (block) matrices, the symbol ?
denotes blocks that can be inferred from symmetry and
sym (X) = X +XT . The use of (·) for function arguments
indicates that the arguments can be inferred from the context.
Finally, let {xk}k=0,1,... denote a sequence of values xk

indexed by k.

B. Problem formulation

The general type of bilinear (bi-affine) optimization prob-
lems we are considering are the ones that can abstractly be
written as follows. Consider a scalar γ ∈ R, the matrices
A ∈ Rna×nb , B ∈ Rnc×nd , and P ∈ Rnb×nc , and a matrix
valued function g:

minimize
γ,x,A,B

γ

subject to g(γ, x,A,B,APB) � 0.
(1)

Here x denotes a tuple of decision variables (either scalars,
vectors or matrices). The matrix P is not a decision variable,
but a given matrix originating from the problem at hand. We
can substitute the product APB with an additional variable
C ∈ Rna×nd , add an equality constraint and obtain the
equivalent problem:

minimize
γ,x,A,B,C

γ

subject to g(γ, x,A,B,C) � 0,

APB = C.

(2)

The function g(·) itself is now affine in all decision variables
and the bilinearity is contained in the equality constraint.

This formulation expresses many controller synthesis
BMIs where γ ∈ R+ is the (squared) H∞ or the (squared)
H2 norm of the resulting system, the function g(·) � 0
expresses the matrix inequality required for stability and per-
formance guarantee, and A,B and C are decision variables
constrained in a bilinear way.
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For some BMI problems convexification steps exist. One
example is where P = I , B only appears in products
with A, and A is guaranteed invertible. The expression AB
is substituted by C and after the optimal solution of the
resulting LMI is obtained, the value of B is calculated by
B = A−1C. Although it is possible to find the globally
optimal value of γ after this substitution, one loses the ability
to put (structural) constraints on B.

However, sometimes it is possible to formulate the prob-
lem in such a way as to still have some structural constraints
on B by accepting structural constraints on A and C that
would enable convexification (for example the assumption
that they are (block) diagonal), but this usually comes at
the price of conservatism on the optimal value of γ. In this
article we present in Section II an algorithm that iteratively
tries to find a solution to problem (1). The algorithm can
handle (structural) constraints on decision variables if these
originate from the problem, without unnecessarily imposing
constraints on other decision variables. In Subsection II-A
the bi-affine equality constraint is first rewritten into a rank
constraint on a specially constructed matrix M , and this
rank constraint is relaxed using the nuclear norm operator.
The construction of the matrix M allows for an iterative
algorithm that manipulates this matrix at every iteration.
In Subsection II-B it is proven that the iterative algorithm
defined using this convex relaxation assures that the sum of
γ and the norm of the equality constraint violation converges.
We relate our work to existing literature in Section III. We
provide numerical results in Section IV.

II. ITERATIVE SOLUTION TO BMI (1)

A. Description of the algorithm

To show some of the equalities in the proof of the
equivalence of constraints, we need the following lemma on
the generalized Schur complement.

Lemma 1 (Carlson [16], generalized Schur complement):
Let the matrix X be defined as

X =

(
X1 X2

X3 X4

)
. (3)

Then rank (X) = rank (X4) + rank
(
X1 −X2X

+
4 X3

)
if

and only if

X2

(
I −X+

4 X4

)
= 0, (4)(

I −X4X
+
4

)
X3 = 0. (5)

This lemma is instrumental in proving the following theorem.
Theorem 1: Given any matrices X ∈ Rna×nb , Y ∈

Rnc×nd and any full rank square matrices W1 ∈
Rna×na , W2 ∈ Rnd×nd , define the matrix M :

M :=

(
W1 0
0 I

)(
C +XPY +APY +XPB (A+X)P

P (B + Y ) P

)
×
(
W2 0
0 I

)
.

The following two optimization problems are equivalent.

1) The optimization with bilinear equality constraint:

minimize
γ,x,A,B,C

γ

subject to g(γ, x,A,B,C) � 0,

APB = C.

(6)

2) The optimization with rank constraint:

minimize
γ,x,A,B,C

γ

subject to g(γ, x,A,B,C) � 0,

rank (M) = rank (P ) .

(7)

Proof: To start, notice that constraint C = APB equals
a rank constraint on the difference between C and the product
APB: rank (C −APB) = 0. Enforcing this constraint is
difficult for two reasons: it is a rank constraint, and the
decision variables do not appear affinely in the constraint.
However, using Lemma 1, we can rewrite this constraint.

What we know of matrix M is that the conditions of
Lemma 1, (4) and (5), are fulfilled, since

W1(A+X)P (I − P+P ) = 0, and

(I − PP+)P (B + Y )W2 = 0.

The generalized Schur complement of P in M is:

W1 (C +XPY +APY +XPB)W2

−W1 ((A+X)P )
(
P+
)

(P (B + Y ))W2

= W1 (C −APB)W2,

so applying Lemma 1 gives us

rank (M) = rank (P ) + rank (W1 (C −APB)W2) .

Since W1,W2 are square and full rank we have the equiv-
alence rank (M) = rank (P ) ⇐⇒ rank (C −APB) =
0 ⇐⇒ APB = C.

Since the matrix M is affine in all three decision variables,
we propose to use the (convex) nuclear norm operator to
relax the rank constraint.

Theorem 2: Let λ ∈ R+ be a regularization parameter. A
convex relaxation of problem (1) is the optimization problem

minimize
γ,x,A,B,C

γ + λ ‖M‖∗

subject to g(γ, x,A,B,C) � 0.
(8)

If for the (feasible) optimal tuple (γ̄, x̄, Ā, B̄, C̄) it holds that
rank

(
M̄
)

= rank (P ), then the optimal tuple is a feasible
solution of problem (1).

Proof: Let s be the number of singular values of M ,
and r defined as the number of non-zero singular values
(which is the rank) of P :

s := min(na + nb, nc + nd),

r := rank (P ) ,

and let the following notation denote the nuclear
norm and the Ky Fan r-norm respectively, ‖M‖∗ :=∑s
i=1 σi(M), ‖M‖Fr :=

∑r
i=1 σi(M), where σi(M) is

the ith largest singular value of M . Since these norms
are well known to be convex, we can write the truncated



nuclear norm [17] as the difference of two convex functions:
‖M‖r = ‖M‖∗ − ‖M‖Fr. Since the rank of a matrix is
directly related to the number of non-zero singular values,
we can equivalently to problem (7) write the rank constraint
as ‖M‖r = 0. Instead of enforcing the constraint, we add
the truncated nuclear norm to the objective function, weighed
by a regularization parameter λ, and after the optimization,
check if the constraint ‖M‖r = 0 is met:

minimize
γ,x,A,B,C

γ + λ ‖M‖r ,

subject to g(γ, x,A,B,C) � 0.

We now have a Difference of Convex Programming problem
(DCP, [7]), since the objective function can be written as

γ + λ ‖M‖r = (γ + λ ‖M‖∗)− λ ‖M‖Fr . (9)

The convex relaxation is therefore to drop the term λ ‖M‖Fr,
and accept the bias this introduces in the solution for the
optimal γ.

The bias introduced by ignoring the contribution of
‖M‖Fr in Equation (9) to the value of the objective function
has also been addressed in [17], where the truncated nuclear
norm is minimized as a better approximation of the rank
function than the nuclear norm.

With the formulation as a DCP problem in (9), it is possi-
ble to apply DC algorithms to find minimizing solutions, like
the Convex-Concave Procedure in [18]. This optimization
method uses the expressions for the (sub)differential of
the two convex functions. However, the parameters X,Y
in M allow for a different iterative algorithm, for which
expressions of (sub)differentials are not necessary. We will
present this algorithm next.

The singular values of M constructed from the optimal
Ā, B̄, C̄ of problem (8) in general depend on the choices of
λ,X, Y,W1,W2. These parameters do not influence the set
of feasible solutions of the constraint g(·) � 0. However,
the choice influences the objective function, and therefore
influences the result of optimization of the convex relaxation.
The optimization will favour solutions for which ‖M‖∗ has
a low value. Looking at the structure of M , we see that over
all possible values of A,B,C,X, Y,W1,W2, irrespective of
whether these variables satisfy the constraint g(·) � 0 or not,
its minimum nuclear norm equals

min
A,B,C,X,Y,W1,W2

‖M‖∗ =

∥∥∥∥(0 0
0 P

)∥∥∥∥
∗

= ‖P‖∗ , (10)

and this is attained (when P is square and full rank) for all
cases where A = −X,B = −Y and C such that C = APB.
In this specific case, we also have that ‖M‖Fr = ‖P‖∗
and ‖M‖r = 0. The effect of this is that the bias due to
ignoring ‖M‖Fr, is not towards A = 0, B = 0, C = 0,
but solutions where A = −X , B = −Y and C = APB.
It is important to note that the globally optimal values of
the decision variables to BMI (1), say Ā, B̄, C̄, might not
produce the optimal value of the objective function in (8),
even for X = −Ā and Y = −B̄.

The freedom to choose the values of X and Y allows for
a simple iterative procedure described in Algorithm 1.

Data: Initialization matrices X1
a , Y

1
a . Matrices

W1 = I,W2 = I . Termination condition variable
ε ∈ R+, ε� 1, and regularization parameter
λ ∈ R+.

while f̄k−1b − f̄kb > ε do
Solve the first optimization:

minimize
γk
a ,x

k
a,A

k
a,B

k
a ,C

k
a

γka + λ
∥∥Mk

a

(
Xk
a , Y

k
a

)∥∥
∗

subject to g(γka , x
k
a, A

k
a, B

k
a , C

k
a ) � 0,

P (Bka + Y ka ) = 0;

(11)

Set Xk
b = −Āka and Y kb = −B̄ka ;

Solve the second optimization:

minimize
γk
b ,x

k
b ,A

k
b ,B

k
b ,C

k
b

γkb + λ
∥∥Mk

b

(
Xk
b , Y

k
b

)∥∥
∗

subject to g(γkb , x
k
b , A

k
b , B

k
b , C

k
b ) � 0,

(Akb +Xk
b )P = 0;

(12)

Set Xk+1
a = −Ākb and Y k+1

a = −B̄kb ;
Calculate f̄kb (γ̄kb , Ā

k
b , B̄

k
b , C̄

k
b ).

end
Algorithm 1: Iterative improvement with guaranteed con-
vergence.

The matrix M is initialized with X1
a , Y

1
a . Care should be

taken that the choice of Y 1
a allows for overlap between the

convex set g(·) � 0 and the convex set P (B1
a + Y 1

a ) = 0,
or problem (11) will be infeasible. This can be assured
by setting Y 1

a = −B, with B from any feasible tuple
(γ, x,A,B,C) to the constraint g(·) � 0. If the convex
set defined by g(·) � 0 is empty, no solution will exist to
problem (1), since the solutions to BMI (1) are a subset of the
relaxed problem. The function f̄kb in Algorithm 1 is defined
as follows. Let f be the following function:

f(γ,A,B,C) := γ + λ ‖C −APB‖∗ + λ ‖P‖∗ ,

where the term λ ‖P‖∗ is just a constant, and denote two
variations as follows

fk• := f(γk• , A
k
•, B

k
• , C

k
• ), f̄k• := f(γ̄k• , Ā

k
•, B̄

k
• , C̄

k
• ).

Here • denotes the possible presence of a subscript to indi-
cate one of two optimizations in iteration k of Algorithm 1.

B. Proof of convergence of Algorithm 1

Before we provide the theorem on convergence of Algo-
rithm 1 and its proof, we need the following preliminaries.

The function f expresses the sum of the objective variable
to be minimized, the norm of the bilinear equality constraint
violation and a constant. Note that if we take W1 = I,W2 =
I and consider the matrix M in Theorem 1 as being a
function of A,B,C,X and Y , then we can split M in the
following way:

M(A,B,C,X, Y ) =

(
C −APB 0

0 P

)
+(

(A+X)P (B + Y ) (A+X)P
P (B + Y ) 0

)
.

(13)



With this insight, we can write

f = γ + λ ‖C −APB‖∗ + λ ‖P‖∗
= γ + λ ‖M (A,B,C,−A,−B)‖∗ .

Furthermore, we use the shorthand notations

Mk
• (X,Y ) := M

(
Ak•, B

k
• , C

k
• , X, Y

)
,

M̄k
• (X,Y ) := M

(
Āk•, B̄

k
• , C̄

k
• , X, Y

)
.

The following lemma is necessary for the proof of con-
vergence.

Lemma 2 (King [19], Theorem 2): Using the matrices
S, P,Q,R ∈ Rn×n, we have∥∥∥∥(S P

Q R

)∥∥∥∥
∗
≥ ‖S‖∗ + ‖R‖∗ .

Since non-square matrices can be padded with zeros without
influencing their nuclear norm, the restriction of S, P,Q,R
to square matrices does not restrict generality.

Theorem 3: Assume there exists a tuple (γ, x,A,B,C) of
decision variables which are bounded in norm, and that satis-
fies the constraint g(γ, x,A,B,C) � 0. Using Algorithm 1
to generate a sequence {f̄kb }k=1,2,..., where k denotes the
iteration number, the value of

∣∣f̄k+1
b − f̄kb

∣∣ tends to 0 as
k →∞.

Proof: We will show that one iteration of Algorithm 1
cannot increase the value of f̄kb , i.e.

f̄kb ≥ f̄k+1
a ≥ f̄k+1

b . (14)

Due to the equality constraints in problems (11) and (12), the
second term of M in Equation (13) has values either in the
top-right or in the bottom-left block respectively. The proof
will continue with the case where P (B+Y ) = 0 and where
(A+X)P appears in the top-right block. The other case is
similar.

To prove the first inequality in (14), suppose that the
objective function of problem (12) (denoted with subscribts
b) of iteration k has a minimum value for the tuple
(γ̄kb , x̄

k
b , Ā

k
b , B̄

k
b , C̄

k
b ). For problem (11) (denoted with sub-

scripts a) of iteration k+ 1, we have this tuple as a feasible
point, since the matrix inequality and equality constraint are
satisfied. Furthermore, for this tuple the value of the objective
function in problem (11) at iteration k + 1 will be:

γ̄kb + λ
∥∥M̄k

a

(
−Ākb ,−B̄kb

)∥∥
∗ = f̄kb .

Due to the fact that the optimization is convex, the optimal
value of the objective function of problem (11) at iteration
k + 1 will be equal or lower:

f̄kb ≥ γ̄k+1
a + λ

∥∥M̄k+1
a

(
−Ākb ,−B̄kb

)∥∥
∗ .

Using Lemma 2, we have the inequality∥∥M̄k+1
a

(
−Ākb ,−B̄kb

)∥∥
∗ =∥∥∥∥(C̄k+1

a − Āk+1
a PB̄k+1

a (Āk+1
a − Ākb )P

0 P

)∥∥∥∥
∗

≥
∥∥C̄k+1

a − Āk+1
a PB̄k+1

a

∥∥
∗ + ‖P‖∗

=
1

λ

(
f̄k+1
a − γ̄k+1

a

)
.

(15)

After collecting terms, we can conclude that f̄kb ≥ f̄k+1
a .

As mentioned before, the proof that f̄k+1
b will not be larger

than f̄k+1
a after the second optimization in Algorithm 1, is

quite similar and we arrive at the inequalities

f̄kb ≥ f̄k+1
a ≥ f̄k+1

b .

Since the function f ≥ 0 and we assumed a feasible tuple
exists in the convex set defined by g(γ, x,A,B,C) � 0 with
variables with bounded norms (and with the mild assumption
that we start from this solution by setting Y 1

a = −B), the
optimal values in the sequence {f̄kb }k=1,2,... are bounded
from below and above, so must converge and the difference
between successive iterates must tend to zero as k →∞.

It is important to note that with a guarantee of con-
vergence of {f̄k} as k → ∞, we cannot conclude that∥∥Ck −AkPBk∥∥∗ converges to 0 even if such a solution
exists within the constraints of problem (6). Furthermore, the
global optimal solution of problem (6), might not even give
the lowest value of the objective function of problems (11)
and (12) due to the influence of X and Y on M , and the
algorithm might converge to a different point.

The two constraints

(Akb +Xk
b )P = 0, P (Bka + Y ka ) = 0, (16)

play an important role in showing some of the inequalities in
the proof of convergence of Algorithm 1. In practice we often
observed convergence even without these constraints, see
Algorithm 2. We cannot provide a proof of convergence of

Data: Matrices X1, Y 1. Matrices W1 = I,W2 = I .
Regularization parameter λ ∈ R+.

for fixed number of iterations do
Solve the optimization:

minimize
γ,x,A,B,C

γk + λ
∥∥Mk(Xk, Y k)

∥∥
∗

subject to g(γk, xk, Ak, Bk, Ck) � 0,

Set Xk+1 = −Āk and Y k+1 = −B̄k ;
end

Algorithm 2: Simpler iterative algorithm without guaran-
teed convergence.

the sequence {f̄k} using this algorithm along the same lines
of the proof of Theorem 3, since it is possible to construct
an example where γ̄k+1 + λ

∥∥M̄k+1
∥∥
∗ is less than f̄k, but

f̄k+1 > f̄k.

III. RELATION TO EXISTING METHODS

When P is square and full rank, the two constraints in
Equation (16) respectively fix Akb and Bka in Algorithm 1:
for such P the null space of P consists of only the 0-vector,
and the only option is Akb = −Xk

b = Āk−1b or Bka =
−Y ka = B̄k−1a . Therefore our method bears a resemblance to
a dual iteration method. However, we have no requirement
of starting from a feasible solution of the BMI. Another
difference between dual iteration and Algorithm 1 is that
this algorithm minimizes an upper bound for the sum of γ



and the equality constraint violation, and does not explicitly
satisfy the equality constraint. Furthermore, when P is not
full rank, the value of Ak• and Bk• can both be optimized in
the same iteration. This holds even more for Algorithm 2,
where all decision variables are optimized simultaneously.

In [14] it is shown that the following indefinite quadratic
feasibility test (a BMI) with N variables x̂i ∈ R, i =
1, . . . , N and matrices F• ∈ Rm×m,

F0 +

N∑
i=1

x̂iFi +

N∑
i=1

N∑
j=1

x̂ix̂jFij � 0, (17)

is equivalent to a problem formulation with a rank-1 con-
straint on a positive semidefinite decision variable X̂ ∈
RN×N . Each bi-affine combination of variables x̂ix̂j is
substituted with the (i, j)-th element of X̂ to obtain the rank
constrained problem

F0 +

N∑
i=1

x̂iFi +

N∑
i=1

N∑
j=1

X̂ijFij � 0,

(
X̂ x̂
x̂T 1

)
� 0,

rank
(
X̂
)

= 1,

(18)
where x̂ is the vector of x̂i’s. X̂ should equal x̂x̂T , even
though the possibility of x̂ = 0 is excluded here due to the
rank constraint on X̂ .

If we would write problem (1) in the form of (18), we see
that the method in [14] uses many more additional variables.
Suppose on the other hand that problem (1) is a feasibility
test of the form

g(x̂, x̂x̂T ) � 0,

then the considered BMIs in [14] can be cast in a form
very similar to that of problem (7), but with different rank
constraints and with the difference that (7) does not exclude
the possibility of x̂ = 0.

When dealing with matrix products APB, we can formu-
late this in both formulation (18) and (7), but by introducing
extra variables for C and using the substitution described
in this paper we will in general need less of these extra
decision variables. The Kronecker product BT⊗A in essence
describes all combinations of matrix elements in the decision
variables A and B that appear bi-affinely in problem (1),
and their total number is nanbncnd. The number of decision
variables introduced for a reformulation of problem (1) into
the form of (18) would be (nanb+ncnd)(nanb+ncnd+1)/2,
whereas in this paper we introduce nand extra variables for
the matrix C. We expect the nuclear norm operator to use
two additional matrices for the implementation, see [20] for
details. Since M is of dimensions (na + nb) × (nc + nd),
we expect the implementation to introduce (na + nb)(na +
nb + 1)/2 + (nc + nd)(nc + nd + 1)/2 additional variables.

The introduction of extra variables to solve problem (1)
in our approach will for most sizes of A and B be more
efficient, since their number scales quadratically in the
dimensions of the matrices and not quadratically in the
products of the dimensions.

The method in [15] is similar to the method presented
here on several points. However, in [15] there is a prescribed
form of the problem, and the method presented here does not
have this. Furthermore, the number of additional decision
variables introduced in their reformulation grows with the
size of the entire matrix inequality, not with the number of
bi-affine combinations of decision variables. In a last point of
comparison, the bias introduced by the two different methods
differ. The relaxation in [15] introduces a bias on the matrix
used in that paper to reformulate g(γ, x,A,B,APB) � 0
towards a matrix with low eigenvalues. On the contrary, the
bias introduced by the use of ‖M‖∗ in Theorem 2 will not
stimulate decision variables A and B to have small norms,
but to be close to X and Y respectively.

IV. EXPERIMENTAL RESULTS

In [21] the problem of mixed H2/H∞ controller design is
analysed and this problem is used as a benchmark problem
for the methods described in [11], [12], [22], [23]. On this
problem the method of [23] performs best and we will use
its performance as comparison.

Consider the continuous time system: ξ̇
z1
z2

 =

A Bu Bw
C1 D1 0
C2 D2 0

ξu
w

 ,

where ξ, z•, u, w respectively denote the state, output, in-
put and disturbance. In the benchmark problem we have
ξ ∈ R3, z1 ∈ R1, z2 ∈ R1, w ∈ R2 and u ∈ R1. The
dimensions of the system matrices are defined accordingly.
The mixed H2/H∞ design problem is to design a state
feedback controller u = Kξ such that the H2 norm η of
the transfer function from w to z2 of the closed loop system
is as low as possible, while the H∞ norm γ of the transfer
function from w to z1 does not exceed a prescribed level.

We rewrite the formulation in [12] into that of problem (6),
i.e. using affine (matrix) inequalities and an equality con-
straint. We obtain:

min
η,K,P1,P2,Z,E1,E2

η2,

s.t. P1 � 0, P2 � 0,(
E1
E2

)
=

(
P1

P2

)
BuK,(

P2 (C2 +D2K)T
? Z

)
� 0,

trace (Z) < η2,sym (P1A+ E1) C1 +D1K P1Bw
? −I 0
? ? −γ2I

 ≺ 0,

(
sym (P2A+ E2) P2Bw

? −I

)
≺ 0.

In Figure 1 the equality constraint violation ‖E − PBuK‖∗
is plotted for three different values of λ and for five initial
values X1

a , Y
1
a (the same initial values for every λ and for

both algorithms). From this figure it is clear that for λ = 5 no
solutions to problem (1) are found with neither Algorithm 1



Fig. 1. The nuclear norm of the equality constraint violation,
‖E − PBuK‖∗.

nor 2 for all initial conditions. For λ = 7, Algorithm 1 finds a
solution for some of the cases, and Algorithm 2 for all these
initial conditions. For λ = 9 both algorithms successfully
find solutions. What can also be observed is that Algorithm 2
is quicker to converge to a solution of problem (1) for, for
example, λ = 9, even when we cannot provide a guarantee
that it will. Finally, it can be seen that for Algorithm 1 a
guarantee of convergence for η2+λ ‖E − PBuK‖∗, does not
imply convergence of ‖E − PBuK‖∗ to 0,1 since at iteration
4/5 one of the cases actually converges away from 0.

To obtain these results, we used the Mosek 7.1 [24] solver
in conjunction with Matlab and Yalmip [20].

The best performance obtained with Algorithm 1 and 2
are H2 norms of 0.7507 and 0.7492 respectively, for which
λ was set to a value of 6.85. The resulting controllers are

Kalg 1 =
(
1.8577 0.3003 −0.3271

)
,

Kalg 2 =
(
1.9711 0.4222 −0.1482

)
.

For a state of the art method like implemented in
PENBMI, from PENOPT [23] a solution was reported in
[12] with an H2 norm of 0.74894, only a fraction lower
than our methods. The method in [23] combines ideas of
penalty methods and augmented Lagrangian methods and is
a direct BMI solving programme, but the PENBMI does not
use a rank constraint as we do and the methods described in
[15], [14], but treats the BMI problem in a general context
of augmented Lagrangian methods.
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