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Abstract—An approach for applying fuzzy logic for accurate 
CAD of microwave circuits is presented. Our proposed method 
combines space-mapping (SM) technology and multiple adaptive 
neuro-fuzzy inference systems (MANFIS) for the modeling of 
microwave devices. MANFIS is trained to predict a nonlinear 
vector multidimensional mapping function, which is obtained 
from SM approach. Optimization by micro-genetic algorithm is 
used to find nonlinear vector multidimensional mapping 
function for singular systems. This approach is applied to a 
shielded microstrip line within a region of interest. The 
parameter values ( ( )freffε , ( )fZc ) computed with our 
proposed method are in excellent agreement with those obtained 
from electromagnetic simulations. 

I. INTRODUCTION 
In [1], a group of experts estimated the state of microwave 

computer-aided design (CAD) in the year 2010. In a panel 
discussion, R. Sorrentino predicted new algorithms or hybrid 
methods will be developed to increase the computational 
efficiency of the microwave CAD. In this sense, we propose 
an innovate hybrid approach with the aim to extract accurate 
and computationally efficient device models easy to be 
integrated into any CAD environment. 

The method described in this paper uses multiple adaptive 
neuro-fuzzy inferences systems (MANFIS) [2-3] to model 
mapping functions obtained from space-mapping (SM) 
technology [4-8]. SM defines a framework for optimization of 
an accurate and expensive non-linear model (fine model) by 
using a less accurate and fast model (coarse model), through 
parameters mapping. Once the mapping function is found, the 
coarse model (CM) with the mapped parameters can be used 
to model quickly the microwave device to nearly the same 
degree of accuracy as that afforded by the fine model (FM). 
On the other hand, MANFIS is an extension of ANFIS to 
produce multiple real responses of the target system. It can 
model nonlinear functions of arbitrary complexity without 
employing precise quantitative analyses. Moreover, the 
knowledge acquired by the fuzzy inference system during the 
training with stipulated input-output data pairs can be 
extracted by means of Takagi and Sugeno’s if-then rules [9]. 

In contrast to a set of weights that stores the knowledge in 
artificial neural network (ANN) used in different neural space-
mapping approaches [5-7], these fuzzy if-then rules are 
readable, easy to be understood by human beings, and simple 
to be integrated in any CAD environment. 

The feasibility of using fuzzy logic systems in microwave 
CAD area has been demonstrated in [10]. However, the 
method presented in this last work is not centered to the device 
modeling using space-mapping technology. To demonstrate 
the application of our hybrid modeling technique, a shielded 
microstrip line has been employed as illustration example. An 
initial coarse model is proposed in Section II. Section III 
presents the approach exploiting MANFIS and space-mapping 
technology. The results of the space-mapped neuro-fuzzy 
model obtained within a region of interest for the shielded 
microstrip line are provided in Section IV. Finally, 
conclusions are presented in Section V. 

II. COARSE MODEL OF THE SHIELDED MICROSTRIP LINE 
A shielded microstrip line (Fig. 1) has been used as 

illustration example for showing the validity of the hybrid 
modeling method described in this paper. 

Figure 1.  Cross section of the shielded microstrip transmission line. 

An initial coarse model (CM) of this device can be 
obtained from Schwarz-Christoffel’s transformation [11] and 
Getsinger’s function [12]: 
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where G=0.6+0.009 ( )0cZ  and ( ) ( )00012/0 εµηhZf cp = . 

The parameters 1k , 2k , '
1k  and '

2k  are the bounds of the 
shielded microstrip line structure: 
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( )1kK , ( )'
1kK , ( )2kK  and ( )'

2kK  are the complete first order 
elliptical integrals of modulus 1k  and 2k  and complementary 

modulus '
1k  and '

2k . These integrals are calculated from 
analytical relationships [13]. 

Large errors in calculations are expected with this CM, 
since some assumptions were realized for Schwarz-
Christoffel’s transformation and the dispersion expression is 
only valid for microstrip lines. Our contribution consists in 
showing that the hybrid modeling technique described in the 
next Section in conjunction with this CM can be applied for 
extracting an accurate space-mapped neuro-fuzzy model. 

 

Figure 2.  Space-mapping concept. 

III. PROPOSED MODELING METHOD 
In this Section, the space-mapping (SM) concept [4] is 

briefly described. The application of multiple adaptive neuro-
fuzzy inference systems (MANFIS) in conjunction with the 
SM approach for the modeling of microwave devices is then 
presented. 

A. SM Concept 
The space-mapping (SM) concept requires a coarse model 

(CM) (ideal, fast, or low fidelity) and a fine model (FM) 
(accurate, practical, or high fidelity). As depicted in Fig. 2, the 
CM and FM design parameters are denoted by CMx  and 

FMx , respectively. The corresponding response vectors are 
denoted by CMR  and FMR , respectively. The thought of the 
SM consists in finding a mapping P relating the FM and CM 
parameters within a region of interest as [4]: 

 ( )FMCM xPx = , (9) 

such that: ( )( ) ( )FMFMFMCM xRxPR ≈ . (10) 

Once the mapping P is found, the coarse model with the 
mapped parameters can be used for fast and accurate 
simulations. 

B. SM-Based Neuro-fuzzy Modeling 
In our approach, the mapping P from the FM input-space 

to CM input-space is implemented by multiple adaptive neuro-
fuzzy inference system (MANFIS) as illustrated in Fig. 3. It 
takes into account the frequency (freq) together with the 
physical parameters vector (x) to train the MANFIS and to 
produce a mapped vector ( )freqxP ,  on the physical 
parameters (Fig. 3a). The number m of ANFIS is equal to the 
number m of input parameters (vector x) to be mapped. The 
structure of the kth ANFIS is the same as (11) and (12) 
suggested by Takagi and Sugeno [2, 9]: 
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with   ( ) ( ) ( )freqAxAxAw i
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i
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i
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i
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where ( )mkiRi
k ,,2,1 and c,1,2, ⋅⋅⋅=⋅⋅⋅=  represents the ith 

fuzzy rule of the kth ANFIS. ( )mjx j ,,1 ⋅⋅⋅=  are the input 

physical parameters, freq is the frequency vector and i
ky  the 

output of the fuzzy rule i
kR . i

kjA , ’s are linguistic labels, 
which are assigned to the corresponding Gaussian 
membership functions (with two parameters identified by 
premise parameters). The variables i

kja ,  are the consequent 

parameters. kŷ  is the real output of the kth ANFIS, which 
corresponds to the mapping ( ( )freqxPk , ) of the input 
parameter kx . In this paper, the number ( gn ) of Gaussian 
membership functions associated to each input is equal to the 
number m of input parameters plus the frequency: 1+= mng . 

The number c of fuzzy rules is equal to ( ) 11 ++= mmc  and it 
is the same for each ANFIS. 

Mapping P, which can be a nonlinear multidimensional 
vector, can be found by solving the optimization problem: 

 [ ]TT
N

TT
w

ε   min 21 ⋅⋅⋅εε , (14) 

where vector w (Fig. 3) contains the optimized premise and 
consequent parameters of the m ANFIS’s, which require 

mc ×  fuzzy rules (11). N is the total number of training data 
and Kε  is the error vector: 

 ( ) ( )( ) ,,, JJICMJIFMK freqfreqxPRfreqxR −=ε ,(15) 

with BPI ,,1 ⋅⋅⋅= , FPJ ,,1 ⋅⋅⋅=  and ( )1−+= IFPJK . BP is 
the number of training base points for the input design 
parameters. FP is the number of frequency points per 
frequency sweep. The total number of training data is 

FPBPN ×= . The premise and consequent parameters of 
each ANFIS are obtained during the training (Fig. 3a), using a 
hybrid learning algorithm which combines the least square 
method and the gradient method [2]. 

The optimization problem (14) is solved either by a 
gradient descent method (as example) or an optimization 
procedure based on a micro-genetic algorithm ( µ GA) [14] 
when this one is nonsingular or singular, respectively. In the 
case of many local optima, the mapping P is found by 
minimizing the error vector (15) using the following error 
criterion (fitness required in µ GA): 

 iFitness ∆−= 1 , (16) 

with 
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where i is the number of generation and ( )JIik freqxP ,_  is 

the randomly generated solution for the input parameter kx , 
Ith training base point and Jth frequency point. The best 
solution is identified at each iteration and error (15) is 
calculated. This error is checked against a predefined value. If 
it is satisfied, the simulator saves the result and passes to the 
following training base point up to finish with the total 
number N of training data. 

Once the mapping P is found for the total number N of 
training data and once the MANFIS is trained (Fig. 3a), a 
space-mapped neuro-fuzzy model (Fig. 3b) for fast and 
accurate simulations of the implicated device is immediately 
available within a region of interest. 

(a) 

(b) 

Figure 3.  Hybrid approach combining SM and MANFIS. (a) Training the 
MANFIS to approximate the FM response. (b) Designing with the already 

trained MANFIS. 



IV. RESULTS 
The above-described modeling approach was applied to 

the shielded microstrip line (Fig. 1). CM and FM data (2400) 
within the region of interest shown in Table I were provided, 
respectively, from analytical relationships presented in Section 
II and spectral domain approach (SDA) [15]. Some parameters 
were fixed: mt µ0=  and mh µ254= . The total number of 
input parameters with the included frequency is equal to 4. 
The outputs of the CM and FM are the effective permittivity 
( ( )freffε ) and the characteristic impedance ( ( )fZc ). The 
modeling technique presents a singular system. Thus, a micro-
genetic algorithm (µGA) as optimization method was applied 
to find the nonlinear multidimensional vector mapping 
function. The parameters used by the µGA were 30 for the 
number of chromosomes per individual, 5 for the population 
size, 100 for the maximum number of generations and 10-4 for 
the predefined error value. Crossover and mutation probability 
values were fixed to 0.5 and 0.02, respectively. On the other 
hand, half of data (1200) exploring the whole of the region of 
interest (Table I) were used for training MANFIS (Fig. 3a) 
and the other half (1200) for testing (Fig. 3b). 3 epochs were 
required to train the modeling technique (Fig. 3a). 

Mean and max relative errors over the coarse model (CM) 
and the space-mapped neuro-fuzzy model (SM-MAMFIS) for 
desired outputs ( ( )freffε , ( )fZc ) with respect to expected 
ones (FM test data, which were different to those used for 
training) are shown in Table II. As expected, CM presents 
large errors. They are due to the assumptions realized to obtain 
the quasi-static model and to the dispersion expression which 
is not valid for the shielded microstrip line. On the other hand, 
SM-MANFIS model improves considerably the results of the 
CM, showing an excellent agreement with those obtained 
from EM simulations with SDA. The CPU time for a single 
structure and one frequency point, on Pentium4-based 
computer, is lower than 100 milliseconds for the SM-
MANFIS model, while it takes more than 15 seconds for the 
EM simulation from SDA. 

V. CONCLUSION 
This paper presents an approach in which multiple 

adaptive neuro-fuzzy inference systems (MANFIS) and space-
mapping (SM) technology are used to accurately model a 
shielded microstrip line. The extracted space-mapped neuro-
fuzzy model combines a coarse model (CM) with trained 
MANFIS from mapped parameters. This model has the 
capability to compute parameters nearly as accurate as those 
obtained from full-wave electromagnetic (EM) simulations. 
The computation time is negligible with regard to other full-
wave EM techniques. Therefore, this computational speed 
makes the coarse model (CM) with the trained MANFIS from 
mapped parameters suitable for interactive CAD applications. 
Although the example demonstrated only transmission line 
electrical parameters modeling, the method may be applied to 
other microwave devices. 

 

TABLE I.  REGION OF INTEREST FOR THE SHIELDED MICROSTRIP LINE 

Parameters Minimum Value Maximum Value Step 

12 / hh  1 3 1 

1/ hW  0.8 3 0.1 and 1 

1rε  12 15 1 

f 1GHz 40GHz 1GHz 

TABLE II.  RELATIVE ERRORS OVER CM AND SM-MANFIS WITH 
RESPECT TO FM 

Model reffε  (relative error %) cZ  (relative error %) 

 Mean Max Mean Max 

CM 9.81 46.5 14.45 39.56 
SM-MANFIS 0.033 0.31 0.045 0.60 
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