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Abstract— Retinal vessel tree extraction from angiography
images plays an important role not only in the medical domain,
but also in biometric identification applications. From the image
processing point of view, many algorithms and strategies have
been developed to deal with this topic. Although reliable results
have been obtained, the main disadvantage in most of these
proposals is still the high computation effort required.

In this paper, a methodology to extract the retinal vessel tree
has been developed, specially defined in terms of fine grain SIMD
processing with the purpose of improving the computation time.
The proposal has been implemented on a cellular processor array
VLSI chip. The execution times for the main modules of the
proposed algorithm have been included to show its capability.

I. INTRODUCTION

Currently, the computation of accurate geometric models
of anatomic structures from medical images, like the retinal
vessel tree, has become increasingly important in both authen-
tication systems [1] and medical applications [2]. Although a
lot of research effort has focused on developing algorithms and
strategies for the retinal vessel extraction [3], less attention has
been paid to the improvement of the computation time.

In this sense, the vessel extraction algorithm proposed
in [4] intended to improve the execution time by means of
developing all the steps under the Cellular Neural Network
(CNN) [5] paradigm. This methodology finds the exterior of
the vessels using an active contour technique, the so-called
Pixel Level Snakes (PLS) [6]. Fitting the interior of the vessels
has been the most usual approach to tackle the retinal vessel
extraction [7], [8]. Nevertheless, the main disadvantage of
these approaches is that they provide a limited control of the
evolution process due to the tubular structures. Moreover, as
it has been shown in [7], complex rules should be defined
to avoid the contour flowing outside the vessel, whereas the
initialisation is also more complex.

Our proposal is based on fitting the exterior of the vessels
and contour evolution is then controlled in an easy way.
The initialisation stage is also clearly easier, especially in
an automatic process, since there is a larger proportion of
background pixels. PLS have been implemented on hardware
architectures with capabilities of single instruction multiple
data (SIMD) processing, like the CNN-based chips [9] as well
as the focal plane cellular processor array SCAMP-3 vision
system [10], [11].

Although reliable results have been obtained in [4], some
of the CNN-based steps for the estimation of the guiding
information and the initial conditions for PLS, have been
developed by means of non linear templates which prevents
their implementation in the current generation of cellular
processor VLSI chips such as those of either the ACEx family
or the SCAMP-3.

In this paper, the original proposal addressed in [4] has
been redefined in terms of local dynamic convolutions and
morphological ”hit and miss” operations together with arith-
metic and logical operations to be implemented and tested in
a fine grain SIMD processor array, particularly the SCAMP-3
chip [10]. The SCAMP-3 vision system executes a sequence
of simple array instructions, like addition, inversion, one-
neighbour access, operating in a pixel-parallel fashion on
128x128 arrays, at a rate of 1.25 MOPS per pixel.

The paper is structured as follows: in Section II the PLS
performance is briefly described, Section III the proposed
algorithm is explained, in Section IV the main results obtained
with the SCAMP system are shown, and, finally in Section V
the main conclusions are discussed.

II. PIXEL LEVEL SNAKES (PLS)

Pixel Level Snakes are a massively parallel active contour
technique inspired by the energy-based deformable models.
The inputs consist of a binary image containing the initial
contours and a multi-bit image containing the guiding infor-
mation, called external potential image, which guides the PLS
evolution.

PLS contours evolve towards local minimal distance curves,
based on a metric defined as a function of the features
of interest. PLS algorithm operates along the four cardinal
directions performing the evolution as a pixel-by-pixel shift
(activation and deactivation of pixels in a binary image). The
goal after each cycle (four iterations, one for each cardinal
direction) is to obtain a new contour slightly shifted in order
to be closer to the boundaries of interest. Like in conventional
active contours, the evolution is controlled by means of the
internal, the external and the balloon potentials. The internal
potential controls the smoothing effect of the contour giving
more robustness to the model against noise. The external
potential guides PLS towards the boundaries of interest and
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it should be defined in such a way that the boundaries of
interest coincide with the valleys of the potential field. The
balloon potential controls the inflation or deflation tendency
of a closed contour and it is usually required to guide the
evolution when the external potential is too weak. Topological
changes like merging and splitting contours are also easily
handled by PLS. A comprehensive description of PLS can be
found in [6].

In this paper, the PLS region-based approach proposed
in [11] has been implemented, where the contours are implicity
represented as the boundaries of active regions.

III. ALGORITHM

The methodology proposed in this paper (Fig. 1) is based
on the approach addressed in [4] and it has been redefined to
fit the specific requirements of the SCAMP-3 vision system.
Firstly, a pre-estimation of the vessel edges is made. Then,
both of the main input images needed by PLS (the initial
region and the external potential image), are automatically
estimated. Finally, PLS evolve to fit the vessel edges.

External
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PLS
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Fig. 1. Flow diagram with the building blocks of the proposed algorithm:
Stage 1: Vessel region pre-estimation, Stage 2: Initial region estimation, Stage
3: External potential estimation, Stage 4: PLS evolution

A. Stage 1. Vessel Region Pre-estimation

The main goal of this stage is to pre-estimate the vessel
edges. Due to the non uniformity of the gray level values

along the vessels, an adaptive segmentation is needed. Instead
of the complex CNN-based approach addressed in [4], another
strategy suitable for a hardware implementation has been
employed (Fig. 2).

Firstly, the original image is completely blurred by means of
a diffusion step. This blurred image contains a local threshold
which properly segments not only vessels with a high contrast,
but also weak vessels. The blurred image is subtracted from
the original one, and finally, the result is binarised based on a
fixed threshold value.

Original
Image Diffusion ThresholdSubstracted

Image

Segmented
Image

Vessel Region Pre−estimation

Fig. 2. Stage 1: Vessel region pre-estimation

B. Stage 2. Initial Region Estimation

The aim of this stage is to obtain a suitable initialisation of
the contour locations (Fig. 3).An inversion of the segmented
image is initially made to define the regions between the
vessels. Since this image can contain vessel discontinuities and
regions inside the vessels, it is eroded several times. Thus, the
obtained image will contain only regions situated completely
outside of the vessel locations. The output of the erosion step
will represent the initial condition for PLS.

Segmented
Image

Inversion Erosion

Initial Contour Estimation

Fig. 3. Stage 2: Initial region estimation

C. Stage 3. External Potential Estimation

The external potential image guides PLS towards the ex-
terior of the vessel edges, through a potential field. A sharp
potential field valley should be defined to stop the evolution,
since PLS can flow through both 1-pixel-width cavities and
homogeneous areas even with a high potential field, such as
the interior of the vessels. The processing done in this stage
is illustrated in Fig. 4.

This stage begins with the application of Sobel operator to
the original image, in order to get the actual edges. Although
this operator does not introduce much noise, vessel discon-
tinuities appear due to the low contrast of the vessels. The
segmented image from the first stage maintains the continuity
but at the cost of more segmented noise. The combination of
both images gives more robustness to the PLS evolution. It
has been implemented following pseudocode:
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ISobel = sobel(Iorig)
Ires = 3

4 ∗ ISobel + 1
4 ∗ Iseg

Idiff = diffusion (Ires)
IextPot = 5

6 ∗ Idiff + 1
6 ∗ ISobel

where Iorig corresponds to the original image and Iseg is the
segmented image from the first stage. A weighted summation
is proposed to emphasise the importance of ISobel, since it
contains actual edges, with respect to Iseg . Then the result
(Ires) is diffused (Idiff ) to obtain a suitable potential field
gradients for PLS to flow through. Finally, since a diffusion
homogenises the gray level values, specially in the edge
locations, the weighted Sobel result is added again to prevent
PLS flowing through homogeneous regions and to stop the
evolution at the vessel edges.
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Fig. 4. Stage 3: External potential estimation

D. Stage 4. PLS Evolution

PLS evolve to fit the exterior of the vessels using both the
initial region and the external potential images, previously
computed. The main goal in this stage is to determine the
parameters which control the evolution. The internal potential
is used to avoid the PLS evolution through vessel discon-
tinuities. Since the vessel edges are situated outside of the
initial regions, an inflation potential can help to give more
robustness to the evolution. The external potential guides the
PLS evolution towards the vessel edges, whereas the internal
potential controls the smoothing effect. Due to the specific PLS
implementation in the SCAMP system [11], a fixed number of
cycles is defined to stop the evolution. Taking into account all
these considerations, this stage has been divided into several
steps (see Fig. 5).

During the 1st PLS step, the evolution is mainly controlled
by means of a high balloon potential, since the external
potential is too weak to move the regions. This evolution is
performed in this way, since the regions are located far from
the vessel edges. Region merging is allowed during this stage,
since not only a large region could be split into smaller ones
during the 3rd Stage due to the erosion step, but also PLS
regions are situated far from the vessel locations. Then, a hole
filling operation removes internal regions that appeared due
to noise (see Fig. 5). Finally, during the 2nd PLS step, PLS
fit the vessel edges relying mainly on the external potential
due to the proximity to the vessel edge locations. A smaller

Hole
Filling

1 Cycle 3 Cycles 6 Cycles

PLS Fast Evolution

40 Cycles

PLS Slow Evolution

30 Cycles 20 Cycles 10 Cycles

Fig. 5. Stage 4: PLS evolution: 1st PLS Step, Hole Filling, and finally, 2nd
PLS Step

balloon potential value is used since the external potential
is strong enough to guide the region evolution. In this step,
region merging is not allowed in order to maintain the vessel
continuity in those cases where neither the external potential
nor the internal potential could stop the evolution. The internal
potential also controls the smoothing effect of the region,
avoiding the PLS flowing through the vessels, maintaining
vessel continuity.

IV. RESULTS

A set of several angiographies has been used to test the
implementation with the SCAMP-3 vision system. Each of
the angiographies has been split into 128x128 sub-windows
in order to fit the size of the processor array implemented on
the chip.

Stage 1 During this stage, the vessel edges are pre-
estimated. The diffusion operation consists of the fast diffusion
implemented in the SCAMP-3 vision system, via a ”resistive
grid” structure. The adaptive segmented results are shown
in the 2nd row in Fig. 6. A boundary segmentation effect
can be observed; this is due to a zero-padded boundaries in
the diffusion operation. A post-processing technique (e.g. a
suitable sub-window overlapping) could be used to remove
this problem.

Stage 2 The segmented image from the 1st stage, is inverted
in order to define the regions between the vessels. These
regions are eroded four times to ensure that all the regions
are completely outside the vessels (3rd row Fig. 6).

Stage 3 Combining the Sobel result and the segmented
image from the 1st stage, vessel continuity information is
maintained in those vessels with low contrast (4th row in
Fig. 6).

Stage 4 Using both the initial regions and the external
potential images, PLS evolve to fit the actual vessel edges.
During the 1st PLS step, a high value potential is used during
six cycles. This number of cycles has been selected based on
the number of erosion steps used during the Stage 3, which
gives an approximation of the distance to the vessel edges.
Since the adaptive segmentation gives only a pre-estimation
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Fig. 6. Output images obtained in each stage: 1st row Original images,
2nd row Pre-estimated vessel region images, 3rd row Initial region images,
4th row External potential images, 5th row PLS output obtained by means
of a binary edge detection of the regions, and finally 6th row PLS contours
superimposed over the original image

of the vessel edges, the number of cycles used during the 1st
PLS step can be increased. Then, the hole filling is applied
removing internal regions, and finally, the 2nd PLS step is
performed to fit the vessel. The number of cycles during this
last step has been empirically established at 40 cycles, since
this number of cycles is sufficient in the evolution of PLS
for all the sub-windows. Notice the adjustment of PLS to the
vessel edges (last row in Fig. 6).

TABLE I

SCAMP EXECUTION TIME FOR EACH STAGE, IN A 128X128 SUB-WINDOW

No. Stage Stage Exec. Time (µs)
1 Vessel Region Pre-estimation 12.8
2 Initial Region Estimation 55.2
3 External Potential Estimation 134.4

4
1st PLS Step 518
Hole Filling 1954.5
2nd PLS Step 3870.8

One of the goals of the on-chip implementation of the
methodology is the measurement of the time performance
needed for this algorithm. The computation time required
for each stage in the SCAMP-3 vision system is shown in
Table IV. The execution time required to perform the whole
algorithm for a 128x128 sub-window is about 6.5 ms. Since
the standard angiography size is 640x512, a total number of
20 sub-windows is required (this number would increase if an

overlapping technique is used in order to avoid the noise in
the boundaries of the image). So, the global execution time
required to process the whole angiography is about 0.13 s.

V. CONCLUSION

In this paper we present an algorithm for the retinal vessel
extraction optimised for its implementation on a cellular
processor array. The algorithm is based on the methodol-
ogy addressed in [4], which was developed under the CNN
paradigm. However, that proposal could not be implemented
in a current generation of CNN chips due to the use of non
linear templates for some of the proposed steps.

In this paper, a redefined approach has been proposed in
order to implement this methodology in a SIMD cellular
processor array architecture. The proposed algorithm has been
implemented in terms of linear steps and local operations
following the specific requirements of the SCAMP-3 chip.
The obtained execution time is much shorter (several orders
of magnitude) than conventional PC-based applications.
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