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Abstract— This paper presents a procedure for the 

determination of the dimensionality of the state space of a 

memristive device. The state space dimensionality of a device 

corresponds to the minimum number of time delayed 

values/derivatives of the voltage and current required to 

represent the device dynamics for a specified set of inputs. The 

algorithm is based on the observed time domain voltage-current 

(i.e. input-output) data which is obtained by measurement. The 

determination of the state space dimensionality is important to 

achieve a single-valued input-output multivariate mapping 

between the device outputs as a function of the embedding state 

variables. In this paper, this will be accomplished using an 

embedding technique, based on the false nearest neighbor 

principle. 
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I.  INTRODUCTION 

The finger prints of a memristive device (MD) are derived 
from the interpretation of the observed time parameterized -
output trajectory. This is normally constructed using input-
output (I/O) data recorded under sinusoidal excitation at 
various amplitudes and frequencies [1], [2]. The time-domain 
behavior of the MD can be described by the canonical state 
equations of the form:  

 {

𝑑𝑤⃗⃗ (𝑡)

𝑑𝑡
= 𝑓 (𝑤⃗⃗ (𝑡), 𝑣(𝑡))

𝑖(𝑡) = ℎ(𝑤⃗⃗ (𝑡)) ∙ 𝑣(𝑡)

 (1) 

where 𝑣(𝑡) and 𝑖(𝑡) are the observable applied voltage and 
output current, respectively, while 𝑤⃗⃗ (𝑡) is the unobservable 
state vector. The loop observed in the 𝑖(𝑡) − 𝑣(𝑡) trajectory 
plane is the an evidence of the memory effects exhibited by 
these devices. Equation (1) is normally employed for voltage 
controlled devices. It comprises the state equation and the 
input-output mapping governing the dynamics of the MD. 
Moreover, current-controlled devices are defined in a similar 
manner [1]. 

 The number of state (e.g. embedding) variables describes 
the order of the system. The observable output current 𝑖(𝑡) can 
be predicted for every time 𝑡 when the state equations and the 
observable input signal are known or determined from 
observable data. This solution describes a time-parameterized 
path, or trajectory, in the multidimensional space of the state 

vector according to the frequency range and the amplitude 
variation of the input excitation signal.  

When modelling a nonlinear device, such as an MD, two 
approaches are normally available: physics-based and black 
box, (i.e. behavioral) modelling approaches. Firstly, physics-
based modelling, employs a theoretical analysis of the physical 
mechanisms governing the device structure and materials to 
describe the MD’s switching dynamic behavior. This approach 
determines the ℎ(∙) and 𝑓(∙) functions in (1), and the state 
space vector 𝑤⃗⃗ ,  based on complex physical formulation which 
may not provide a general and accurate representation of the 
experimental MD behavior due to some simplifying 
assumptions (for instance constraining the underlying physical 
mechanisms for conduction)applied for a specific MD structure 
and materials (i.e. electrodes and resistive materials) during the 
model’s derivation that can plague its use and implementation 
[1].  However, black Black box modeling, deals directly with 
the observable quantities obtained from a specified set of input 
stimulus. The performance of an input-output black-box 
model’s generation relies on the accurate determination of the 
dimension of the device’s embedding variables and then the 
efficient parameterization of the nonlinear functional mapping 
between the device’s identified state-space embedding 
dimension and its output [3].  

Therefore, the determination of an accurate approximation 
of the sate-space vector, 𝑤⃗⃗ , based on the I/O recorded signals, 
will lead to  a reduced-order representation of the MD’s 
physical dynamics while preserving a good behavioral model’s 
prediction’s accuracy. Up until now, most of the effort towards 
a universal model suitable for MDs has been focused in a 
physics based approach, biased by the Hewlett Packard (HP) 
team reported results [4]. It has been ascertained that the 
accuracy of these models is questionable for some applications 
[5], thus requiring better solutions and research effort. Given 
the wide range of materials and devices exhibiting memristive 
effects, it seems adequate to concentrate in a single modeling 
approach. Black box modeling is in this sense fitted to this 
quest, since it provides uniform procedures to assist the task of 
model development. 

The first task in behavioral modelling is to find the 
embedding variables dimensionality of the device based on the 
observable quantities. This is known as embedding or state-
space reconstruction. This step consists in determining the level 
of the MD’s dynamics, which corresponds to the orders of 
voltage and current time delayed values and/or derivatives of 
the observables to retrieve the necessary internal state 
embedding variables of the model or their analogs. 
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In this work we suggest to determine the appropriate 
embedding variables dimension for a sinusoidal driven MD by 
means of the false nearest neighbors (FNN) technique [6]. This 
allows to find the minimum number of state embedding 
variables required for the model and also to assist in model 
order reduction.  

The rest of the paper is organized as follows. Section II is 
an illustration of the use of the FNN technique for space 
embedding dimension applied to the output current of a PMOS 
transistor, while Section III details the numerical results of the 
application of the FNN algorithm to an MD. Finally, 
conclusions are drawn in Section IV. 

II. STATE-SPACE EMBEDDING DIMENSION  

A. Waveform and Memory 

Given a time series of the observable I/O signal waveforms, 
the state space model can be constructed using the embedding 
process. To illustrate the idea, the time-domain waveform of a 
PMOS transistor’s output current 𝑖(𝑡) is plotted as a function 
of the sinusoidal drain-source voltage excitation 𝑣(𝑡) as shown 
in Fig. 1. The loop of the transistor’s output current is a clear 
indication that 𝑖(𝑡) is not a single-valued function of 𝑣(𝑡). In 
fact, the transistor’s output current can be seen as a parallel 
connection of a nonlinear current source (I-V) and a charge 
source (Q-V). For instance, by selecting two different time 
instants at the points A and B, where the input satisfies, 
𝑣(𝑡1) = 𝑣(𝑡2), the output current is different 𝑖(𝑡1) ≠ 𝑖(𝑡2) as 
illustrated. This demonstrates that the output current is not a 
single-valued, i.e. memoryless, or static, function of the input 

voltage. The points A and B are known as “false nearest 
neighbors” because they are close in the input space, but are 
from temporally distant events on the response curve or the 
output space. The point C, which is close to point B on the 
response curve, is a true nearest neighbor of B [6]. 

After expanding the number of embedding dimensions by 
sampling 𝑖(𝑡) in the new embedding {𝑣(𝑡), 𝑑𝑣(𝑡)/𝑑𝑡} space, 
the response curve appears unfolded into a single-valued 
trajectory. Fig. 2 shows that at any time instant 𝑖(𝑡) can be 
expressed as a nonlinear single-valued, or memoryless, 
function of the two variables 𝑖(𝑡) = 𝑓(𝑣(𝑡), 𝑑𝑣(𝑡) 𝑑𝑡⁄ ). 

B. FNN algorithm  

The method of false nearest neighbors (FNN) was 
developed by Kennel, Brown and Abarbanel [6] specifically to 
determine the minimum embedding dimension, i.e. the number 
of time-delayed observations, necessary to model the dynamic 
behavior of autonomous chaotic systems. This method was 
extended to approximate the proper regression for I/O dynamic 
processes, by modifying the regression vector and the search 
algorithm [7]. The regression vector can contain discrete time- 
delayed versions (2) or successive higher derivative (3) of both 
the input and the output signals. 

𝑍𝑘,𝑙(𝑡) = [ 𝑣(𝑡), 𝑣(𝑡 − 𝜏), … 𝑣(𝑡 − (𝑘 − 1)𝜏), 𝑖(𝑡
− 𝜏), … , 𝑖(𝑡 − (𝑙 − 1)𝜏)] (2) 

𝑍𝑘,𝑙(𝑡) = [ 𝑣(𝑡), . , d𝑣(𝑡) 𝑑𝑡⁄ ,
𝑑(𝑘−1)𝑣(𝑡)

𝑑𝑡(𝑘−1)
 

,
d𝑖(𝑡)

𝑑𝑡
, . . . ,

𝑑(𝑙−1)𝑖(𝑡)

𝑑𝑡(𝑙−1)
] 

(3) 

where 𝜏 is the time delay, 𝑘 and 𝑙, are the current and voltage 
embedding dimensions, respectively. The time delay, 𝜏, should 
be chosen so that the I/O signals are de-correlated from their 
delayed versions. For instance, the autocorrelation function can 
provide the adequate delay 𝜏 = 𝑇/4 for periodic sinusoidal-
like signals, this assures that each signal is de-correlated from 
its previous delayed versions. Moreover, for nonlinear dynamic 
system analysis, excited by broadband input signals (for 
instance multisines), the method of mutual information from 
information theory can be employed to determine the 
appropriate delay 𝜏 [8]. The discrete and/or continuous time 
regression vector can be mixed or used independently for 
determining the embedding dimension. However, the discrete 
regression vector (2) is more general because the derivative 
involves a time delay version of the signal (𝑑𝑣(𝑡) 𝑑𝑡⁄ ≅
(𝑣(𝑡) − 𝑣(𝑡 − 𝑇𝑠)) 𝑇𝑠⁄ , where 𝑇𝑠 is the sampling time). 

In order to determine the proper dimension of 𝑍𝑘,𝑙(𝑡), the 

percentage of FNN must be evaluated for different numbers of 
delayed version of the I/O signals. This is done by 
finding/searching for the nearest neighbors in terms of the 
Euclidean distance to another time instant ℎ, that must differ 
from 𝑡 by, at least, a time sample,  in the I/O sampling space, 

𝑍𝑘,𝑙(ℎ), such that the distance 𝑑 is minimized [4]:  

 𝑑 = ‖𝑍𝑘,𝑙(𝑡) − 𝑍𝑘,𝑙(ℎ)‖2 (4) 

 

Fig. 1. The  𝑖(𝑡)– 𝑣(𝑡) trajectory of PMOS transistor (V𝑔𝑠 = 0 V, V𝑑𝑠 =

𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡), 𝑓 = 600𝑀𝐻𝑧). 

 

Fig. 2. The transistor’s output current 𝑖(𝑡) is a single-valued function of the 

new embedding {𝑣(𝑡), 𝑑𝑣(𝑡)/𝑑𝑡} space. 
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A test is defined to determine whether the neighbors have 
future outputs that are distinct, that is, whether neighbors are 
true or false. For this purpose, the ratio in (5) determines 
whether the distance between future outputs, 𝑖(𝑡) and 𝑖(ℎ) is 
significantly larger than the distance between 
discrete/continuous time regression vectors, 𝑍𝑘,𝑙(𝑡) and 𝑍𝑘,𝑙(ℎ) 
that are close in the regressed space [7]. 

 
|𝑖(𝑡) − 𝑖(ℎ)|

‖𝑍𝑘,𝑙(𝑡) − 𝑍𝑘,𝑙(ℎ)‖2 
≤ 𝑅 (5) 

These steps will be repeated for all times t and ℎ in the data 
set while calculating the percentage of the time series points 
that have false nearest neighbors. The regression vector, 
𝑍𝑘,𝑙(𝑡), will be extended (increasing 𝑙 or 𝑚) to include more 

delayed versions of the input-output space until the percentage 
of FNN drops to an acceptably small number. It is worth noting 
that, before this two-dimensional search algorithm, a 
normalization step of all the I/O signals and/or their derivatives 
is performed to fall in the range of [-1,1]. This will result in 
more accurate and better convergence of the FNN algorithm. 
As the embedding variables are incremented, the state space is 
unfolded into a higher number of dimensions till it reaches a 
dimension at which the output response or the current curve 
will unfold into a single-valued trajectory without looping 
effect where each point will be a true nearest neighbor.  

III. MEMRISTOR STATE-SPACE EMBEDDING DIMENSION 

To illustrate the procedure for a MD, the input-output data 
was generated using an MD described by the HP model with 
Prodromakis window function, with A=1 and p=5 [9]. The 

simulation was performed with Matlab using the ode15s 
differential solver. The data set contains the steady state 
response of the device, when excited with an input sinusoid of 
frequency 𝑓 = 1.32 Hz and amplitude of 1.0 V. The device 

parameters used were: Ron=1kΩ, Roff=100kΩ, =1, =1E-14 
m2 s-1V-1, D=10nm, and wo=5nm. The input space of the 
regression vector is formed by the successive derivatives of 
𝑣(𝑡) as shown in (6): 

 

{
 

 
𝑣(𝑡) = 𝑎 𝑐𝑜𝑠(𝜔𝑡)                              

𝑣̇(𝑡) = −𝑎 𝜔 𝑠𝑖𝑛(𝜔𝑡)                     

𝑣̈(𝑡) = −𝑎 𝜔2𝑐𝑜𝑠(𝜔𝑡) = −𝜔2𝑣(𝑡)   

𝑣(𝑡) = 𝑎 𝜔3𝑠𝑖𝑛(𝜔𝑡) = −𝜔2𝑣̇(𝑡)

 (6) 

It is noticeable that the input signal and its first derivative are 
representative of all the dynamic information present in the 
input space of the 𝑍𝑘,𝑙(𝑡) since the second derivative (i.e. 𝑣̈(𝑡)) 
and all the higher order ones can be linearly related to 
either 𝑣(𝑡) or 𝑣̇(𝑡), which are the only ones orthogonal over 
the period 𝑇. This means that 𝑣(𝑡) and 𝑣̇(𝑡) are sufficient to 
incorporate all the necessary input space dynamics, into the 
MD model. Therefore, adding more derivatives of 𝑣(𝑡) in the 
input space when the MD is driven by a sinusoidal-like signal 
will not add any further information that will help to embed the 
input space. 

 Consequently, the delayed versions or the derivatives of 
output space – current information – should be added to the 
input space to obtain a single-valued mapping function 
between the state-space and the output current. The nonlinear 

     
Fig. 3. Nonlinear looping effect in the 𝑖(𝑡) − 𝑣(𝑡) plane trajectory of the 

memristor’s admittance. 

    

Fig. 4. Trajectory of 𝑖(𝑡) as a function of 𝑣(𝑡) and 𝑑𝑣(𝑡)/𝑑𝑡. 

   

Fig. 5. Trajectory of 𝑖(𝑡) as a function of 𝑑𝑖(𝑡)/𝑑𝑡 and 𝑑𝑣(𝑡)/𝑑𝑡. 

   

Fig. 6. Trajectory of 𝑖(𝑡) as a function of 𝑑𝑖(𝑡)/𝑑𝑡 and 𝑣(𝑡). 
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looping trajectory 𝑖(𝑡) − 𝑣(𝑡) of the studied MD is shown in 
Fig. 3, which reveals that the 𝑖(𝑡) is not a single-valued 
function of 𝑣(𝑡). Figures 4 to 6 illustrate the trajectory of 𝑖(𝑡) 

as a function of {𝑣(𝑡), 𝑑𝑣(𝑡)/𝑑𝑡}, {𝑑𝑣(𝑡)/𝑑𝑡, 𝑑𝑖(𝑡)/𝑑𝑡}, and 
{𝑣(𝑡), 𝑑𝑖(𝑡)/𝑑𝑡} spaces. As it can be seen with all the possible 
combinations of the three dimensional embedding variables, it 
was not possible to obtain a single-valued mapping function to 
the output current. Therefore, we will use the FNN algorithm to 
increase the order of 𝑍𝑘,𝑙(𝑡) until a single-valued function is 

obtained. 

 A large time series data with 6001 samples is recorded for 8 
periods of the sinusoidal excitation. The sampling time 𝑇𝑠 is 
equal to 1.1ms. This recorded I/O data set will form the 
regression vector (2) or (3) that will be used for the FNN 
algorithm, whose results revealed to be relatively unchanged 
over a wide range of threshold values of 𝑅  [7]. A threshold of 
𝑅 = 12 was applied to the entire time series. The variation of 
percentage of the FNN as a function of the embedding input-
output dimensions is shown in Fig. 7 and the numerical results 
are reported in Table I. The percentage of FNN is an indication 
to check whether a single-valued function can be obtained for 
the selected state space dimensionality by varying the input 
space dimension (k) and the output space dimension (l), by 
adding more delayed versions ( i.e. 𝜏 = 𝑇/4) of  𝑣(𝑡) or 𝑖(𝑡), 
respectively. 

 As seen from Fig.7, the percentage of FNN drops to a low 
value of 1.6% when the regression vector takes the form 
{𝑣(𝑡), 𝑑𝑣(𝑡)/𝑑𝑡, 𝑑𝑖(𝑡)/𝑑𝑡}. This result was achieved by using 
the embedding variables {𝑣(𝑡), 𝑑𝑖(𝑡)/𝑑𝑡} (e.g. 𝑙 = 2) and 
varying the input space 𝑘 to converge to the FNN value of 
1.6% for 𝑘 = 2 as shown by the blue solid line in Fig.7. The 
same result was also obtained by fixing the embedding 

variables {𝑣(𝑡), 𝑑𝑣(𝑡)/𝑑𝑡} (e.g. 𝑘 = 2) and varying the output 
space 𝑙  to converge to 1.6% for 𝑙 = 2 as depicted by dashed 
red line. Consequently, the input/output dynamics of the 
system can be represented well by a reduced system with only 
two embedding variables. Discarding the output space from the 
regression vector (i.e. 𝑙 = 0) will not reduce the percentage of 
FNN below 9.79% for 𝑘 ≥ 4. 

IV. CONCLUSION  

This paper presented the identification of the dynamical state-
space embedding variables based on the FNN technique. The 
proper delay of the regression vector is determined to obtain 
de-correlated input and output space signals that reflects the 
MD’s nonlinear memory effects. The FNN algorithm then 
determines the number of the state-variables required to embed 
the dynamics of the MD based on the acquired input-output 
time-domain signals and delayed values. The numerical results 
of the FNN processing demonstrates that the embedding 
variables {𝑣(𝑡), 𝑑𝑣(𝑡)/𝑑𝑡, 𝑑𝑖(𝑡)/𝑑𝑡} was appropriate to embed 
the dynamics of the MD under test and to achieve a single-
valued input-output multivariate mapping between the device 
outputs as a function of the state variables. The achieved results 
can be further processed to generate a behavioral model based 
on polynomial or artificial neural network curve fitting in order 
to compare the results to the HP model. 
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Fig. 7. The percentage of FNN vs. the input space (k) (solid line) and 

output space (l) (dashed line)  embedding dimension with lists of selected 

initial state variables. 

TABLE I.  FNN RESULTS FOR DIFFERENT DIMENSION OF THE I/O 

EMBEDDING VARIABLES OF THE MD. 

Embedding Dimension State -Variable FNN  

Percentage (%) 

k l Input Output  

1 0 𝑣(𝑡) - 100 

2 0 𝑣(𝑡), 𝑑𝑣(𝑡)/𝑑𝑡 - 9.79 

2 2 𝑣(𝑡), 𝑑𝑣(𝑡)/𝑑𝑡 𝑑𝑖(𝑡)/𝑑𝑡 1.6 
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Commented [n1]: This means the same FFN percentage for two 

different embedding, is this what you mean? If so, you then select 

the embedding space with lower dimension to model the device. 

Also, as far as I can remember we were discussing why the FNN 

percentage never drop to zero. Do you have an answer to this? 

Also, if you have multiple representations an none is directly 

reproducing the dynamics of the state in equation (1), what can we 

conclude? 


