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Abstract— A possible strategy for finding the optimal path
that connects two different configurations of a car-like vehicle
can be addressed by solving two different sub-problems: 1.
identifying a curve that connects the two points respecting the
geometric constraints, 2. finding an optimal control strategy
that drives the vehicle along the trajectory accounting for its
dynamic constraints. In this paper, we focus on the second
problem. Assuming that the vehicle moves along a specified
clothoid, we find a semi-analytical solution for the optimal
profile of the longitudinal acceleration (the control variable).
Our technique explicitly considers non–linear dynamics, aero-
dynamic drag effect and bounds on the longitudinal and on the
lateral acceleration.

I. INTRODUCTION AND STATE OF THE ART

One of the most active research lines in mobile robotics
is how to plan optimal trajectories to move a car–like robot
from an initial configuration to a final one, where the robot
configuration is given by both its position and its velocity.
The problem arises in the context of Advanced Driving
Assistance Systems, e.g., collision avoidance, lane keeping
systems, etc., and in self-driving vehicles. Figure 1 shows
two example scenarios where the generation of feasible and
efficient trajectories (for example, minimum time, safest,
etc.) in a short time frame is a fundamental building block
of successful automotive applications.

A large number of research papers have addressed the
problem of path generation in presence of obstacles (see [1]
for a comprehensive survey). The problem is multifaceted.
Some authors have focused on its geometric implications.
For instance, Fraichard et a al. [2] revised the problem of
generating an optimal geometrical path using curves made
of circular arcs and tangent straight lines or continuous
curvature (such as polynomials or B-splines). Generally
speaking, the geometrical approaches do not consider the
vehicle dynamics and produce discontinuous curvature when
path is made of arc of circle and straight lines. Other authors
have explicitly accounted for kinematic models and curvature
constraints. The research in this area has been pioneered by
Dubins [3], who showed that for a vehicle moving at constant
speed the optimal maneouvre to steer a vehicle with bounded
curvature between two position consists of a concatenation
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Fig. 1. Example of manoeuvres for autonomous vehicles: generation of
manoeuvres for collision avoidance (left), generation of manoeuvres for
overtake (right)

of straight lines and circles. In a more recent work, Sanfelice
et al. [4] consider the approach of Pontryagin Maximum
Principle to extend the Dubins results to changing speed and
space dependent maximum curvature.

When high-speed vehicles are considered, trajectory plan-
ners necessarily need to account for the vehicle dynamics
and its related constraints [5], [6]. This problem can be
solved by the application of complex optimisation tools,
which produce trajectories that can realistically be tracked by
a vehicle. However, the incurred computational cost hardly
permits their applications to reactive real–time planning to
unexpected situation such as in Figure 1 where guarantee to
convergence in short time frame is mandatory. An alternative
approach for on-line trajectory optimisation of ground vehi-
cles is based on the fast generation and selection of feasible
kinematic trajectories with direct search and subsequent
improvement of the obtained solution incorporating dynamic
properties [7], [8], [9].

A different idea is to break down the problem into two
different sub-problems that can be solved separately [10].
The first one is the geometric problem of finding the best
curve that joins two extreme points with assigned tangent,
which has been proved to have an efficient solution using
clothoid splines [11]. The second one is to find the minimum
time control strategy that accounts for the vehicle dynamics,
speed and control constraints. As long as the solution to this
problem can be found efficiently, the result can be directly
employed in direct search algorithms [7], [8], [9] or in
global planning algorithms [12]. In [10], the semi-analytical
solution have been used to compute the speed profile for a



racing vehicle within a receding horizon approach. In [13]
semi-analytical solutions represent the motor-primitives of
more complex manoeuvres embodied into a hierarchical
structure used to infere the driver intention for warning
and intervention strategies. However, there are a number of
limitations that make the semi-analytical solutions presented
so far inadequate to apply some practical cases. Some of the
most important are: 1. the use of linearised dynamic models,
2. the vehicle is constrained to follow straight or circular
paths, 3. the aerodynamic drag effects are neglected or
their inclusions requires the numerical solution of differential
equations.

In this work we show a semi-analytical solution to the
minimum time control for a vehicle between two given
configurations. The vehicle is assumed to follow a clothoid.
The clothoid is frequently used in road design and, more
generally, in the automotive domain. However, our approach
can be generalised to any smooth trajectory. Our technique
explicitly considers non–linear dynamics and aerodynamic
drag effect, control bounds and acceleration and speed con-
straints. Therefore the semi-analytical solution presented here
does not need a numerical forward and backward integration
as in [10] but it uses pure analytical speed profiles to
numerically find the switching points. A set of numeric
experiments presented at the end of the paper show the
accuracy and the efficiency of our solution.

The paper organises as follows: Section II describes the
vehicle models adopted formulated in curvilinear coordinates
with simplification assumptions. Section III introduces the
optimal control formulation. Section IV discusses the lateral
acceleration constraints and its implication in the analytical
solution of the speed profile which is derived in Section V.
Section VI describes the solution method and numerical
results are presented in Section VII. Conclusions draw reader
attention to advantages of the proposed method and further
developments and extensions to more general cases.

II. VEHICLE MODEL AND CURVILINEAR COORDINATES

In this article it is assumed that the vehicle follows a ref-
erence trajectory (xR(s), yR(s)), with a lateral displacement
n. This trajectory is possibly the outcome of a geometric
trajectory planning step [10], [11]. The model is parametrised
with the curvilinear abscissa s(t), a customary choice for
path planning problems. The reference trajectory is given
by a clothoid arc that connects two points with assigned
tangent vectors (see Figure 2). In curvilinear coordinate
representation the absolute velocity of vehicle’s centre of
mass V (t) is tangent to the trajectory and in general it is
not aligned with the vehicle xv−axis forming an angle β(t),
named chassis slip angle. Additionally, the xv−axis of the
vehicle has an orientation α(t) with respect to the reference
line (i.e. clothoid) local tangent. The clothoid is a natural
solution for many geometric optimisation problems involving
vehicles since it has continuous curvature change rate and it
may conveniently represent complex trajectories on a mid
length planning horizon. However, the discussion below is
easily generalised to different types of curves.
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Fig. 2. Curvilinear coordinates (s, n, α) defined with respect to a clothoid
reference trajectory. x and y represent the absolute frame axis, V (t) is
the absolute velocity of vehicle centre of mass, which is tangent to the
trajectory, and β(t) is the chassis slip angle. Finally, α(t) is the orientation
of the vehicle w.r.t. reference line (i.e. clothoid) local tangent.

Let the initial and final point on the clothoid be
(xR(0), yR(0)) and (xR(L), yR(L)) and the corresponding
angles be ϑ0 and ϑL. In order to uniquely specify the clothoid
between the two given points, the length L and the two
curvature parameters κ, κ′ ∈ R are needed. Finding these
parameters is equivalent to solving the G1 Hermite interpola-
tion problem. Then the clothoid can be easily evaluated using
the Fresnel generalised integrals [11] Xk(a, b, c), Yk(a, b, c)
for s ∈ [0, L] as:

xR(s) = xR(0) + sX0(κ
′s2, κs, ϑ0),

yR(s) = yR(0) + sY0(κ
′s2, κs, ϑ0).

where

Xn(a, b, c) =

∫ 1

0

τn cos
(a
2
τ2 + bτ + c

)
dτ,

Yn(a, b, c) =

∫ 1

0

τn sin
(a
2
τ2 + bτ + c

)
dτ.

The derivative of the trajectory is usually expressed with
trigonometric functions of the angle locally tangent to the
reference trajectory θ(s),

d

ds
xR(s) = cos θ(s),

d

ds
yR(s) = sin θ(s). (1)

It is worthwhile to note that for a clothoid the angle θ takes
the form θ(s) = 1

2κ
′s2+κs+ϑ0, while the curvature, which

is linear with the arc length, is k(s) = κ+ κ′s. The relation
between the angle θ and the curvature k is differential, i.e.,
θ′(s) = k(s) = κ+ κ′s, where θ′(s) is the notation adopted
for the derivative dθ(s)/ ds in this paper.

Due to the availability of a reference trajectory, the ve-
hicle kinematics can be given in terms of time and (x, y)
coordinates defined as follows:

x(t) = xR(s(t))− n(t) sin θ(s(t)),
y(t) = yR(s(t)) + n(t) cos θ(s(t)),

ψ(t) = α(t) + θ(s(t))

(2)



where n is the normal displacement of the vehicle with
respect to the reference trajectory at the abscissa s(t) and
ψ(t) is the vehicle absolute orientation with respect to the
x−axis, named yaw angle. Differentiating (2) with respect
to the time variable t and substituting (1), yields:

dx

dt
=

dxR
ds

ds

dt
− n′(t) sin θ(s)− n(t)k(s)s′(t) cos θ(s),

dy

dt
=

dyR
ds

ds

dt
+ n′(t) cos θ(s)− n(t)k(s)s′(t) sin θ(s),

dψ

dt
=

dα

dt
+ k(s)s′(t).

Since v(t) is the component of the velocity directed along xv
(see Figure 2), the previous time derivatives can be expressed
as a function of the angle α, that is the angle between the
tangent to the reference trajectory and the axis xv , and the
angle θ. We assume here β ≡ 0, as justified later on, that
states the vehicle direction xv−axis being tangent to the
trajectory, i.e., x′ = v cos(α+ θ) and y′ = v sin(α+ θ). By
combining the two equations, the dependence to the angle
θ can be removed. Hence, by further applying trigonometric
identities, one gets

s′(t) =
v(t) cosα(t)

1− n(t)k(s) , n′(t) = v(t) sinα(t).

In order to complete the model of the vehicle, the longi-
tudinal velocity v(t) is modelled taking into account the
longitudinal acceleration a(t), which is a control input, and
both the laminar friction c0 > 0 and the aerodynamic drag
c1 > 0. With the assumption that the side slip angle β is zero
(or negligible), the vehicle is aligned with the velocity vector
V (t) and thus v(t) = |V (t)| and the steering angle of the
vehicle δ(t) can be expressed equal to ψ(t) = α(t)+θ(s(t)).
Therefore the vehicle yaw rate ψ(t)′ is:

α′(t) + k(s)s′(t) =
v(t)

Wb
tan δ(t), δ′(t) = u,

where u is the bounded control on the angle δ which models
the steering angle, and Wb > 0 is the wheelbase. Thus
the dynamic system modelling the car, dropping the time
dependence for simplicity, is

v′ = a− c0v − c1v2
δ′ = u

n′ = v sinα

s′ =
v cosα

1− n(κ+ κ′s)

α′ =
v

Wb
tan δ − v(κ+ κ′s) cosα

1− n(κ+ κ′s)
.

(3)

This model is in general impossible to solve analytically.
Indeed, while for specific classes of functions a(t) a closed
form solution can be found for the first equation describing

the evolution of v (which has the form of a Riccati Differen-
tial Equation), this is obviously impossible for the remaining
four non-linear and coupled ODEs.

However, we assume that: 1. the vehicle is initially on
the clothoid and with orientation aligned with the tangent of
the clothoid (n(0) = 0, α(0) = 0), 2. the ideal controller
δ = tan−1 (Wbk(s)) is applied for δ that allows a perfect
tracking of the path. Such assumptions guarantee that n(t) =
0, α(t) = 0 for all t. Thus the system of equations (3)
simplifies to:

v′ = a− c0v − c1v2, s′ = v, (4)

where the only control variable left is the acceleration a (i.e.
normalised control longitudinal force). Finally, it is worth
it to mention that the point mass vehicle model is subject
to a constraint on the acceleration (i.e. −abrake ≤ a(t) ≤
apush), which we will refer to as longitudinal constraint.
Moreover, we have an additional constraint on the lateral
acceleration (i.e. |ay| ≤ Amax), which we will refer to
as lateral constraint. Considering the model (3), the lateral
acceleration:

ay =
d

dt
(V (t) sin(β(t)) + ψ(t)′v(t)

which simplifies to ay = ψ(t)′v(t) = k(s)v(t)2 under
the assumption of perfect trajectory tracking above and
negligible chassis sideslip angle β. Indeed, the body slip
angle β is, in general, close to zero and quantifies the
steering behaviour of the vehicle: that is the ability of the
vehicle to follow the intended trajectory of the driver or the
one planned by the autonomous system. Here, we assume
that a low level controller is available that keeps β as
close as possible to zero. Many different algorithms have
been proposed to control body slip angle β exploiting the
vehicle architecture, for instance differential braking, torque
vectoring, active front steering (see the review [14]). Under
the assumption of β → 0 the lateral acceleration constraint
becomes: |k(s)|v(t)2 ≤ Amax. Following the same logic, it
is possible to include more complex acceleration constraints,
such as friction ellipse and GG diagrams. More details on
the last issue are given in the conclusion section.

III. OPTIMAL CONTROL PROBLEM (OCP)

The optimal control problem can be formulated as follows

find control a(t) that minimize T subject to:

ODE :

{
v′(t) = a(t)− c0v(t)− c1v2(t),
s′(t) = v(t)

boundary

conditions

{
v(0) = v0, s(0) = 0, (initial)

v(T ) = vT , s(T ) = L (final)

constraints

{−abrake ≤ a(t) ≤ apush,
|k(s)|v(t)2 ≤ Amax,

(5)



As a preliminary remark, since the bound of a lateral
acceleration is a function of the state only (and not of
the control variable), we can solve the problem in two
phases. In the first phase, we solve the OCP accounting only
for the longitudinal constraint. For the sake of simplicity,
this solution will be referred to as Bang Bang solution. In
the second one, we take into consideration also the lateral
constraint.

A. Solution without lateral acceleration constraint

The Hamiltonian of the minimum time optimal control
problem (OCP) (5) (neglecting the lateral constraint) is

H = 1 + λ1(a− c0v − c1v2) + λ2v

and the control a appears linearly, its optimal synthesis is
obtained from Pontryagin’s Maximum (minimum) Principle
(PMP), and is

a(t) = argminH =


apush if λ1 < 0,

−abrake if λ1 > 0,

asing if λ1 ≡ 0.

The control a(t) is bounded in the interval [−abrake, apush].
Hence the solution of the PMP produces a typical Bang Bang
controller. The term asing represents a possible singular
control when λ1 is identically zero on an interval, however,
in our specific case, it can be seen that singular control are
not present in the solution.

According to a well known result in Optimal Control
Theory [15], the solution of problem (5), if exists, has at
most one switching instant (denoted as ts) when the control
value changes. This implies that the optimal control has to
be chosen from a family of four candidate controls. The
first and second correspond to pure acceleration (i.e., the
a(t) ≡ apush) or braking manoeuvre (i.e., a(t) ≡ −abrake),
the third and fourth are a combination of the two. Having
explicit expressions for the optimal states, with the complete
boundary conditions, the solution of each case is obtained
by the solution of a nonlinear system in two unknowns
(see (15) in Section VI): the switching time ts and the final
time tbb. It is possible to rule out the case of a braking
manoeuvre followed by an acceleration because it is not
optimal. Moreover, the cases of pure acceleration or braking
are very unlikely, because the boundary conditions should
exactly satisfy the boundary value problem (5). Hence, only
the case of acceleration and braking with a switching time
(possibly degenerate at the extrema of the time interval) is
herein considered. It follows that the solution is given by
the intersection at the switching point ts of the two curves
of the velocity and the space v(t) and s(t). The closed form
solution of v(t) and s(t) is a difficult and important part,
therefore it is postponed to section V. For the sequel, assume
to know such solutions.

B. Solution with lateral acceleration constraint
The composition between the Bang Bang solution de-

scribed earlier in the section and the lateral constraint
|k(s)|v(t)2 ≤ Amax is made identifying intervals in which
the solution is found without considering the lateral con-
straint, intervals in which the constraint is active and “gluing”
such intervals in an optimal way.

When the constraint is active the evolution of the system
has to respect the equation |k(s(t))|v(t)2 = Amax. We
have to translate this relation into an analytic expression for
a(t), v(t) and s(t). The control a appears only implicitly
in the bound. In order determine its value, it is necessary
to differentiate it and substitute the corresponding value
of the differential equations (4) for the state variable v.
Mathematically this gives

a(t) = c0v(t) + c1v
2(t)− κ′v2(t)

2(κ+ κ′s(t))
. (6)

To determine the state variables on the bound, consider the
bound written as

s(t) =
Amax

κ′v2(t)
− κ

κ′
, (7)

which is an explicit expression for the state s once the
velocity has been determined. To find a differential equation
for the velocity derive the previous expression with respect
to time and use the substitution s′ = v, which gives

s′(t) = v(t) = −2Amaxv
′(t)

κ′v3(t)
⇒ v′(t) = −1

2

κ′v4(t)
Amax

.

This first order nonlinear ordinary differential equation of
Bernoulli has solution (for v(tb) = vb)

v(t) =
3
√
2Amax

3
√
3κ′(t− tb) + 2Amax/v3b

. (8)

An important point is to determine when the lateral
constraint is active. A first condition for it is that the velocity
resulting from the Bang Bang solution violates the constraint.
However, when the lateral constrain is active, the acceleration
evolves as in Equation (6) and is no longer constrained to
be equal to apush or −abrake. Therefore, it could violate the
longitudinal constraint. When this happens, the constraint is
no longer active.

This discussion is applicable to any curve and has not
yet exploited the geometric properties of the clothoid. Since
the clothoid has a linear relation between curvature and arc
length s, three cases can occur: 1. |k(s)| is strictly positive
decreasing, 2. |k(s)| is strictly positive increasing or 3. |k(s)|
is V shaped and reaches zero for s? := −κ/κ′ ∈ [0, L].
The first two cases represent a C shaped clothoid, while the
last one is an S shaped curve [11]. Therefore the decision
on which case should be considered can be taken a priori,
once the clothoid is decided. The complete analysis of the
constraint on the lateral acceleration is offered in the next
section.



IV. ANALYSIS OF THE LATERAL ACCELERATION
CONSTRAINT

The analysis of the lateral constraint and the equations
describing it are significantly simplified if κ′ = 0. Indeed,
a first consequence is that the reference curve is no more
a general clothoid, but a straight line (if κ = 0) or a circle
(when κ 6= 0). When the trajectory is a line, there is no lateral
acceleration and the only bound that applies is the one on
the maximum acceleration a, that is the Bang Bang solution.
When κ 6= 0, the maximum velocity is thus given by the
constant value

√
kmax/|κ|. The second consequence is that

the differential equation for v on the bound becomes simply
v′ = 0 and the velocity will be constant to the previously
obtained maximum velocity

√
Amax/|κ|. The corresponding

optimal control becomes a = c0v + c1v
2, and the space

variable s is a linear function s(t) =
√
Amax/|κ|t + s0 for

a certain initial value s0.
On the contrary, when both κ, κ′ are different from zero, the
curve is a proper clothoid. In particular, If |k(s)| is monotone
increasing or decreasing, then the bound is not active at the
beginning/end of the interval, provided that the initial/final
condition is admissible.
Curvature modulus strictly decreasing. In this case the
bounded velocity is increasing with a lower value of v :=√
Amax/κ and an upper value of v :=

√
Amax/(κ+ κ′L)

. If v0 > v or if v1 > v then the problem does not admit
a solution. If the bound is never active the solution reduces
to the previously seen Bang Bang situation. Otherwise, the
bound becomes active at tb < ts, the time instant when the
velocity is equal to

v(tb) =
√
Amax/

√
|κ+ κ′s(tb)|. (9)

Before this time instant, the velocity is determined by the
Bang Bang control a, after tb, the bang-bang control is no
more optimal because v does not satisfy the lateral bound,
hence the control law (6) must be used. After entering the
bound, the velocity must stay adherent to the bound until the
exit instant te, the velocity and space are determined from the
bound itself, e.g., from Equations (8) and (7). The exit time
te can be determined by three events: the end of the bound
(intersection with the Bang Bang solution), the saturation of
the control (6), a(te) = apush or a(te) = abrake or the need
to brake for the matching of the final condition. These three
possibilities must be controlled and the correct one is the
case that happens earlier.
Curvature modulus strictly increasing. In this case the
bound on the velocity is decreasing, with maximum value at
the beginning and minimum at the end of the interval, that
is [0, L] or [s?, L]. The bound becomes active for tb given
by equation (9) and also the other equations of the previous
case apply here.
V - shaped Curvature Modulus. This case is the most
structured but can be recast to the previous two separately.
Indeed there can be two lateral constraints, one for the inter-
val [0, s?) with decreasing curvature and one for the interval
(s?, L] where the curvature is increasing. The important fact

is that the two constraints cannot overlap, because for an
interval around s? the lateral constraint is inactive.

V. ANALITICAL SOLUTION OF SPEED PROFILE

The ODE for the dynamic model and the corresponding
initial conditions are given in (4). It is possible to transform
the first equation so that its solution becomes easier to
compute. Consider the transformation v(t) = aṽ(t + t0),
for a shift t0 where the control is a = apush for acceleration
or a = −abrake for braking, then the ODE associated to the
new function ṽ is

ṽ′ = sign a− c0ṽ(t+ t0)− c1 |a| ṽ2(t+ t0), (10)

with ṽ(0) = 0. Depending on the coefficients c0, c1 and
on the value of the control variable a, there are different
solutions of the ODE.

A. Positive a

Suppose a > 0, then reduce (10) to:

ṽ′(t) = 1− c0ṽ(t)− c̃1ṽ2(t), ṽ(0) = 0,

where c̃1 = c1apush. It is convenient to define a new constant
wp :=

√
c20 + 4c̃1. When the initial condition v0 is less than

the limit value v∞ = 2apush/(wp + c0), the solution of the
previous ODE is

ṽ(t) =
2(1− e−twp)

wp + c0 + e−twp(wp − c0)
, t ≥ 0.

The corresponding translation t0 such that the initial condi-
tion ṽ(t+ t0)

∣∣
t=0

= v0/apush is satisfied, is given explicitly
by

t0 =
1

wp
log

(
2a+ v0(wp − c0)
2a− v0(wp + c0)

)
. (11)

It is easy to check that v is a monotone growing function,
which takes values in the interval [0, v∞) for t ≥ 0. The
integration of v yields the expression for the space variable
s, after some manipulation the explicit expression is

s̃(t) =
1

c̃1
log

(
1− c̃1ṽ∞

1− e−twp

wp

)
+ t ṽ∞. (12)

where ṽ∞ = 2/(wp + c0) is the asymptotic speed of the
scaled function. The case of v0 > v∞, that is, the initial
velocity is higher than the maximum possible velocity has
an expression that resembles the previous, but is here omitted
because of limited application.

B. Negative a

Here there are a couple of subcases to consider depending
on the sign of the radicand of wn =

√
c20 − 4abrakec̃1. If it is

positive, then consider wn ≥ 0 and the differential equation



ṽ′ = −1− c0ṽ(t)− c̃1ṽ2(t) with ṽ(0) = 0 as in the previous
case. Its solution is

ṽ(t) =
2 (1− etwn)

(wn + c0)etwn + (wn − c0)
, tmin < t ≤ 0.

The solution is positive and goes backwards in time until
the time instant tmin = 1

wn
log
(
4c1/(wn + c0)

2
)
< 0 where

it blows up. The integration of ṽ gives the space variable
s, which has an expression close to (12), omitted. If c20 −
4abrakec̃1 < 0 so that wn is a complex number, the solution
for ṽ is

ṽ(t) = − sin(tα)

β sin(tα) + α cos(tα)
,

{
β = 2c0,

β2 + α2 = c̃1,
(13)

where α and β come from solving the system in bracket.
The solution is positive and is defined in the interval

0 ≤ ṽ <∞, − 2

c0
≤ − 1

α
arctan

(
2α

c0

)
< t ≤ 0.

The corresponding translation t0 such that the initial condi-
tion ṽ(t+ t0)

∣∣
t=0

= v0/abrake is satisfied, is given explicitly
by

t0 =
1

α
arctan

(
αv0

βv0 + abrake

)
. (14)

The corresponding expression for s̃(t) is the integral of (13),
here omitted.

VI. SOLUTION METHOD

From the discussion above, we have seen that the solution
of the OCP is found by first solving the problem with only
longitudinal constraints and then by combining this solution
with lateral constraint. In this section, we show the concrete
steps to take in order to implement the idea.

The solution of the OCP (4) with longitudinal constraints
can be found by using the analytic expression of the inte-
grated velocity and space discussed in Section V. This is
done by going backward from the final (unknown) time and
forward from the initial time in order to meet in the middle.
This leads to the detection of the switching point ts and of
the final Bang Bang time tbb, which are the solutions of the
system:

apushṽpush(ts + tl) = abrakeṽbrake(ts + tr − tbb),
apush[s̃push(ts + tl)− s̃push(tl)]
+abrake[s̃brake(tr)− s̃brake(ts + tr − tbb)] = L.

(15)

Clearly, the quantities labelled by “push” refer to the expres-
sions of the velocity and space corresponding to positive
a, while the quantities labelled by “brake” refer to the
appropriate case (depending on the correct wn) for negative
a. The shifts tl and tr (left and right) are given respectively
by equations (11) and (14). The solution of this system can

be reduced to the solution of a single equation for ts, because
it is possible to analytically solve the final time tbb from the
first equation and plug it into the second. This equation has a
V-shaped graph and can be solved with high precision using
a few iterations of the Newton method.

The second step is the combination of the solution with
lateral bound and longitudinal bound. In the simplest case,
this combination is simply done by taking the point-wise
minimum between the solution found in the first step and
the expression of the lateral bound. However, there could
be some cases in which by moving along the lateral bound
the vehicle longitudinal acceleration could fall out of the
admissible range [−abrake, apush] (see the example in the
next section). The analytical condition to check to make
the lateral constraint in-active is when either (6) saturates to
apush or abrake or the trajectory obtained following the bound
(given by equations (8) and (7))intersects the Bang Bang
solution. In practice, it is required to compute the two instants
in which each condition is verified and take the minimum.
This computation has to be done numerically, however the
expressions are well behaved and only few Newton iterations
are required.

With this strategy the sequence of switching times of the
optimal control has been determined and the problem is
solved. For an example of the solution method a numerical
example is provided in the next section.

VII. NUMERICAL RESULTS

For a numerical test, consider a case with the maximum
number of switching, i.e. an S shaped manoeuvre like Case
A of Figure 1 having five switches. The values of the
various constants are taken from characteristic parameters
of a high performance car, e.g. a Formula 1 racing car: c0 =
0.00002m−1, c1 = 0.0015 s−1, v(0) = v(T ) = 50 km/h (im-
plicitly v(T ) = v(L) because s(T ) = L) , apush = 5m/s2,
abrake = 5m/s2, Amax = 5m/s2, the trajectory is given by the
clothoid of parameters κ = 0.01m−1, κ′ = −0.00002 / and
a length of L = 1000m. In Figure 3 is shown the optimal
velocity of both the non saturated and the saturated case,
together with the plot of the bound. The switching time
ts = 19.157376 and the final time is tbb = 25.243209,
for the Bang Bang solution. The time of first activation of
the bound is tb1 = 2.107096, the bound is no more active
from te1 = 11.512500 to the switching of the control from
apush to −abrake at time tw = 18.315002, the bound is again
active for tb2 = 18.922907 until te2 = 30.613425 (see also
Figure 4). The final minimum time for this manoeuvre is
T = 32.278542. Notice that approximate computational time
for the present method is around 15 microseconds, while
a pure numeric solution, resulting in similar results, takes
around 1.5 seconds with Pins [16] or GPOPS-II [17].

VIII. CONCLUSIONS AND FUTURE DEVELOPMENTS

We have shown the synthesis of a minimum time trajectory
that joins two different state space configurations of a car–
like robot. The vehicle is assumed to move along a specified
path, which for the purposes of the paper is a given. We have
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restricted to clothoids, but most of the ideas developed in the
paper are applicable to any smooth path.

The optimal control formulation assumes a non linear
model for the longitudinal dynamics of the problem, which
considers the aerodynamic drag and the presence of con-
straints on the longitudinal and on the lateral acceleration.
The key point of the paper is that the proposed solution is
semi-analytical, and the numeric computations are limited
to a few Newton iterations required to find the unique
zero of a well-behaved equation. Therefore, our solution is
amenable to real–time implementation on low cost hardware.
The proposed method renders itself naturally applicable into
a Receding Horizon scheme, currently under investigation,
where the optimal speed profile over a finite horizon can be
fast regererated to adapt to vehicle states and environment
changes such as friction, presence obstacles, etc.

There are at least three open points that will require future
investigations. The first open problem is the extension of the
analysis to paths different from a clothoid. The only real
difference that we expect is in the analytic expression of the
contraint and in the way the Bang Bang solution is composed

with the lateral constraint (Section IV). The second open
problem is how to synthesise an optimal path in the presence
of obstacles by solving a geometric optimisation problem
(which is a pre-requisite fot this paper). Finally, the third
problem is how to account for complex constraints for lateral
acceleration, such as friction ellipse and GG diagrams. We
expect that the inclusion of GG diagrams may be cast into a
speed constraint that could be treated similarly to what has
been done here for lateral constraint. Proof of this will be
objective of future work.
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