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Abstract— We study the existence of asymptotically stable
periodic trajectories induced by reset feedback. The analysis
is developed for a planar system. Casting the problem into
the hybrid setting, we show that a periodic orbit arises from
the balance between the energy dissipated during flows and the
energy restored by resets, at jumps. The stability of the periodic
orbit is studied with hybrid Lyapunov tools. The satisfaction
of the so-called hybrid basic conditions ensures the robustness
of the asymptotic stability. Extensions of the approach to more
general mechanical systems are discussed.

I. INTRODUCTION

Starting from the important theorem of Poincaré-
Bendixson, many theoretical efforts have been made in the
characterization of periodic orbits for planar continuous-time
nonlinear systems, motivated by the pervasive presence of
oscillators in electronics, mechanics and biology [5], [3]. A
recent research direction seeks to extend this effort to the
hybrid setting, namely to the context where, for a planar
dynamical system, a suitable interplay of continuous flow
and discrete jumps of the solutions leads to the existence
of attractive periodic hybrid trajectories. The relevance of
this topic in engineering is readily shown by the studies on
bipedal robotic walking, where periodic hybrid trajectories
arise from the combination of the free motion of the legs
(continuous flow) with the impulsive action of the impacts
at ground contact (discrete jumps) [14], [13].

The paper provides a stability analysis of hybrid periodic
trajectories for planar mechanical systems based on the
hybrid Lyapunov stability tools in [1]. The main motivation
for the paper comes from the literature on variable impedance
actuators, typically adopted in robotics. Strongly inspired by
biological musculoskeletal systems, these actuators have a
tunable stiffness and/or damping, which play a relevant role
to improve motion efficiency [4], [9], [8], [7]. For multi-
body systems with frequency separation between first and
subsequent natural modes, [6] and [9] show that periodic
oscillations can be obtained by means of simple switching
control laws tuned only on the first natural mode. Taking
advantage of a number of hybrid tools, we revisit and extend
the results in [6]. We model the dynamics in [6] as a hybrid
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system and we show the existence of a unique (hybrid)
periodic orbit arising when the energy dissipated during
flow balances the energy restored by the reset-control action
at a jump. The stability analysis exploits hybrid Lyapunov
methods. In particular, the asymptotic stability of the periodic
orbit follows from the decay along system trajectories of
a suitable Lyapunov function tailored on the kinetic and
potential energies just after and just before a jump.

The most relevant advantage of the approach is the in-
trinsic (in-the-small) robustness of asymptotic stability [1,
Chapter 7], which makes possible the use of the reset
feedback law in applications. The robustness of the design
guarantees that the stability of the attractor persists, and is
degraded with continuity, in the presence of small parameter
perturbation or when the instantaneous reset law is replaced
by a (sufficiently) fast continuous actuation.

The asymptotic stability of the attractor holds for any
parameters configuration that allows for a unique periodic
orbit. This follows from the fact that the Lyapunov function
is based on the mechanical energy just after and just before a
jump. Its minimum is represented on the phase space by the
set of points such that the dissipated and restored mechanical
energy are balanced. Its decay is a natural consequence of
the mechanical features of the system. Indeed, no explicit
characterization of the periodic orbit is required.

We anticipate that our Lyapunov-based analysis has simi-
larities with the classical Poincaré analysis of periodic orbits.
The level sets of the Lyapunov function are univocally iden-
tified by the points of the hyperplane at which resets occur.
This hyperplane plays the role of a Poincaré section. Namely,
along the portion of trajectory starting from and returning to
this hyperplane, the overall decay of our Lyapunov function
captures the convergence of the return map towards the
fixed point. The advantage of a Lyapunov analysis is the
characterization of the basin of attraction of the periodic
orbit. In this sense, our approach is close in nature to the
analysis of the rimless wheel in [12].

A promising future direction from our results is to exploit
the hybrid framework to provide mixed continuous-discrete
control strategies to optimize motion efficiency.

The paper is organized as follows. The hybrid dynamics
is discussed in Section II. Sections III and IV provide
conditions for the existence of periodic hybrid trajectories
and for their stability. Technical proofs are in the Appendix.
Simulations in Section V illustrate the convergence towards
the unique hybrid periodic orbit of the system. A comparison
with the literature and further discussions are reported in
Section VI.
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II. SYSTEM DESCRIPTION

Based on [6], consider the classical mass-spring-damper
mechanical system

mq̈ + cq̇ + k(q − θ) = 0 (1)

with mass, damping and elastic constants respectively m, c,
k. q is the displacement of the mass and θ is the control input.
The elastic force provided by the spring is proportional to
the difference q − θ. The role of θ is to enforce a variation
in the stored potential energy of the spring. Following [4], θ
could model the effect of the slow preloading of the spring
during the flight phase of a hopping robot, which is then
released by a clutch mechanism when touching the ground.

In what follows θ is piecewise constant: it switches be-
tween θ ∈ {−θ̂/2, θ̂/2} when the trajectories of the system
pass through the hyperplane defined by {(q, q̇) ∈ R2 | q−θ =
0}. θ̂ > 0 is a design parameter corresponding to the amount
of potential energy loaded in the spring at switches. Switches
on θ can be considered as the limit of a very fast continuous
action on the spring, a kick of energy, rapidly moving θ from
one value to the other in {−θ̂/2, θ̂/2}.

With coordinates x1 := q − θ and x2 := q̇, the dynamics
of the system can be represented according to the hybrid
formalism in [1] as follows. Since θ is constant, the flow
dynamics reads

ẋ = f(x) :=

[
x2

− c
mx2 − k

mx1

]
, x ∈ C. (2a)

The flow set C enabling flow dynamics is given by

C = {(x1, x2) ∈ R2 : x1x2 ≤ 0}
∪ {(x1, x2) ∈ R2 : |x1| ≥ θ̂, x1x2 ≥ 0} . (2b)

The jump dynamics reads

x+ ∈ G(x) :=

[
θ̂ sgn(x2)

x2

]
, x ∈ D (2c)

where

sgn(x2) =

{
sign(x2) if x2 6= 0

{1,−1} if x2 = 0 .

The jump set D enabling jump dynamics is given by

D = {(x1, x2) ∈ R2 : x1 = 0} . (2d)

x1

x2

θ̂

−θ̂

C

C C

C
D

jump

flow

flow

Fig. 1: Flow set C and jump set D on the phase plane.

Figure 1 provides a graphical illustration of the flow and
jump set on the system phase plane. (2d) guarantees that
jumps occur when q − θ = x1 = 0. For x2 6= 0, we have
that |x1| is reset from 0 to |x+

1 | = θ̂ that is, |q+ − θ+| =
|q − θ+| = θ̂. Indeed, the reset corresponds to a switch in
the equilibrium position of the spring, through actuation. We
do not reset the mass position q.

The behavior of the solutions is illustrated in Figure 2,
which for a system with parameters m = 1 kg, c = 0.3 Ns/m,
k = 1 N/m, θ̂ = 0.2 m, for two different initial conditions.
The two trajectories converge asymptotically to an attractor
defined by the image of a hybrid periodic trajectory, where
periodicity must be intended in a hybrid sense as clarified in
the next section.

Remark 1: In (2c) we used the set-valued mapping sgn to
guarantee that the graph of the jump map x 7→ G(x) is a
closed set. This feature ensures the outer semicontinuity of
G. Outer semicontinuity of G combined with the continuity
of f and with the fact that C and D are closed sets guarantees
that hybrid system (2) satisfies the hybrid basic conditions [1,
Assumption 6.5]. They guarantee regularity of the solution
set and robustness to small perturbations [2]. y
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Fig. 2: Phase plot of hybrid trajectories. Left: (x1,0, x2,0) :=
(0.1,−0.05). Right: (x1,0, x2,0) := (0.5,−0.05).

III. HYBRID PERIODIC ORBITS

The notion of periodicity for a hybrid trajectory is a
straightforward extension of the usual notion of periodicity.

Definition 1: Given any hybrid systemH := (C, F,D, G),
a hybrid periodic trajectory is a complete solution x for
which there exists a pair (T, J) with either T ∈ R≥0 and J ∈
Z>0 or T ∈ R>0 and J ∈ Z≥0 such that (t, j) ∈ dom(x)
implies (t+ T, j + J) ∈ dom(x) and, moreover,

x(t, j) = x(t+ T, j + J). (3)

The image of x is a hybrid periodic orbit.
The following standing assumption on the parameters of

the hybrid dynamics (2) is necessary for the existence of a
nontrivial1 hybrid periodic trajectory.

Assumption 1: θ̂, m, c and k are strictly positive. The
roots of ms2 + cs + k = 0 are complex conjugate, that is(
c

2m

)2 − k
m < 0.

Assumption 1 guarantees that mẍ1 + cẋ1 + kx1 = 0
is an underdamped mechanical system [10, Chap. 2.2].

1A nontrivial hybrid periodic orbit comprises more than one point.



When the system is not underdamped there is no guarantee
that a nontrivial hybrid periodic trajectory exists. With real
eigenvalues in the flow map, the trajectories of the system
may converge to the origin according to the direction of the
eigenvector corresponding to the slowest eigenvalue, lying in
the second/fourth quadrant for m, c, k > 0. In such a case,
the solutions to (2) exhibit at most one jump and the origin
is a globally asymptotically stable equilibrium.

The existence of a nontrivial hybrid periodic orbit follows
from energy considerations. Consider the !-shaped curve C0
represented in Figure 3, given by the set

C0 = {x ∈ R2 : |x1| = θ̂, x1x2 ≥ 0}
∪ {x ∈ R2 : |x1| ≤ θ̂, x2 = 0}. (4)

Under Assumption 1, the trajectories starting from C0 nec-
essarily flow until they reach D. More specifically, flowing
solutions from any x ∈ C in forward (respectively, backward)
time reach set D (respectively, C0) in finite time because of
the revolving nature of the flow trajectories. The following
quantities are thus well defined.
• Backward energies. Denoting by (x1b, x2b) the intersec-

tion with C0 after flowing in backward time from x,

Tb(x) :=
1

2
mx2

2b Ub(x) :=
1

2
kx2

1b (5a)

are the backward kinetic and backward potential ener-
gies, respectively.

• Forward energies. Denoting by (x1f , x2f ) the intersec-
tion with D after flowing in forward time from x,

Tf (x) :=
1

2
mx2

2f (5b)

is the forward kinetic energy.
Figure 3 shows the level sets of Tb, Ub and Tf , which
correspond indeed to flowing portions of solutions to (2).
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Fig. 3: Set C0. Flowing solutions. The curves from C0 to D
are level sets of Tb, Ub and Tf .

For each x 6= 0 the quantity Tb(x) + Ub(x) is the total
mechanical energy of the system right after a jump. The
quantity Tf (x) is the total mechanical energy of the system
after a maximal2 flow, that is, right before a jump. The
difference between these two energies corresponds to the
dissipation during flows.

2In the same sense of maximal solutions in [1, Definition 2.7], namely
that it can not be extended further.

The reset of θ injects energy into the system in the form
of potential energy. This fact and the central symmetry of
the phase portrait (namely, if φ is a solution to (2), −φ
is a solution as well) imply that a hybrid periodic orbit
corresponds to the set of points satisfying the energy balance

Tb(x) + Ub(x) = Tf (x) +
1

2
kθ̂2 (6)

where the last term represents precisely the potential energy
injected by a reset. Given the mentioned central symmetry,
x 6= 0 belongs to a periodic hybrid orbit only if Ub(x) =
1
2kθ̂

2, so that (6) is equivalent to Tb(x) = Tf (x).
Existence and uniqueness of the hybrid periodic orbit

follows from the monotonicity of the dissipation with respect
to initial conditions on C0. In fact, for x = (x1, x2) ∈ C0 the
dissipation is a strictly increasing function of |x|. This is
precisely stated in the next lemma, proven in the Appendix.

Lemma 1: Consider any solution x to (2) flowing from C0
at ordinary time t1 to D at ordinary time t2 ≥ t1 and define
the total mechanical energy at x as E(x) = 1

2mx
2
2 + 1

2kx
2
1.

The dissipated energy E(x(t1)) − E(x(t2)) is equal to cΠ,
where Π is the (unsigned) area within the curves given by
the image of the solution, the set C0 and the set D (hatched
area in Figure 4).

The monotonicity of the dissipation is clear from Figure
4. As a consequence, there is only one initial condition on
C0 for which (6) holds.

Theorem 1: Under Assumption 1, there exists a unique
nontrivial hybrid periodic orbit for the hybrid system (2).
Tb(x) = Tf (x) at each point x of the hybrid periodic orbit.
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IV. GLOBAL ASYMPTOTIC STABILITY

The stability of the nontrivial hybrid periodic orbit is a set
stability problem. Consider the attractor given by

A = {x ∈ C : Tb(x) = Tf (x), x 6= 0} . (7)

Energy considerations similar to those in the previous section
readily show that A is compact and forward invariant (see
the proof of Lemma 2). The images of all nontrivial hybrid
periodic trajectories of (2) coincide with A. Convergence and
stability of the periodic motion follow from the next theorem.

Theorem 2: Under Assumption 1, the set A in (7) is an
asymptotically stable attractor for the hybrid system (2) with
basin of attraction BA = R2\{0}.



The origin x = 0 is not in BA because it is a weak
equilibrium: solutions to (2) starting from the origin can flow
forever staying at the origin or may jump to −θ̂ or θ̂ and
then converge to the hybrid periodic orbit.

We remark that the stability of the set A does not require
an explicit characterization of the hybrid periodic orbit.
We only need to ensure the feasibility of the balance in
(6). Therefore, by Theorem 1 and Theorem 2, the reset
feedback law induces a hybrid periodic trajectory for every
parameters selection that satisfies Assumption 1. Then future
work comprises performing optimal selections of θ (and the
arising periodic motion) via hybrid adaptation.

The proof of Theorem 2 is based on a Lyapunov argument.
Using the definitions in (5), consider the Lyapunov function
candidate for A given by

V (x) =
(Ub(x) + Tb(x)− Tf (x)− 1

2kθ̂
2)2

Ub(x)
. (8)

The shape and the level sets of V are illustrated in Figure 5.
Note that the Lyapunov function V blows up as x approaches
0 (the boundary of BA) and as x grows unbounded, as shown
in Figure 5 for the same parameter selection of Figure 2.
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The next lemma is a key step for proving Theorem 2.
Lemma 2: Under Assumption 1, the set A in (7) is

nonempty and compact and the Lyapunov function V in (8)

(i) is positive definite with respect to A on BA ∩ (C ∪D),
namely

V (x) = 0 if x ∈ A
V (x) > 0 if x ∈ BA ∩ (C ∪ D)\A

lim
|x|→0+

|x|→+∞

V (x) = +∞ (9a)

(ii) is constant in the flow direction3

〈∇V (x), f(x)〉 = 0, ∀x ∈ C (9b)

3We do not give a formal proof of smoothness of V in our derivation,
therefore it would be more appropriate to use the directional derivative of
V in (9b). We use here the notation with the gradient to keep the discussion
simple.

(iii) provides strict decrease across jumps4

V (G(x))− V (x) < 0, ∀x ∈ BA ∩ D\A. (9c)

Remark 2: Following [1, Corollary 7.32] and [1, Defini-
tion 7.29]), item (i) of Lemma 2 implies that for any indicator
function ω of A on BA there exists class K∞ functions α
and α such that

α(ω(x)) ≤ V (x) ≤ α(ω(x)), (10)

which entails standard additional features of A, e.g., ro-
bustness and semiglobal-practical robustness of asymptotic
stability of A [1, Chap. 6.7]. y

Based on Lemma 2, the proof of Theorem 2 is a mere ap-
plication of fundamental Lyapunov results holding for hybrid
systems described with the formalism in [1]. In particular,
Lemma 2 establishes that function V in (8) is a non-strict
Lyapunov function for compact attractor A, in the sense of
[11, Equations (6a), (7)]. Indeed, the fact that A is compact
is sufficient to obtain that (9a) implies (10) for any indicator
function ω and suitable class K∞ functions α, α. Moreover,
(9b) coincides with [11, Equation (7a)] and (9c) implies [11,
Equation (7b)] for a suitable positive definite function ρ, once
again because A is compact. As a consequence, we may
apply a local generalization of [11, Theorem 2] by noticing
that all solutions to (2) are semiglobally persistently jumping,
namely for any arbitrarily large number ∆, we have that
solutions restricted to flow5 in C ∩∆B∩BA and jump from
D ∩ ∆B ∩ BA have a uniform reverse dwell time (i.e., a
maximum time between each pair of consecutive jumps in
their domain). Such a maximum time is easily computed
as the minimum flow time from the vertical portion of C0
intersected with ∆B. Note, in particular, that by homogeneity
of the linear flow equation, such a maximum flow time is
strictly smaller than the flow time of the first flowing interval
of the (unique) solution starting from x(0) =

[
θ̂
∆

]
.

V. SIMULATIONS

We simulate the hybrid system (2) with the same param-
eters adopted in Figure 2, corresponding to m = 1 kg, c =
0.3 Ns/m, k = 1 N/m (eigenvalues s1,2 = −0.15± i0.9887,
consistent with Assumption 1). Instead of θ̂ = 0.2 m we
enforce a reset to the larger value θ̂ = 0.3. Compared to
Figure 2, the hybrid periodic orbit changes as shown in the
upper part of Figure 6. The bottom part of Figure 6 shows the
values of the Lyapunov function and of the states (x1, x2)
as functions of ordinary time.

VI. CONCLUSIONS AND FUTURE RESEARCH

Following [6], different hybrid periodic orbits can be gen-
erated by exploiting different reset laws. Within the hybrid
characterization (2), one of the switching laws proposed in
[6] is captured by the flow and jump sets C and D given in
Figure 7a: θ̂ ≥ 2εφ and εφ > 0 is a new control parameter.

4Note that sgn(x2) is single-valued for all x ∈ D ∩ BA = {x ∈
R2 : x1 = 0, x2 6= 0} because it is set-valued only at x2 = 0.

5As customary, we denote by B the closed unit ball.
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Fig. 6: Upper part: phase plot of the trajectories. Bottom
part: Lyapunov function and hybrid trajectories projected
on ordinary time for the two initial conditions. Left: initial
condition (0.1,−0.05). Right: initial condition (0.5,−0.05).

G(x) =
[
x1+θ̂sign(x2)

x2

]
and f(x) remains (2a) with the

parameters of Section V. The simulation of a number of
trajectories is reported in Figure 7b. The approach and results
in Sections III and IV can be extended to capture the stability
properties of this new hybrid system, to show the existence of
a globally asymptotically stable hybrid periodic orbit. Figure
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Fig. 7: εφ = 0.2 and θ̂ = 0.6.

7 shows the potential of the hybrid characterization in (2). A
number of reset feedback laws can be modeled by variations
on the definitions of the sets C and D and of the jump map G.
The monotonicity of the dissipated energy is crucial for the
uniqueness of the attractor. Future research will investigate
the family of reset feedback that guarantees existence and
uniqueness of an asymptotically stable hybrid periodic orbit.

It is natural to consider mechanical systems with elastic
potentials typical of nonlinear springs, so that (2a) would
read ẋ2 = − c

mx2− 1
m

∂U
∂x1

where the potential U is any posi-
tive definite function. A necessary condition for the existence
of an attractor with basin R2\{0} is the strict monotonicity
of the elastic potential, namely the positivity of the function
x1 7→ x1

∂U(x1)
∂x1

. In fact, the lack of strict monotonicity may
lead to the coexistence of several attractors. The minimal
requirement for the existence of globally attractive hybrid

periodic orbits is that the linearization of the flow dynamics
at the origin has complex conjugate eigenvalues, which is a
straightforward generalization of Assumption 1. Otherwise,
trajectories that are sufficiently close to the origin would flow
towards it remaining in the second/fourth quadrant, without
triggering any reset. Future work will look for tight sufficient
conditions for the existence of a global attractor for general
elastic potentials.

Finally, the generality of a Lyapunov approach for stability
analysis calls for extensions of the method to more general
mechanical systems. The first step is the analysis of n-
dimensional linear mechanical systems perturbed by resets.
We also recall that the model in (2), albeit an abstraction,
stems from the robotics context. Further detailed analysis
will investigate its potential for robotic applications, in
particular the one of legged locomotion.

APPENDIX

A. Proof of Lemma 1

The work performed by the nonconservative viscous force
Fd = cx2 in moving the point mass from position 1 to
position 2 causes a change E2 −E1 in the total mechanical
energy [10, Page 9]. With the aid of Figure 4, let us exemplify
it on trajectories like 1 and denote x1M the value at which
a trajectory crosses the line x2 = 0, so that on the trajectory
x2 can be expressed as function of x1 for each half-plane
x2 > 0, x2 < 0. Then, by splitting the integral relative
to the work in two pieces, we get E(x(t2)) − E(x(t1)) =∫ x1M

θ̂
−(cx2)dx1 +

∫ 0

x1M
−(cx2)dx1 = −cΠ.

B. Proof of Lemma 2

The proof of this fact relies on Lemma 1. From (8),

V (x) =

( Eb(x)︷ ︸︸ ︷
Ub(x) + Tb(x)−

Ef (x)︷ ︸︸ ︷
Tf (x)−

Û︷ ︸︸ ︷
1

2
kθ̂2

)2

Ub(x)

=
(cΠ(x)− Û)2

Ub(x)
, (11)

where Eb and Ef are the total energies of the system right
after and right before a jump, respectively; Û is the potential
energy at

[
θ̂
0

]
∈ C0; Π(x) is the area spanned by the solution

passing through x during a flow from C0 to D (where Ef
is evaluated); and c > 0 is the damping coefficient in (1).
Figure 4 provides two examples for Π(x).

We are now ready to prove Lemma 2. First notice that,
due to the uniqueness of flowing solutions, the function
x 7→ Π(x) is necessarily strictly increasing as x moves
farther from the origin (or any compact set). Denote by
cΠ0 = cΠ

([
θ̂
0

])
the dissipated energy when starting from

the corner of set C0 in (4). Moreover, denote by cΠ? =
1
2kθ̂

2 = Û the dissipated energy associated to the hybrid
periodic orbit. Note that Π? > Π0 necessarily, because cΠ0

cannot be larger than the total energy Û = cΠ? at the



beginning of the corresponding solution starting from the
corner of C0. Then,

A = {x ∈ C : Π(x) = Π?, x 6= 0}, (12)

which proves that it is non-empty and compact. We prove
now the three items of the Lemma.

Item (i). Since V (x) in (11) is non-negative and zero if
and only if Π(x) = Π?, from expression (12) we obtain
V (x) = 0 if and only if x ∈ A and positive otherwise.
Moreover, as x approaches zero, we have that Ub(x) tends
to zero, which implies V (x)→∞. Since Ub(x) ≤ Û for all
x due to the structure of C0, lim|x|→∞Π(x) = +∞ implies
lim|x|→∞ V (x) = +∞.

Item (ii). This item follows in a straightforward way from
the fact that V (x) remains constant by construction during
flow.

Item (iii). First of all notice that x = [ x1
x2

] ∈ D implies
x1 = 0 and that G(x) =

[
θ̂sign(x2)

x2

]
for all x ∈ D ∩ BA.

We split the proof in three cases. We only consider jumps
from points in the negative part of D (namely x2 < 0)
because of the central symmetry of the phase portrait. We
also use the simplified notation Π+ to denote Π(x+). Similar
simplifications will be used for other quantities.

Case 1: Π > Π? > Π0. First of all, by uniqueness of
solutions Π+ > Π?, otherwise the flow would intersect the
hybrid periodic orbit. Consider the left part of Figure 8 and
note that Π > Π? implies Π+ < Π. Indeed, exploiting U+

b =
Ub = Û = cΠ? and Tb + Ub = Tf + cΠ and T+

b = Tf , we
get Tb = Tf + cΠ − cΠ? > Tf = T+

b . Π > Π+ follows by
monotonicity. Finally, the result is proven from

0 = cΠ? − Û < cΠ+ − Û < cΠ− Û .
Case 2: Π? > Π > Π0. First of all, Π+ < Π? again from

uniqueness of solutions. Consider the right-part of Figure 8
and note that Π0 < Π < Π? implies Π+ > Π. In fact,
following the argument of Case 1, we have that U+

b = Ub =
Û = cΠ? and Tb + Ub = Tf + cΠ and T+

b = Tf thus
Tb = Tf + cΠ− cΠ? < Tf = T+

b . The result is proven from

0 = cΠ? − Û > cΠ+ − Û > cΠ− Û .
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Fig. 8: Left: Π > Π? > Π0. Right: Π? > Π > Π0. Pink
areas are Π+ mirrored about the origin.

Case 3: 0 < Π < Π0. Consider Figure 9. In this case we
have Ub < Û because Ub is evaluated on the horizontal part
of C0. Then

V + − V = (cΠ+ − Û)2
/
Û − (cΠ− Û)2

/
Ub

< (cΠ+ − Û)2
/
Û − (cΠ− Û)2

/
Û .

Now, observe that cΠ+ < Û = cΠ? because otherwise the
forward solution from x+ would intersect the flowing portion
of the hybrid periodic orbit (thus contradicting uniqueness).
Then, using Ub > 0, we get V + − V < 0 from

(cΠ+ − Û)2 − (cΠ− Û)2

= c(Π+ −Π︸ ︷︷ ︸
>0

)(cΠ+ − Û︸ ︷︷ ︸
<0

+ cΠ− Û︸ ︷︷ ︸
<0

) < 0,

where we used (i) Π+ > Π from Π+ being evaluated from
the vertical part of C0 and (ii) cΠ < Û from cΠ < Ub.
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Fig. 9: Case 3: 0 < Π < Π0.

REFERENCES

[1] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical
Systems: modeling, stability, and robustness. Princeton University
Press, 2012.

[2] R. Goebel and A. R. Teel, “Solutions to hybrid inclusions via set and
graphical convergence with stability theory applications,” Automatica,
vol. 42, no. 4, pp. 573–587, 2006.

[3] J. Grasman, Asymptotic methods for relaxation oscillations and ap-
plications, 1st ed., ser. Applied Mathematical Sciences. Springer,
1987.

[4] F. Gunther and F. Iida, “Preloaded hopping with linear multi-modal
actuation,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2013, pp. 5847–5852.

[5] M. Hirsch and S. Smale, Differential Equations, Dynamical Systems,
and Linear Algebra (Pure and Applied Mathematics, Vol. 60). Aca-
demic Press, 1974.
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