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Abstract—This paper analyses a MOS-based resistive network
suitable for massively parallel image processing. The inclusion
of MOS transistors biased in the ohmic region instead of true
resistors permits certain control over the underlying spatial filter-
ing while reducing the required area for VLSI implementation.
However, it also leads to nonlinearities and thereby to errors
with respect to an ideal resistive grid. By studying an elementary
network composed of only two nodes we determine the guidelines
to be followed in order to minimize the error according to the
selected signal range. These guidelines are then extrapolated to
larger networks demonstrating that pretty accurate networks can
be achieved even for relatively wide signal ranges. Simulations
are employed to validate the extrapolated results. The numerical
examples will also allow to visualize how the insertion of MOS
transistors affects the spatial filtering carried out by the grid.

I. INTRODUCTION

Resistive networks present very good features for power-

efficient focal-plane image filtering [1]. They are passive net-

works performing massively parallel processing from certain

initial conditions [2]. Their VLSI implementation thus results

specially interesting for low-power vision applications with

tight timing requirements. But a true linear resistive grid is

difficult to implement in VLSI because resistors need large

areas in CMOS. Furthermore, a simple resistor does not permit

electronic control over the underlying processing.

These drawbacks can be overcome by using MOS transis-

tors. With their symmetric drain and source terminals, they

can replace the resistors one by one. MOS transistors can

achieve larger resistances with less area than resistors made

with polysilicon or diffusion strips. Besides, by controlling

their gate voltage, it is possible to operate over the processing

realized by the grid. However, the inclusion of MOS transistors

also entails other problems like their intrinsic nonlinearities.

Indeed the substitution of resistors by MOS transistors in

resistive networks has been previously studied. In [3] linearity

of currents through resistive grids is achieved by means of

MOS transistors in weak inversion. The value of the resistance

associated to each transistor is directly controlled by the corre-

sponding gate voltage. This property of current linearity is also

applicable even if the transistors leave weak inversion as long

as all of them share the same gate voltage [4]. In this case the

resistance of the transistors would not already be electronically

tunable but determined by their geometry. On the contrary,

linearity is not so easy to reach when signals are encoded

Fig. 1. Resistive network for spatial filtering

by voltages. It is the case of the resistive network depicted

in Fig. 1 where a spatial filtering is realized along time over

the initial voltages at the capacitors. The use of MOSFETs

operating in the ohmic region instead of resistors is apparently

the most simple option [5]. However the intrinsic nonlinearity

in the I − V characteristic has leaded to more ellaborated

alternatives in which the nonlinear term is cancelled [6] or to

transconductor-based implementations [7].

In this paper we demonstrate that, for moderate require-

ments of accuracy, the resistive network in Fig. 1 can be

implemented by replacing every resistor by a MOS transistor

biased in the ohmic region despite the unavoidable nonlinearity

of its I − V characteristic. If the equivalent resistance which

the MOSFET network is compared to is adequately chosen,

we will see that errors are under a reasonably low limit.

II. SPATIAL FILTERING BY A RESISTOR NETWORK

In order to define the spatial filtering performed by the grid

in Fig. 1, let us consider the initial voltage at the capacitor

of every node as the value of the corresponding pixel. If

we permit the network to evolve from this initial state, the

equation satisfied at each node is:

τ
dVij

dt
= −4Vij + Vi+1,j + Vi−1,j +

+Vi,j+1 + Vi,j−1 (1)

where τ = RC. Applying the DFT to this equation we obtain:



Fig. 2. Original image (64 × 64 px) and outcome of applying the filtering defined by Eq. (5) for t = 50ns, t = 150ns and t = 250ns with τ = 300ns,
respectively
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where we have considered an array whose size is M × N
pixels. Eq. (2) can be rewritten as:

τ
dV̂uv

dt
= [−4 + 2cos(

2πu

M
) + 2cos(

2πv

N
)]V̂uv (3)

and solving now in the time domain we obtain:

V̂uv(t) = V̂uv(0)e
2t

τ
[cos( 2πu

M
)+cos( 2πv

N
)−2] (4)

where V̂uv(0) represents the DFT of the image defined by

the initial voltages at the capacitors and V̂uv(t) is the DFT of

the image defined by those same node voltages after a certain

time interval t since the network started to evolve. A transfer

function can be defined as follows:

Ĥuv(t) =
V̂uv(t)

V̂uv(0)
= e

2t

τ
[cos( 2πu

M
)+cos( 2πv

N
)−2] (5)

which describes the filtering process undergone by the initial

image as the network evolves. As an example, consider the

Fig. 2 where we have applied this filtering for t = 50ns, t =
150ns, t = 250ns with τ = 300ns.

III. ERROR ON A 2-NODE MOS-BASED RESISTIVE GRID

To analyse the error committed when resistors are replaced

by MOS transistors biased in the triode region, we are going

to thoroughly compare the circuits in Fig. 3. They represent a

2-node ideal resistive grid and its corresponding MOS-based

Fig. 3. 2-node ideal resistive grid (a) and its MOS-based implementation (b)

implementation. For purposes of clarity, we will confine the

analysis to n-channel MOS transistors, but it applies equally

well for p-channel transistors. The gate voltage VG is fixed

and we will assume, without loss of generality, that the initial

conditions of the capacitors fulfill V1(0) > V2(0), being

V1(0) = V ′

1(0) and V2(0) = V ′

2(0). We also assume that the

transistor is biased in the triode region for any voltage at the

nodes, with:

{

V ′

1(t) ∈ [Vmin, Vmax]
V ′

2(t) ∈ [Vmin, Vmax]
(6)

The error committed at each node of the MOS-based im-

plementation with respect to the ideal grid after a certain time

interval t since the moment in which both networks started to

evolve can be expressed as:

e(t) =
1

C

∫ t

0

[

V1(ζ) − V2(ζ)

R
−

V ′

1 (ζ) − V ′

2(ζ)

RM (ζ)

]

dζ (7)

where RM represents the instantaneous resistance associated

to the transistor while the MOS-based network is evolving.

Thus we can write that:

{

V ′

1(t) = V1(t) + e(t)
V ′

2(t) = V2(t) − e(t)
(8)

The equivalent differential form of Eq. (7) is:

τ
de

dt
= [V ′

1(t) − V ′

2(t)]

[

1 −
R

RM (t)

]

− 2e(t) (9)

where we have applied the relations defined by Eq. (8). As

e(0) = 0 and e(∞) = 0, by making de/dt = 0 we obtain the

extreme of e(t):

eext =
1

2
(V ′

1 − V ′

2)

(

1 −
R

RM

)

(10)

which depends on the value of V ′

1 , V ′

2 and RM at the time

instant in which such an extreme is reached. Besides, it

depends on the value of the resistance R that is the elementary

resistance in the linear network which we are comparing the

MOSFET network behaviour. Our objective is therefore to

determine the resistance R which minimizes max |eext|. In

other words, we want to find the ideal resistive grid which is

emulated with minimum error by the MOS-based grid within

the signal range established by Eq. (6). This will permit us to



build the design equations for a MOS-based resistive network

that emulates a resistor grid with minimum error.

As a first step to achieve this objective, we are going to

determine the instantaneous resistance of the MOSFET. The

drain current of the transistor in Fig. 3(b) is [8]:

ID(t) = β{2 [VG − V ′

2 (t) − VTn
] [V ′

1(t) − V ′

2 (t)] −

− [V ′

1(t) − V ′

2(t)]
2
} (11)

where β = (1/2)µnC′

ox(W/L) and VTn
represents the thresh-

old voltage. By definition RM (t) = [V ′

1(t) − V ′

2(t)] /ID(t)
what, from Eq. (11), leads to:

RM (t) =
1

β {VC − [V ′

1(t) + V ′

2(t)]}
(12)

where VC = 2(VG − Vtn). We are neglecting the body effect

at this point in order to simplify the reasoning. The defined

VC is therefore supposed to be constant. As can be seen,

this resistance depends on the node voltages and thus varies

constantly during the evolution of the diffusion. The variation

range of RM (t), according to Eq. (6), is:

RM (t) ∈

[

1

β(VC − 2Vmin)
,

1

β(VC − 2Vmax)

]

(13)

Note that this range also determines the possible values of

the equivalent resistance R implemented by the transistor. It

would not make any sense to compare the MOS-based grid

with an ideal resistive grid where the value of the resistor is

never reached by the transistor throughout the signal range. In

this way, we say that:

R =
1

β(VC − VE)
(14)

where VE must be that value within the interval

[2Vmin, 2Vmax] defining an equivalent resistance R which

minimizes the error committed by the MOS-based resistive

grid when compared to an ideal grid with such an elementary

resistance.

Inserting the previous definitions of RM and R into

Eq. (10), we obtain the following function:

eext =
1

2
(V ′

1 − V ′

2 )

(

V ′

1 + V ′

2 − VE

VC − VE

)

(15)

where VC , VE , and the signal range of V ′

1 and V ′

2 are design

parameters. Notice that the larger VC , that is, the larger the

gate voltage, the smaller |eext|. It makes sense as, according

to Eq. (11), the larger the gate voltage, the less the influence

of the nonlinearity of the transistor and therefore the better

the behaviour of the MOSFET as a resistor. For the variables

V ′

1 and V ′

2 there are no local extremes of eext. There is only

a saddle point. However, taking into account that both V ′

1 and

V ′

2 belong to the interval [Vmin, Vmax], the absolute maximum

and minimum of eext can be calculated. And the maximum

absolute error is the maximum of the absolute values of these

absolute extremes:

max |eext| = max

[

1

8

(2Vmax − VE)2

VC − VE

,
1

8

(VE − 2Vmin)2

VC − VE

]

(16)

which reaches its minimum value for VE = Vmin + Vmax,

resulting in:

min (max |eext|) =
1

16

(Vmax − Vmin)
2

VG − VTn
−

(

Vmax+Vmin

2

) (17)

It means that the minimum of the maximum absolute error,

which happens for this selection of VE , depends, once the VG

has been also selected, on both the average value of the signal

range and the signal range itself. The smaller the signal range

and its average value, the smaller the error. Hence, for the

generic signal range defined by Eq. (6), a 2-node MOS-based

resistive grid achieves the best emulation of a 2-node ideal

resistive grid when the value of the resistance in this ideal

grid is:

R =
1

β[VC − (Vmin + Vmax)]
(18)

In other words, if we want a MOS-based network to emulate

a linear resistive grid with an elementary resistance given by

R, then VG, Vmax, Vmin and (W/L) must be chosen to hold:

(

W

L

)

=
1

µnC′

oxR
(

VG − VTn
− Vmax+Vmin

2

) (19)

and the upper bound for the error committed is given by

Eq. (17).

Finally, a crucial point to be remarked from Eq. (15) is that,

according to the simplified model of the MOSFET used, the

geometry of the transistor does not affect the error. It implies

that for a prescribed absolute error, a wide range of values of

R can be implemented by varying (W/L).

IV. EXTRAPOLATION TO LARGER NETWORKS

We have applied the results obtained for the 2-node case to

the design of a 64× 64 MOS-based resistive grid in HSPICE.

The used models belong to a standard 0.35µm CMOS 3.3V

process. The signal range at the nodes is [0V,1.5V], wide

enough to demonstrate that the nonlinearities of the MOSFETs

do not necessarily introduce too much error in the spatial

filtering. The gate voltage for all the transistors is established

at 3.3V. Our aim is to implement a time constant of τ = 300ns

as in the ideal example of Fig. 2. In principle, we have

infinite combinations of R and C that make this τ . We will

select a transistor of W = 0.4µm and L = 10µm. This

initially arbitrary value should be employed to balance the

the sizes of the transistor and the capacitor according to the

process parameters. For this geometry, the HSPICE model of

the transistor, with VD = 1.5V and VS = 0V, renders an

equivalent resistance of R = 139kΩ. Notice that the operating

conditions of the transistor in the simulation performed to

calculate this equivalent resistance hold the relation expressed



0 0.5 1 1.5 2 2.5

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (seconds)

R
M

S
E

Fig. 4. RMSE of the 64×64 MOS-based grid with respect to the ideal case

in Eq. (18). Finally, by choosing a capacitance C = 2.16pF,

we are emulating a 64 × 64 ideal grid with τ ' 300ns. Let

us initialize this MOS-based grid with the original image in

Fig. 2. The RMSE of the pixels during the evolution of the

network with respect to the ideal grid is depicted in Fig. 4. As

can be seen, the maximum RMSE is below 0.6%, that is, an

equivalent resolution between 6 and 7 bits. To visualize this

accuracy, we have represented in Fig. 5 the output images for

an ideal resistive grid and for the implemented NMOS grid at

the time instant at which the RMSE in the NMOS grid reaches

its maximum value. We can see that the outcome is percep-

tually equivalent. We have also represented their difference

normalized by a maximum observed error between pixels of

2.28%. Finally, we have depicted in Fig. 6 the evolution of

the RMSE in the MOS-based grid for 30 simulations where

independent gaussian deviations with σ = 10% of W , L, µ0

and tox from their nominal values are introduced [9]. We can

see that the RMSE is always less than 0.8%. These results

point out the robustness and accuracy of a MOS-based resistive

grid under mismatch conditions.

V. CONCLUSIONS

In this paper we have demonstrated that moderate accuracy

can be achieved in MOS-based resistive grids despite the non-

linearities associated to MOS transistors in the ohmic region.

The key is to find the resistor which is being emulated with

minimum error by the MOSFET. In the reverse formulation,

finding the relation between the MOSFET parameters and the

desired elementary resistor, we have the design equations for a

minimum error implementation. By analysing the 2-node case

we have found an analytical expression for this equivalent

resistor which has been applied to the design of a larger

network. An accuracy between 6 and 7 bits is achieved even

under mismatch conditions.
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respectively, at the time instant in which the RMSE in the NMOS grid reaches
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Fig. 6. RMSE for 30 simulations of the 64×64 MOS-based grid introducing
independent gaussian deviations of W , L, µ0 and tox
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