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Abstract − In a noisy quantum channel, burst errors 
usually causes multiple bit-phase flips that are adjacent 
to each other [1-2]. This effectively makes some 
quantum error-correcting codes to be unusable. In this 
paper, the concept of interleaving qubit transmission is 
proposed. By using the interleaving method in a 
quantum information transmission process, burst 
errors in a quantum channel are re-arranged into 
different time slots. This relocation makes the error bits 
non-adjacent and hence increases the probability of 
information recovery. Note that although this scheme 
enhances the error-correcting capability of the encoded 
quantum information, it does not increase the 
redundancy of the code, because only the qubit 
sequences are relocated. In addition to the interleaving 
scheme, implementation of the proposed scheme at the 
circuit level is also discussed in this paper. 

1 INTRODUCTION 

Quantum channel coding has been studied 
extensively recently. The purpose of quantum 
channel coding is to avoid errors occurred during the 
transmission of quantum bits. Several quantum error-
correcting codes [3-8] have been proposed to prepare 
the codeword for transmission, but for what happens 
during the transmission, there is still room for 
improvement.  

 Quantum coding methods deal with encoding and 
decoding bits in the microscopic world. In a 
microscopic two-level system, one of the eigenstates 
is denoted as |0>, and the other eigenstate is denoted 
as |1>. A state can be represented as a superposition 
of these two eigenstates, and is modeled as 
a|0>+b|1>, with a and b complex numbers. This 
means, unlike classical binary logic, these two 
eigenstates coexist at the same time. Upon a 
measurement, we can get only one of the eigenstates, 
with probability |a|2 and |b|2 respectively. Such a two-
level quantum state is described as quantum bit, or 
qubit for short. In this kind of quantum system, a 
qubit is represented into the Hilbert space [9] and can 
be used as an information carrier. Unlike the classical 
repetition codes, the quantum error-correcting codes 
are constructed by making a vector in the Hilbert 
space, instead of making several copies. This is due 
to the no-cloning theorem that an unknown qubit 
state can not be copied. As a result, the coding 
scheme is to map a small Hilbert space into the 

subspace of a larger Hilbert space C. For example, 
the quantum repetition code maps |0> to |000> and 
|1> to |111>. 

However, the problem is that the codeword would 
be destroyed if a burst error occurs. The classical 
cyclic codes are developed for protecting burst error. 
It is based on the linear shifter feedback register. But 
in a quantum system, the feedback operation does not 
work. So, we propose the time-spreading and 
interleaving transmission schemes to protect the burst 
error using a straightforward construction. 

2 QUANTUM COMMUNICATION MODEL 

We can consider a simple communication model as 
shown Fig.1. At the source station, the information is 
prepared as qubits at the transmitter side and encoded 
with an encoder. Then the encoded qubits are sent to 
quantum channel and transmitted to the receiver side. 
In this model, the quantum channel can be taken as a 
quantum operation. The errors occur because the 
noise is introduced from the channel. In the classical 
world, an error is a bit-flip from 0 to 1 or 1 to 0. 
However, in a quantum mechanical world, the errors 
consist of bit-flip, phase-flip, bit-and-phase flip and 
their linear combinations. 

Generally speaking, bit flip means an exchange of 
the ground and excited state. For example, a bit-flip 
changes the quantum state a|0>+b|1> to a|1>+b|0>. 
On the other hand, the phase-flip introduces a 
rotation along the z-axis in the Hilbert space. A 
typical example is a 90o rotation from a|0>+b|1> to 
a|0>+ib|1>. Usually, a random flip consists of bit and 
phase flips. Quantum error-correct coding has been 
developed to protect these errors. However, if only 
error-correct coding is applied, the information 
would still get lost with burst errors in the channel. 
That is because a burst error involves multiple qubits, 
so usually it can not be recovered by the error coding 
mechanism.  

 
 
 
 
 



 

Figure 1: Communication model. 

3 CHANNEL CODING SCHEME 

3.1 A simple encoder and decoder 

As an example, a simple quantum repetition code is 
described as follows. In this code, the information of 
one qubit is encoded into a subspace of three qubit 
Hilbert space. If error occurs, majority voting can be 
used to recover the original information. More 
specifically, the basis |0> and |1> are substituted by 
|000> and |111>, so an arbitrary state a|0>+b|1> is 
mapped to a|000>+b|111>. If an error occurs, it can 
be corrected by simply do a majority voting. 

In this method, each symbol is represented using 
three qubits. If there is no error during the 
transmission, all three qubits will give the same 
quantum state after the measurement. If an error does 
occur, by majority voting, the original quantum state 
can be recovered if the channel is not too bad. A 
typical scenario is shown in Fig. 2. First, we copy the 
quantum state of the first qubit to the second and 
third qubit by control-not gates. Then these qubits are 
sent to the destination via the quantum channel. On 
the other end of the channel, the receiver performs 
the decoding procedure using three control-not gates. 
The result is recovered in the first qubit. Notice that, 
the coding scheme can protect single bit-flip errors. 
The information will get lost with burst errors. 

 

Figure 2: The encoder and decoder for the quantum 
repetition codes. 

3.2 Old transmission model and drawbacks 

Using quantum error-correcting code for 
information storage and transmission are different. In 
most cases, the transmission is done from the source 
to the destination in a parallel fashion. This means 
the qubits representing one bit of information are 
transmitted at the same time. A power flash or a 

suddenly EM wave will cause a burst of adjacent 
errors on the channel. As a matter of fact, burst errors 
occur frequently during transmission.  

In the parallel transmission model, a qubit will be 
encoded as three qubits for transmission. Although 
they are transmitted via different paths, each qubit is 
transmitted in the same time slot. In such a case, the 
noise in one time slot covers three qubits and is 
actually a burst-error. Because of too many errors 
occurs in one symbol, the information of this qubit 
can not be recovered. A parallel transmission 
scenario is shown in Fig. 3. In the following section, 
we will propose a coding scheme that is safe against 
the burst error. The information of coding symbols 
would be spread to and transmit in different time 
slots to avoid the burst error.  

 

Figure 3: Original encoding symbol transmission. 

4 TIME-SPREADING TRANSMISSION 
MODEL 

Fig. 4 shows the basic idea of the time-spreading 
transmission. To spread the information to different 
time slots, we need to construct the time delay unit in 
order to store the qubit for transmission. With this 
scheme, the transmission model is changed form Fig. 
1 to Fig. 5. A shifter block is added after the encoder 
and a de-shifter block is inserted before the decoder. 
The shifter and de-shifter blocks can be used to 
perform the time-spreading and recovery operation. 

 

Figure 4: Time spreading symbol transmission. 



The classical cyclic code for protecting burst errors 
is generated by cyclic shifter operation that is 
implemented with linear shifter feedback register. 
But in the quantum system we can only do 
straightforward transmission. There is no feedback 
for the delay unit. 

 

Figure 5: Process of quantum time spreading 
transmission model. 

4.1 Encoding and Decoding 

In the following description, we will use a 
generalization of the repetition code, proposed by 
Shor, in order to correct bit-flips as well as phase-
flips. This quantum error-correcting code uses nine 
qubits to encode one qubit of information. The 
encoding circuit is shown in the left of Fig. 6. It 
transforms the basis of |ψ> into  

 
   (1) 

Again, the decoding scheme is achieved by 
majority voting. The implementation of circuit is 
shown in the right of Fig.6. But if there are more than 
one qubits get contaminated, the coding scheme does 
not work. Shor’s quantum error-correcting code 
corrects bit-flip, phase-flip and a combination of 
these errors. But only errors on one single qubit can 
be protected, we need to find another method to 
protect burst errors. The spreading of codeword 
comes into play and can be used to enhance its error-
correcting capability. 

 

Figure 6: Encoder and decoder of Shor’s code. 

4.2 Shifter and delay unit 

The idea of a shifter is described as follows. Via the 
shifter, the qubits of each symbol are relocated into 
different time slots to protect them against burst 
errors. It uses the time delay unit to spread the qubit 
for transmission and achieve the goal of information 
time-spreading effect. A shifter and its delay unit are 
shown in Fig. 7. 

 

Figure 7: The architecture of a shifter. 

A delay unit is shown in Fig. 8. Two control-not 
gates are used to swap the quantum information and 
achieve the goal of delay. In this delay circuit, the 
input register is set to be |0> initially. Otherwise, 
three control-not gates with the middle one up-side-
down are required. The whole swap operation is 
performed once at each clock cycle. 

 
 
 
 
 
 
 
 



 

Figure 8: Time delay unit. 

4.3 Analysis 

The burst error correcting capability is defined as 
the length of consecutive errors that can be corrected. 
In Shor’s coding scheme, if error occurs on more 
than one qubit, the coding scheme does not work. So, 
the ability of burst error correcting is 1 bit. As a 
result, if we make each delay as two time slots, then 
the ability of burst error correcting increases to be 2 
(with a delay penalty).  

We can make the decision of how many time slots 
we take for each delay by measuring the maximum 
burst error length of our device. The more time slots 
for each delay, the more burst error correcting 
capability the device has. Assume the delay time 
slots is N, and the number of qubits in each code is 
M. Then, the delay penalty in total transmission time 
will be N (M 1)× − , which is a very good bargain. 

Since a total of nine qubits are used in the code, 
nine quantum channels have to be used for the 
transmission. To save the number of quantum 
channels, the qubits can be sent in an interleaving 
fashion. For example: If each symbol contains three 
qubits and the transmitting sequence is (A1), (B1 
A2), (C1 B2 A3), (D1 C2 B3). The parallel sequence 
can be combined into A1, B1, A2, C1, B2, A3, D1, 
C2, B3, as shown in Fig. 9.  

 

Figure 9: Serialized transmission method. 

5 CONCLUSIONS 

In this paper, we proposed a generalized concept 
and example circuits for quantum burst-error-
correcting method. In this method, the physical 
location of each qubit is re-located into different time 
slots so that the codeword would not be destroyed by 
burst errors. On the receiving end, qubits are replaced 
to their original positions using a de-shifter so that 
any errors that have occurred are spread out. This 
turns a burst error into a random error which can be 
easily recovered.   
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