
FPGA-implementation of a Holographic
Pattern-matching Algorithm

András Kiss, Zoltán Nagy,
Péter Szolgay and Tamás Roska

Computer and Automation Research Institute
Hungarian Academy of Sciences

and Dept. Information Technology
Pázmány Péter Catholic University

Budapest, Hungary

György Csaba
and Xiaobo Sharon Hu

and Wolfgang Porod
Dept. of Electrical Engineering

University of Notre Dame, Notre Dame, IN, USA

Abstract—In this paper, we demonstrate the FPGA imple-
mentation of a massively parallel, non-Boolean pattern-matching
algorithm. The algorithm is based on the concepts of optical
computing: quasi-optical wave equations are solved numeri-
cally, using FPGA-accelerated hardware. The FPGA-based wave-
equation solver is very well parallelizable, so the resulting
pattern-matching algorithm will also be amenable to mega-core
architectures.

Keywords—FPGA simulation, Wave equation, Mega-core sys-
tems

I. INTRODUCTION

It is expected that thousand-core or even mega-core chips
will become ubiquitous in the coming years or decades [1]
[2]. It is increasingly challenging to realize large, high per-
formance computing cores, mitigate memory bottlenecks and
manage power dissipation, in a complex processor core. It is
much more economical to replicate and interconnect relatively
simple cores. Off the shelf FPGA systems can readily realize
thousand-core systems. However, it is not at all known how
the computational power of such many-core systems can be
harnessed. Most practically important algorithm are single-
threaded and challenging to parallelize to just a few computing
cores. There are a few special-purpose computing tasks (such
as the ones in scientific computing) which can be efficiently
paralellized.

In this paper we point out that a special-purpose computing
algorithm, which solves the two-dimensional wave equation,
can, in fact serve as a computational engine of a pattern-
matching algorithm. Pattern matching itself is a basis of widely
used image processing / recognition algorithms. Since the
solution of the wave equation is well paralellizable, the pattern-
matching algorithm itself will be possible to distribute to a
large number of computing cores.

Section II introduces ’holography on a chip’ - a method
we devise to use on-chip wave propagation to perform com-
putational primitives. Section III shows how optical equations
can be emulated by digital hardware. The transformation of
the wave equations onto the emulated digital CNN hardware
is shown in Section IV. In Section V we describe the details
of the implemented solver architecture. Finally, in Section VI
the results are introduced.

II. BASICS HOLOGRAPHIC COMPUTING

Holographic computing is inspired by optical signal pro-
cessing algorithms [4], [3], [5], albeit we use only digital
electronic hardware. The principle of pattern matching is
shown in Fig. 1a). A two-dimensional medium is assumed,
which can support the propagation of waves. For now we
refer to the waves in an abstract sense, i.e. an excitation that
shows interference phenomenon. The nature of the waves will
be specified in the coming sessions.

In Fig. 1a) the waves are generated at the bottom and
the distribution of the sources is defined by an input pattern.
The waves then travel through a diffraction grating (scatterer)
before they arrive to the top plane.

The grating is chosen in a way that it focuses light to a
certain point on the top plane. In the simplest case, the scatterer
can be a series of slits (holes) that lets the waves going through
only if they constructively interfere at the chosen focal point.
For a certain ’original pattern’ there is only one matching
grating that creates a sharp focus. In the special case when
the sources generate a plane wave, then the scatterer is the
well-known Fresnel zone plate in optics [8].

A particular interference pattern is shown in Fig. 1b) - for
details, see [10].

Bo#om	
  (source)	
  layer	
  

Gra1ng	
  	
  

Top	
  (focus)	
  layer	
  

Focal	
  point	
  

a) b) 

Fig. 1. Panel a) is a sketch of a holographic pattern matching algorithm - for
detailed explanation see text. Panel b) shows the calculation of the interference
pattern for a particular input, showing how a focal point emerges.



The pattern recognition algorithm works by simply using
different wave source distributions (test patterns) in the bottom
of the structure. If the source distribution is similar to the
original pattern, then the focal point of the waves will be sharp.
If the test pattern is dissimilar, then constructive interference
will not occur. The intensity of the waves at the focal point
measures the similarity of the test pattern to the original
pattern.

This algorithm allows frameless, analog pattern matching
operation: the input at the bottom pattern can continuously
change, while the output (the wave intensity of the focal point)
can continuously be read out.

III. WAVE PROPAGATION IN A CELLULAR CIRCUIT

Here we show how one can construct digital hardware to
create interference phenomena similar to optical interference
and use this hardware in a computing system. One way to do
that is to simulate electromagnetic wave propagation using a
circuit.

We choose transversal electric (TE) modes of electromag-
netic wave propagation, a particular solution of Maxwell’s
equation [6]. Using a rectangular grid with ∆x and ∆y
spacings, Maxwell’s equations in 2 dimensions take the form:

∂Hx

∂t
=

−1

µ

∂Ez

∂y
∂Hy

∂t
=

1

µ

∂Ez

∂x
(1)

∂Ez

∂t
=

1

ε

∂Hy

∂x
− 1

ε

∂Hx

∂y

where Hx, Hy and Ez are the in-plane (x, y) components
of the magnetic field and the out of plane (z) component of
the electric field. Here we simply consider them as variables
describing the wave propagation.

In order to model these waves on digital hardware, we
discretize the computational domain by using a ∆x and ∆y
spacing. On each lattice point the dynamics of Hx, Hy and
Ez are described by the ordinary differential equations:

dH
(i,j)
x

dt
=

−1

µ

E
(i,j+1)
z − E

(i,j−1)
z

2∆y

dH
(i,j)
y

dt
=

1

µ

E
(i+1,j)
z − E

(i−1,j)
z

2∆x
(2)

dE
(i,j)
z

dt
=

1

ε

H
(i+1,j)
y −H

(i−1,j)
y

2∆x

−1

ε

∂H
(i,j+1)
x −H

(i,j−1)
x

2∆y
,

where the indices (i, j) denote the i-th and j-th cell of the
lattice. If the calculation domain is discretized to N×M cells,
then obviously i = 1..N , j = 1..M .

The time-continous, spatially discretized system of Eqs. 2
can be directly simulated by analog Cellular Nonlinear Net-
works [7]. In order to model this system by digital hardware,

one should make one step further to discretize Eqs. 2 in
time as well. The simplest approach is to use Euler method:
H

(i,j)
x (t+∆t) = H

(i,j)
x (t)+∆t×r.h.s, etc, where r.h.s denotes

the right-hand side of the corresponding equation in Eqs. 2.

The emulation of the TE waves becomes a digital numer-
ical problem, solvable by either software, multi-core CPUs,
GPUs or FPGAs. Due to the nearest-neighbor coupling, the
simultaneous time evolution of the cell updates and the lack
of memory operations solution of the wave problem is straight-
forward to parallelize. In fact, one can view every lattice point
(described by Eqs. 2 ) as an elementary processor, interacting
with its nearest neighbors and calculating the wave amplitudes
at this particular lattice point. Alternatively, one can calculate
the cell updates ’row by row’, and possibly working on a
larger number of rows in parallel - we follow this route in
the remaining of the paper.

Strictly looking holographic algorithms assume that waves
propagate in a boundary-free region, so radiating boundary
conditions must be implemented for Eq. 2. This can be done
by the introduction of perfectly matched layers as described
in [6].

A Runge Kutta method significantly improves the accuracy
of the solution of Eq. 2, resulting in also a much more complex
cell structure.

IV. EMULATED-DIGITAL CNN IMPLEMENTATION OF THE
WAVE EQUATIONS

The Falcon architecture is an emulated digital CNN pro-
cessor [9], which can solve the discretized version of the gov-
erning equations of the wave propagation. On this architecture
the flexibility of simulators and computational power of analog
architectures are mixed. Not only the size of templates and the
computational precision can be configured but space-variant
and non-linear templates can also be used.

The Maxwell equations are solved by a modified Falcon
processor array in which the arithmetic unit was redesigned
according to the discretized governing equations. Since each
CNN cell has only one real output value, three layers are
required to represent the variables Hx, Hy and Ez as can
be seen on Figure 2.

In the first-order case the CNN templates acting on the
different layers can easily be taken from (2). Equations (3)-(6)
show templates, in which cells of different layers are connected
to the cell at position (i, j). AEz(Hx)

1a means that layer Hx has
an effect on Ez layer. The other templates are defined by the
same way.

A
Ez(Hx)
1a =

∆t

2ε∆x

[
0 0 0
−1 0 1
0 0 0

]
(3)

A
Ez(Hy)
1b =

∆t

2ε∆y

[
0 −1 0
0 0 0
0 1 0

]
(4)

A
Hx(Ez)
2 = − ∆t

2µ∆y

[
0 1 0
0 0 0
0 −1 0

]
(5)



Excitation 
function

Layer 1

Layer 2

Layer 3

D
D

R

AX
I 

In
te

rc
on

ne
ct

AXI 
DMA

AXI 
DMA

AXI 
DMA

In
te

rfa
ce

Falcon

Fig. 2. Block diagram of the architecture of the first order scheme. Three
layers are required for computing the variables and an arithmetic unit is needed
for computing the excitation function.

A
Hy(Ez)
3 =

∆t

2µ∆x

[
0 0 0
−1 0 1
0 0 0

]
(6)

A 2 row belt of the input image has to be stored on-chip
in order to efficiently work the arithmetic unit. A mixer unit
is needed for every layer in order to generate the proper 3 ×
3 neighbor of a computed cell (see Figure 3).

0,0 0,0
0,1 0,1
0,2 0,2

1,0 1,0
1,1 1,1
1,2 1,2

2,0
2,1
2,2

MIXER BOUNDARY CTRL

IMAGE BELT

STATE VAR.

CTRL

BR
AM

BR
AM

Fig. 3. Block diagram of the mixer unit. The three layers require the on-chip
store of a belt from the computational domain and a mixer unit for generating
the neighborhood of the computing cell.

The mixer unit provides the input image, where the tem-
plates can operate with. In this case the arithmetic unit is
optimized to the template function in order to save some FPGA
resources and gain computing speed (see Figure 4).

Due to the relative small amount of excitation point (com-
pared to the grid size) (e.g.: Figure 1), the excitation function

in every iteration step can be computed separately from the
governing equations.

V. PROPERTIES OF THE FPGA IMPLEMENTATION

The architecture was developed on a Xilinx XC7Z020
FPGA [11], which takes place on a Zedboard. The FPGA
contains 85K programmable Logic Cells, 220 18 × 25 bit
programmable DSP slices and 140 36Kb BlockRAMs. There
is an 512MB on-board DDR3 memory, which can store the
initial data and the result of one iteration and furthermore the
exciting function of the excited points.

The on-board memory and the concept of processing the
cells row-by-row makes it possible to compute on large 1000
× 1000 or even larger grid arrays. It is also possible to
implement an array of processing element, where each column
of processor elements can work on a stripe of the grid image
and each consecutive row of the processors can compute the
next iteration step of the algorithm.

The whole system relies on the AMBA (Advanced Mi-
crocontroller Bus Architecture) AXI system [12], which is
not a bus as its name suggest but a point-to point structure
between the communicating elements. This makes it possible
later to move the implementation into a larger FPGA. The
results of one iteration step of each layer are stored on the
on-chip memory via DMA transactions. For uploading the
initial data, the excitation function and other parameters and
for downloading the computational results a host interface is
needed.

The operators of the arithmetic unit are XILINX Floating
Point operators with single precision and AXI bus support.
The operators improved with the AXI bus makes it possible to
change the arithmetic unit easily and therefore the arithmetic
unit is optimized according to the sparse and symmetrical
templates (Equations (3), (5) and (6)).

− −

−

xx

UPDATE

Hy(i,j+1) EznHx(i-1,j)
Hx(i+1,j)Hy(i,j-1)

dt/ℇ/2dx

Ezn+1

dt/ℇ/2dy

Fig. 4. Part of the arithmetic unit. Computing one iteration step of the Ez

variable.

The precision of the operators are overestimated, because
preliminary simulations showed that less precision is enough,
but the optimal bit width is not yet determined.



TABLE I. COMPARISON OF DIFFERENT HARDWARE
IMPLEMENTATIONS

Implementation Speed
(MHz)

Processor
Cores

(usable/all)

Computation
time (sec) Speedup

g++ compiled
Intel Core I7 2800 1 (4) 7.5 0.37

g++ compiled
AMD Opteron 2300 1 (4) 14.85 0.185

icc compiled
AMD Opteron 2300 4 2.75 1

Xilinx
XC7Z020 289 3 0.58 4.77

Xilinx
XC6VSX475T 380 20 0.066 41.8

Xilinx
XC7VX980T 380 42 0.031 87.78

TABLE II. NUMBER OF RESOURCES IN DIFFERENT FPGAS

Resources # of slices # of BRAM 36k # of DSP48E
Xilinx XC7Z020 13300 140 220

Xilinx XC6VSX475T 74400 1064 2016
Xilinx XC7VX980T 153000 1500 3600

A large amount of space can be saved if the excitation
function is periodic. Other trick can be applied if we choose
∆t or other parameters to be integer power of two because
the multiplication in this case can be done by shifts so
we can eliminate several multipliers from the hardware and
additionally the area requirements will be greatly reduced.

VI. RESULTS AND PERFORMANCE

By using the BlockRAMs of the FPGA, a 200 × 200
large grid array can be computed. With the OCM (On-Chip
Memory) supplemented a bit larger 256 × 256 array can
be updated. By communicating with the 512MB on-board
memory (and sacrificing from the speed of the architecture by
the memory transaction) it is possible to work with a 6600 ×
6600 large computing space. In this case storing a 6600 wide
belt from the image requires 40 BlockRAMs from the FPGA
chip resource. That means 3 processor can be implemented on
the ZedBoard which can work on successive iterations in one
clock cycle.

For testing and performance evaluation purposes a sim-
ple initial setup was used. The size of the computational
domain is 50×200, there are 20 excitation points which are
excited with a sinusoidal function and the iteration number
is 50000. Experimental results were compared on different
conventional microprocessors (with different compilers) and
Xilinx FPGAs and runtimes are summarized in Table I. The
achievable performance of the different FPGAs is compared
to the performance of the AMD Quad-Core 2.3GHz Opteron
processor. Comparison of the required computation time with
the above mentioned initial setup show that the computations
can be carried out almost 5 times faster with the ZedBoard.
Significant saving on computation time can be achieved if
larger FPGA is used. Theoretical performance of the largest
Virtex 7 FPGA is 87-time faster than the AMD Opteron
microprocessor.

The number of resources in different FPGAs are shown
in Table II. In this particular problem, the limitations in the
FPGA is not the dedicated elements (multiplier, memory) but
the number of slices.

VII. CONCLUSION

This paper demonstrates how (1) numerical solutions of the
wave equation can be used to power a non-Boolean pattern
matching algorithm and (2) how FPGA-based cellular solvers
can be used to generate efficient, massively parallel solutions
to the wave equations. This offers a new approach to utilize the
computing power of large-scale FPGAs or mega-core chips.

We plan to extend the implemented architecture with more
precise discretization scheme and with a more complex bound-
ary condition. We also want to investigate other non-Boolean
algorithms, and simulate them with FPGA architectures.

ACKNOWLEDGMENT

This research project supported by the OTKA Grant No.
K84267 and TAMOP - 4.2.2/B-10 and TAMOP - 4.2.1 B-
11. This work was also (partially) supported by the NRI-NSF
Nanoelectronics for 2020 and Beyond (NEB) program.

REFERENCES

[1] S. Borkar: Thousand core chips: a technology perspective; Proceedings
of the 44th annual Design Automation Conference, 2007

[2] D. Yeh, L.-S. Peh, S. Borkar, J. Darringer, A. Agarwal, W.-M Hwu,
”Thousand-Core Chips,” IEEE Design and Test of Computers, vol. 25,
no. 3, pp. 272-278, May 2008, doi:10.1109/MDT.2008.85

[3] P. Ambs: Optical Computing: A 60-Year Adventure, Advances in Optical
Technologies Volume 2010, Article ID 372652

[4] D. G. Feitelson: Optical computing : a survey for computer scientists,
MIT Press, 1988

[5] E. M. Leith: The Evolution of Information Optics, IEEE Journal of
Selected Topics on Quantum Electronics, 6, 6 2000

[6] J.-P. Berenger, ”A perfectly matched layer for the absorption of electro-
magnetic waves.” Journal of computational physics 114, no. 2 (1994):
185-200.

[7] T. Roska, L. O. Chua, D. Wolf, T. Kozek, R. Tetzlaff, F. Puffer:
Simulating nonlinear waves and partial differential equations via CNN-
Part I: Basic techniques, IEEE Transaction on Circuits and Systems-I,
vol. 42, pp. 807-815, 1995.

[8] J. W. Goodman: Introduction to Fourier optics New York : McGraw-Hill
1996

[9] Z. Nagy, P. Szolgay: Configurable Multilayer CNN-UM Emulator on
FPGA, IEEE Trans. Circuits and Systems I: Fundamental Theory and
Applications, 50 6 2003

[10] G. Csaba, X. He, X. Sharon Hu, A. Papp, Wolfgang Porod: Holographic
Algorithms for on-Chip, Non-Boolean Computing to be submitted to
IEEE Nano 2013

[11] Xilinx Inc. [Online] http://www.xilinx.com/ Urldate 2013.
[12] ARM AMBA System IP [Online]

http://www.arm.com/products/system-ip/amba/ Urldate 2013.


