
Minimum Number of Operations under a General
Number Representation for Digital Filter Synthesis

Levent Aksoy
Istanbul Technical University

Istanbul, Turkey

Eduardo Costa
Universidade Catolica de Pelotas

Pelotas, Brazil

Paulo Flores
INESC-ID/IST

Lisbon, Portugal

José Monteiro
INESC-ID/IST

Lisbon, Portugal

Abstract— In this work, we introduce an algorithm for the
optimization of the number of operations in the multiplier block
of a digital filter based on a general number representation for
the coefficients. In common subexpression elimination algorithms,
constants are generally represented with the minimum number
of non-zero digits based on their CSD, or MSD representations.
We observe that these representations may yield a solution far
from the minimum. The general number representation used
in our algorithm considers a much larger set of alternative
implementations of a constant, which includes the CSD and MSD
representations. To cope with the increased search space, we
propose model simplification and problem reduction techniques.
In this paper, we show that the proposed exact algorithm using
general number representation achieves a significant reduction in
the number of operations, which can be up to 15% with respect
to the solutions obtained under MSD representation.

I. INTRODUCTION

Finite impulse response (FIR) digital filters are widely
used in digital signal processing by virtue of stability and
easy implementation. The problem of designing FIR filters
has received a significant amount of attention during the last
decade, as the filters require a large number of multiplications,
leading to excessive area, delay, and power consumption
even if implemented in a full custom integrated circuit. The
proposed methods have focused on the design of filters with
minimum area by replacing the multiplication operations with
constant coefficients by addition, subtraction, and shifting op-
erations. Since shifts are free in terms of hardware, the design
problem can be defined as the minimization of the number
of addition/subtraction operations to implement the coefficient
multiplications. In fact, this is known, more generally, as the
Multiple Constant Multiplications (MCM) problem.

The proposed algorithms for the optimization of the number
of operations in digital filter design can be categorized in
two classes: common subexpression elimination (CSE) and
graph-based techniques. In CSE algorithms, constants are
represented in a number representation, commonly, canonical
signed digit (CSD) and minimal signed digit (MSD). Both
CSD and MSD representations use a signed digit system
with the digit set {1,0,1}, where 1 denotes −1, and have the
property that the number of non-zero digits is minimum. The
CSD representation provides a unique representation for every
constant, since two non-zero digits are not adjacent. A constant
can have several MSD representations, because non-zero digits
can be consecutive in MSD. CSE algorithms generally find the
most common non-zero digit combinations while optimizing
the number of operations. In [1], a two-term subexpression
elimination technique is presented under CSD representation.

In [2], it is shown that using MSD representation yields
better solutions than CSD in MCM problems, since it has
the same minimum number of non-zero digits as CSD, but
provides multiple alternative representations for a constant.
However, all these algorithms are heuristics, i.e., provide no
indication how far from the minimum their solutions are. An
exact CSE algorithm that considers the maximum sharing of
partial terms is introduced in [3]. In this algorithm, all the
possible implementations of constants are found, represented
as a Boolean network and then converted to a 0-1 integer
linear programming (ILP) problem. The cost function to be
minimized is the linear function of optimization variables that
represent partial terms. Finally, an exact solution is found
by a generic satisfiability (SAT)-based 0-1 ILP solver. In
graph-based methods, constants are implemented without a
restriction to any particular number representation. Thus, a
constant has more possible implementations than CSD and
MSD. Two heuristic algorithms are introduced for multiple
constants in [4] and [5]. While there is an exact algorithm [6]
for a single constant in maximum 19 bits, no exact graph-based
algorithm has been proposed for multiple constants.

In this work, we make the observation that being limited to
CSD or MSD will prevent from finding a minimum solution in
terms of the number of operations. While it is true that there
is a higher probability of a representation with the minimal
number of non-zero digits being selected for the optimized
solution, it is also true that there are situations where a non-
minimal representation may fit better with existing partial
terms and lead to a better solution. In this paper, we introduce
an exact algorithm that can handle multiple constants using
general number representation. Since the implementations of a
constant are not limited to any digit representation, we increase
the search space, allowing our algorithm to be significantly
more effective in the optimization of the number of operations.
To help the search in this larger solution space, we introduce
problem reduction and model simplification techniques. We
present results on FIR filters and randomly generated instances
which demonstrate that we can achieve large gains over the
exact solutions obtained with CSD and MSD.

The rest of the paper is organized as follows. In Section II,
the proposed exact algorithm is introduced. Results are given
in Section III. Finally, the paper concludes in Section IV.

II. TRIPLE-A: THE EXACT ALGORITHM

In this section, we present the problem definition and
the exact algorithm called Triple-A that can handle multiple
constants in CSD, MSD, and general number representations.



A. Definitions

In the optimization of the number of operations in digital
filter synthesis, filter coefficients and partial terms are con-
sidered as odd numbers, since shifts can be implemented with
only wires in hardware. So, an operation represents an addition
or a subtraction with two odd inputs, I1 and I2, input shifts, S1

and S2, and an output, O, given as O = I1 � S1 ± I2 � S2,
where S1 = 0, S2 > 0 or S1 > 0, S2 = 0, i.e., without loss of
generality one of the shifts at the input is zero and the other
is greater than zero. A partial term is an odd constant that is
neither a coefficient nor a filter input and is determined as an
input of an operation that implements a coefficient. Thus, the
problem of the optimization of the number of operations can
be defined as finding the minimum number of partial terms
to be added to a set that contains filter coefficients and filter
inputs such that each coefficient and partial term in the set
can be implemented with the set elements using only one
operation. So, the minimum number of operations is the sum
of the number of odd coefficients and the minimum number
of required partial terms.

B. Partial Term Generation

In Triple-A, the optimization of the number of operations
is defined as a binate covering problem, a special case of
a 0-1 ILP problem where every constraint is interpreted as
a propositional clause. In the preprocessing phase of the
algorithm, after the filter coefficients are made positive and
odd, they are stored without repetition in a set called Cset.
They are labeled as filter coefficients and unimplemented.
If the filter input, i.e., 1, does not exist in Cset, it is also
inserted into Cset and labeled as implemented. The part of the
algorithm where the partial terms are found for each element
in Cset is as follows:

1) Take an unimplemented element from Cset, Cseti. Form
an empty set of arrays called Pseti associated with
Cseti. Pseti will contain all partial terms that are
required to implement Cseti.

2) Find an operation that implements Cseti;
a) Find the non-repeated inputs of the operation that

are neither a filter coefficient nor a filter input and
store them in an empty array called Iarray. Note
that Iarray may contain a single partial term or a
pair of partial terms.

b) If Iarray is empty, then make Pseti empty and
go to Step 5. In this case, Cseti can be imple-
mented with an operation whose inputs are filter
coefficients or filter inputs and this is the minimum
implementation.

c) If Iarray is not empty, then check for each array of
Pseti, Pseti(k), if Pseti(k) ⊆ Iarray. If Iarray
is included in Pseti, then go to Step 3.

d) If Iarray is not empty, then check for each array of
Pseti, Pseti(k), if Iarray ⊂ Pseti(k). If Iarray
dominates Pseti(k), then delete Pseti(k).

e) Add Iarray to Pseti.

3) Repeat Step 2 until all the implementations of Cseti are
considered.

4) Add all the partial terms in Pseti to Cset, if they are
not in Cset and label them as unimplemented.

5) Label Cseti as implemented and repeat Step 1 until all
elements in Cset are labeled as implemented.

Observe that in the first iteration of the algorithm, Cset
contains the filter coefficients and in later iterations, it contains
also the partial terms.

In CSD and MSD, the operations for a constant (Step
2 of the algorithm) are determined by addition/subtraction
of non-zero digit combinations to the constant as described
in [3]. As an example, consider 51 (1010101 in CSD) as a
filter coefficient. The operations that implement 51 are given
in Fig. 1. Observe that the implementation of 64-13 is the
same as the implementation of 52-1, since these operations
have the same odd inputs. Therefore, 52-1 is not listed in
Fig. 1. Similarly, the duplications of implementations are not
presented in this figure, e.g., 63-12 is equal to -12+63. As can
be seen from Fig. 1, since 1 represents the filter input, the
implementation of 51 requires 3,13,17,47,67 as single partial
terms and 3 and 63 as a pair of partial terms. Since the single
partial term 3 dominates the pair of 3 and 63 (Step 2d of the
algorithm), Pset51 includes only single partial terms. After
these partial terms are obtained, they are added to Cset and
operations that implement them are also found in this way.

With 1 non-zero digit combinations With 2 non-zero digits combinations

51=1000000+0010101=1�6 - 13�0 51=1010000+0000101=3�4 + 3�0
51=0010000+1000101=-1�4 + 67�0 51=1000100+0010001=17�2 - 17�0
51=0000100+1010001=1�2 + 47�0 51=1000001+0010100=63�0 - 3�2

Fig. 1. Implementations of 51 in CSD.

In general number representation, finding the operations
that implement a constant has some limitations, since it must
be ensured that the obtained solution has no feedback. To
illustrate this problem, consider the coefficients of a filter as 7,
11, and 19. The possible implementations of these coefficients
under general number representation are given in Fig. 2.

Implementations of 7 Implementations of 11 Implementations of 19

7=1+6=1�0 + 3�1 11=1+10=1�0 + 5�1 19=1+18=1�0 + 9�1
7=2+5=1�1 + 5�0 11=2+9=1�1 + 9�0 19=2+17=1�1 + 17�0
... ... ...
7=11-4=11�0 - 1�2 11=7+4=7�0 + 1�2 19=7+12=7�0 + 3�2
... ... ...
7=19-12=19�0 - 3�2 11=19-8=19�0 - 1�3 19=11+8=11�0 + 1�3
... ... ...

Fig. 2. Implementations of 7, 11, and 19 in general number representation.

If all operations listed in Fig. 2 are accepted for these
coefficients, a minimum solution that includes a feedback loop
can be obtained, e.g., 7 = 11−4, 11 = 19−8, and 19 = 8+11.
To avoid these feedback loops, only addition operations can be
considered or additional constraints that break the loops should
be added to the 0-1 ILP problem. Since more promising results
are obtained with both addition and subtraction operations
and the number of additional constraints grows exponentially
with the number of partial terms, neither approaches are used.



Instead, for each constant n, odd numbers between 1 and
2dlog2(n)e+1−1 are sorted in ascending order of non-zero digits
in their CSD representations in a set called Nset. In fact, Nset is
a set where its elements are ordered according to the number of
operations required to implement each single element in CSD.
After Nset is formed, the operations for a constant are found
by traversing from the first element to the element before the
constant in Nset and assigning each element to the first input
of an adder with positive and negative sign. The operation
that implements the constant is accepted, if its second input
is placed in a lower position than the position of the constant
in Nset. As an example for the filter coefficient 51, suppose
23 (101001 in CSD) taken from Nset is assigned to the first
input of addition operations with positive and negative sign.
The operations, 51=23�0 + 7�2 and 51=-23�0 + 37�1,
are accepted for the implementation of 51, since the second
inputs, i.e., 7 and 37, are located before 51 in Nset. The partial
terms that are only considered using Nset with respect to CSD
and MSD are the odd numbers that cannot be represented with
the non-zero digit combinations of the constant. For the filter
coefficient 51 (1010101 in CSD), we note that 23 cannot be
considered in both CSD and MSD. Also, the partial terms
can include equal number of non-zero digits as opposed to
the partial terms obtained by decomposing the CSD and MSD
representations of constants. Again, for the filter coefficient 51,
the partial term 43 (1010101 in CSD) cannot be considered
using CSD or MSD. With the use of Nset we avoid feedback
loops and increase the possible sharing of partial terms by
providing more possible implementations of a constant than
operations obtained under CSD and MSD.

C. Conversion to 0-1 ILP Problem

After all partial terms required to implement each coeffi-
cient and partial term are found, the optimization problem is
converted into a combinational network. The network only
includes AND and OR gates. An OR gate, representing a
coefficient or a partial term, combines all partial terms that
can be used for the synthesis of the associated coefficient or
partial term. An AND gate, representing a pair of partial terms,
combines two partial terms. The primary inputs of the network
are the coefficients and partial terms that can be implemented
with an operation whose inputs are filter coefficients or filter
inputs. As an example, the network constructed for the coeffi-
cient 51 in CSD is given in Fig. 3 by inserting the redundant 3
and 63 partial term pair into the network to make a clarification
in the definition of AND gate. We note that this partial term
pair is not required for the implementation of 51, since it is
dominated by the single partial term 3.

The network is converted into a 0-1 ILP problem, after
additional hardware (a 2-input AND gate for each partial term)
with the optimization variables is added to the network. The
optimization variables that represent the filter coefficients are
assigned to 1 and the conjunctive normal form (CNF) formulas
of each gate in the network are found. Each clause in CNF
formulas is expressed as a linear inequality. A cost function,
i.e, the linear function of the optimization variables that

�

���

���

���

�

���

���

���

� �

�

���

Fig. 3. The network for the coefficient 51 in CSD.

represent the partial terms, is constructed. Finally, the problem
is given to the SAT-based 0-1 ILP solver, MiniSat+ [7], to
obtain an exact solution. In the construction of the network and
the translation of the network into CNF, the issues described
in [8] that speed-up the 0-1 ILP solver were also considered.

In the post-processing phase of the algorithm, after the
minimum solution including filter coefficients and required
partial terms is obtained, the filter coefficients and partial
terms are synthesized from inputs to outputs. In the selection
of an operation for each coefficient and partial term among
possible implementations whose inputs are in the solution or
filter inputs, the minimization of the number of operations in
series, i.e., the delay, is considered. Thus, the minimum delay
synthesis of the found minimum area solution is realized.

III. EXPERIMENTAL RESULTS

In this section, experimental results of Triple-A on FIR
filter and randomly generated instances under CSD, MSD, and
general number representations are presented and the exact
solutions obtained with these representations are compared.

As the first experiment set, FIR filters where the coefficients
were computed using the Remez algorithm in MATLAB were
used. The filter specifications are given in Table I where pass
and stop are normalized frequencies that define the passband
and stopband respectively; #tap is the number of coefficients;
and width is the bit-width of the coefficients.

TABLE I
FILTER SPECIFICATIONS.

Filter pass stop #tap width

1 0.15 0.25 40 12
2 0.20 0.25 80 12
3 0.24 0.25 120 12
4 0.15 0.25 60 14
5 0.15 0.20 60 14
6 0.10 0.15 60 14
7 0.10 0.15 100 16
8 0.15 0.25 120 16
9 0.10 0.15 160 16

The 0-1 ILP problem sizes of filter instances and solutions
obtained by Triple-A are given in Table II. In this table, vars,
cons, and optv stand for the number of variables, constraints,
and optimization variables respectively. Also, adder denotes
the number of operations and step denotes the maximum
number of operations in series needed to synthesize the filter
coefficients. CPU is the CPU time in seconds that is used by
the 0-1 ILP solver [7] to compute the exact solutions on a
PC with dual Pentium Xeon at 2.4GHz, with 4GB of main
memory, running Linux. Since the CPU times required to
construct the network in the preprocessing phase and to find



TABLE II
0-1 ILP PROBLEM SIZES AND RESULTS OF TRIPLE-A ON FIR FILTER INSTANCES.

0-1 ILP Problem Sizes Minimum Number of Operation Solutions
Filter CSD MSD General Number CSD MSD General Number

vars cons optv vars cons optv vars cons optv adder step CPU adder step CPU adder step CPU

1 77 119 50 151 302 80 21231 96222 475 16 3 0 16 3 0 15 4 1.2
2 61 83 47 92 137 64 28 28 28 29 3 0 29 4 0 28 3 0
3 34 34 34 34 34 34 34 34 34 34 3 0 34 3 0 34 3 0
4 168 345 95 107 146 74 20 20 20 23 3 0 22 3 0 20 4 0
5 241 562 107 203 466 93 29 29 29 35 4 0 34 3 0 29 4 0
6 331 799 137 541 1446 200 17647 77268 556 35 4 0 33 3 0.1 29 5 0.1
7 938 3131 259 4009 16037 779 45 45 45 51 4 0.2 49 4 12.8 45 5 0
8 511 1271 218 673 1918 239 1722 5489 449 54 4 0.3 53 4 0.2 48 4 0.4
9 1866 6671 467 9510 40050 1384 70 70 70 77 5 4.7 77 4 63.9 70 4 0

Total 4227 13015 1414 15320 60534 2947 40826 179205 1706 354 33 5.2 347 31 77.0 318 36 1.7

a solution with minimum delay in the post-processing phase
are also negligible, CPU only indicates the CPU time of the
0-1 ILP solver required to find the exact solution.

In this experiment, we observe on some instances, such as
Filter 7 and 9, that each coefficient of a filter can be imple-
mented with other coefficients and filter input using general
number representation. This occurs because the general num-
ber representation considers more possible implementations
that can cover the coefficients. In this case, there is no need
to represent the problem as an optimization problem. Thus,
the 0-1 ILP problem size can be much smaller in general
number representation than CSD and MSD. On the other hand,
the problem size can be too large, when partial terms are
required to implement some coefficients in general number
representation. For example, on Filter 1, only two coefficients
need to be synthesized with the partial terms. Despite a larger
search space, the optimization problem to be solved is not
a hard problem for the 0-1 ILP solver, as can be seen from
the required time to find an exact solution. We note that the
reduction in the number of operations when using general
number representation is 10% and 8% on average, and up
to a maximum of 17% and 15%, with respect to CSD and
MSD respectively. Although the minimum number of opera-
tion solutions are obtained in general number representation,
the delay of the solutions are increased with respect to the
solutions obtained in CSD and MSD.

As the second experiment set, randomly generated instances
between the number of 10 and 80 constants in 12 bit-widths
were used. We generated 30 instances for each number of
constants. We compare the results of Triple-A under CSD,
MSD, and general number representations in Fig. 4.

In this experiment, we observe that while the difference of
average number of operations between CSD and MSD tends
to increase up to 2.1, the difference of average number of
operations between MSD and general number reaches up to
6.5, as the number of constants increases. This clearly shows
the advantage of using general number representation over
CSD and MSD, when searching for the maximal sharing of
partial terms in the optimization of the number of operations.

IV. CONCLUSIONS

In this work, an exact algorithm that can handle general
number representation of multiple coefficients for the mini-
mization of the number of operations in digital filter synthesis

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90
Constants in 12 bits

Number of constants

A
ve

ra
ge

 n
um

be
r o

f o
pe

ra
tio

ns

CSD
MSD
General number

Fig. 4. Results on randomly generated instances.

was introduced. Model simplifications and problem reduction
techniques were also presented to cope with the possible
increased search space. It is shown that significant savings
can be obtained using general number representation over
exact solutions obtained under commonly used CSD and MSD
representations with very low computational effort.

REFERENCES

[1] R. Hartley, “Subexpression Sharing in Filters using Canonic Signed Digit
Multipliers,” IEEE Transactions on Circuits and Systems II, vol. 43,
no. 10, pp. 677–688, 1996.

[2] I.-C. Park and H.-J. Kang, “Digital Filter Synthesis Based on Minimal
Signed Digit Representation,” in Proceedings of Design Automation
Conference (DAC), 2001, pp. 468–473.

[3] P. Flores, J. Monteiro, and E. Costa, “An Exact Algorithm for the
Maximal Sharing of Partial Terms in Multiple Constant Multiplications,”
in Proceedings of International Conference on Computer-Aided Design
(ICCAD), 2005, pp. 13–16.

[4] A. Dempster and M. Macleod, “Use of Minimum-Adder Multiplier
Blocks in FIR Digital Filters,” IEEE Transactions on Circuits and Systems
II, vol. 42, no. 9, pp. 569–577, 1995.

[5] Y. Voronenko and M. Puschel, “Multiplierless Multiple Constant Multi-
plication,” To appear in ACM Transactions on Algorithms.

[6] O. Gustafsson, A. Dempster, and L. Wanhammar, “Extended Results
for Minimum-adder Constant Integer Multipliers,” in Proceedings of the
International Symposium on Circuits and Systems, 2002, pp. 73–76.

[7] N. Een and N. Sorensson, “Translating Pseudo-Boolean Constraints into
SAT,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 2, pp. 1–26, 2006.

[8] M. Velev, “Efficient Translation of Boolean Formulas to CNF in Formal
Verification of Microprocessors,” in Proceedings of the IEEE Asia and
South Pacific Design Automation, 2004, pp. 310–315.


