
FPGA-Based Real-Time Multichannel Neural
Dataset Generation

László Schäffer∗, Zoltán Nagy†, Zoltán Kincses∗, and Richárd Fiáth¶†
∗Dept. of Technical Informatics, Faculty of Science and Informatics, University of Szeged, Szeged, H-6725

Email: {schaffer,kincsesz}@inf.u-szeged.hu
†Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083,

Email: nagy.zoltan@itk.ppke.hu
¶ Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences,

Hungarian Academy of Sciences, Budapest, H-1117, Email: fiath.richard@ttk.mta.hu

Abstract—Miniaturized voltage sensors (electrodes) implanted
into the brain tissue are capable of recording the brief electrical
impulses (spikes) of neurons located close to the electrode sites.
To investigate the activity of individual neurons and discriminate
spikes generated by different neurons a technique called spike
sorting can be applied on the recorded data. However, the
performance of current spike sorting methods is challenged
by multichannel neural data recorded with high-density, high-
channel count silicon probes developed recently. Our group
started to develop an FPGA-based solution to accelerate the
clustering of spikes detected in high-channel count neural record-
ings. It is a crucial step of the development to validate the
performance of the clustering algorithm. This can be achieved
by using ground truth datasets where the exact time of spikes
fired by different single units are known. In this paper we
present an FPGA-based architecture for real-time generation of
multichannel hybrid ground truth datasets, which will be used
for the validation of our FPGA-based clustering algorithm.

I. INTRODUCTION

One of the oldest and most widely used experimental tech-
nique of neuroscientists to investigate the complex functions
of neural networks is the extracellular measurement of brain
electrical activity. Miniaturized voltage sensors (electrodes)
implanted into the brain tissue are capable of recording the
brief electrical impulses (called action potentials or spikes)
of dozens of neurons located close to the electrode sites
[1]. However, to investigate the activity of individual neurons
(single-unit activity) and their relationship with other neurons
in the examined neural circuit, we have to discriminate spikes
generated by different neurons. This discrimination step is
usually performed by applying spike sorting on the recorded
data, an analysis method during which individual neuronal
identities are assigned to each detected spike [2].

Spike sorting is used in many fields of basic neuroscience
research (e.g. to study the dynamics of neural networks [3])
and is usually one of the first analysis methods which is
applied on the recorded spiking activity data. The identification
of spikes of individual neurons is of great importance in some
real-time clinical applications as well (e.g. neuroprosthetic
devices, brain-machine interfaces [4]). Usually, the algorithms
developed for spike sorting contain multiple steps [2], some of

which are computationally intensive, such as spike detection or
clustering (assigning the detected spikes to the neuron clus-
ters). Furthermore, the performance of current spike sorting
methods is challenged by multichannel neural data recorded
with high-density, high-channel count silicon probes developed
recently (e.g. [5]). These novel devices consisting of several
hundred, closely-spaced electrode sites are able to record the
activity of large neural ensembles from up to more than
hundred individual brain positions simultaneously. In contrast,
most spike sorting algorithms are prepared to process data
recorded with only a few (usually four) electrodes. Therefore,
new algorithms using novel approaches and/or implementing
multiple steps of spike sorting on dedicated hardware (e.g.
Field Programmable Gate Array (FPGA), Application-Specific
Integrated Circuits (ASIC), Graphics Processing Unit (GPU))
are under intensive development to reduce the computation
time required to process the recorded high-dimensional data
[6]-[12].

Recently, our group started to develop an FPGA-based
solution to accelerate the clustering of spikes detected in high-
channel count neural recordings [8]. It is a crucial step of
the development to validate the performance of the clustering
algorithm. This can be achieved by using ground truth datasets
where the exact time of spikes fired by different single units
are known. There are several methods to obtain such ground
truth datasets [10]. Simultaneous paired recordings collecting
the spikes of the same neuron both extracellularly and intra-
cellularly would be the most optimal solution, however, this
method is technically challenging, therefore the availability
of such datasets are limited [13]. Simulating the activity of
biophysically realistic neural networks is also an option [14],
but the generation of synthesized multichannel datasets needs
high computational power provided only by computer clusters.
Finally, hybrid ground truth datasets can be generated by
using the mean spike waveforms of a subset of well-separated
units isolated from real extracellular recordings as templates
or donors and add these spike templates at random times and
positions of simulated or real recordings [9]-[12]. We followed
the latter method and synthesized our multichannel hybrid
ground truth datasets using an FPGA board. These datasets
will be used for the real-time validation of our FPGA-based978-1-5386-3974-0/17/$31.00 c©2017 IEEE



clustering algorithm [15].

II. SPIKE GENERATION REQUIREMENTS

In order to generate realistic neural data (spikes) many
requirements have to be fulfilled. The absolute refractory
period of a neuron is 1-2 milliseconds long, during this
period the neuron is not able to generate spikes, and the
interspike intervals of a neuron have a log-normal distribution
[16]. Therefore, a log-normally distributed random number
generator should be applied. Furthermore, it was found that
the spike-amplitude decays as 1

r

n with 1 <= n <= 2 close
to soma and n >= 2 far away, where r corresponds to the
distance of the electrode from the recorded neuron. Based
on this decay and on our 128-channel model probe, where
the electrodes are arranged in a 32x4 matrix shape with an
electrode pitch of 20 µm, the action potential of an average
neuron can be detected at most six electrodes (120 µm) away
from the center, where the spike can be recorded with the
highest amplitude [17]. Finally, in our first approach, noise
with uniform distribution was added to the generated data.

In addition to these requirements, real-time multichannel
spike generation is required to test our multichannel Online
Sorting [15] architecture where the main parameters like the
number of neurons, the number of channels and the size of
the inter-channel action potential spreading should be config-
urable.

The sampling rate of the real measurement system where
the OSort architecture will be used is 20 kHz, therefore in our
case real-time means that the spike generator should produce
a sample on all channels with at least 20 kHz frequency.

III. RANDOM NUMBER GENERATION

To generate the neural dataset, uniform and log-normal
distributed random number generation is required. In the
literature various uniform random number generation methods
can be found. We have chosen the pseudo-random Mersenne
Twister (MT) algorithm, which can provide an astronomical
period of 219937 − 1 and 623-dimensional equidistribution up
to 32-bit accuracy. Furthermore, it passes several statistical
tests, including diehard. The algorithm is based on polynomial
calculations over the two-element field and uses a twisted
generalised feedback shift register with the help of a tempering
matrix. The pseudo code and the detailed description of the
algorithm can be found in [18].

A continuous probability distribution of a randomly gen-
erated variable, which logarithm is normally distributed, is
called log-normal distribution. The log-normally distributed
random number generation is based on the output of the
MT algorithm normalized into the (0, 1] interval. The inverse
transform sampling method can be used to generate random
numbers from any probability distribution, if the cumulative
distribution function (CDF) is known and invertible. The CDF
of the log-normal distribution can be written as follows:

1

2
+

1

2
erf

[ lnx− µ√
2σ

]
, (1)

Fig. 1. The schematic diagram of the overall system

where x is the probability variable, µ is the mean, σ is the
variance, and erf is the error function, which can be written
as follows:

1√
π

∫ x

−x
e−t

2

dt, (2)

and erf(x) describes the probability of a random variable X
falling in the range [−x, x]. Inverting the log-normal CDF, the
quantile function can be given by:

eµ+σΦ−1(p), (3)

where p is a uniformly distributed random number in the range
of (0, 1], and Φ−1 is the inverse error function, which can be
approximated using a Maclaurin series as follows:

√
π(

1

2
z +

π

24
z3 +

7π2

960
z5 +

127π3

80640
z7...), (4)

where z is an uniformly distributed random number in the
range of (−1, 1).

IV. OVERALL SYSTEM

The schematic diagram of the overall multichannel spike
sorting system extended with the real-time neural dataset
generator can be seen in Fig. 1. The system consists of
the ARM Processing System (PS), the DDR3 Board Memory,
the Memory Controller core, the DMA Controller cores, the
Mersenne Twister cores, the Neural Dataset Generator core
and the Multi-channel Spike Detect and Online Sorting core.

The DDR3 Board Memory, the Memory Controller core,
some of the DMA Controller cores and the Multi-channel Spike
Detect and Online Sorting core are responsible for the spike
detection and classification [15].

In this paper, the Spike Generation will be discussed, which
contains two main parts: the Mersenne Twister cores, and the
Neural Dataset Generator core. The Mersenne Twister cores
are responsible for the generation of random numbers used
in the inverse transform sampling to compute the log-normal
distribution of interspike intervals (Mersenne Twister I. core)
and the noise generation (Mersenne Twister II. core).

However, the FPGA implementation of the log-normally
distributed random number generator is done, but the ARM PS
has enough computation performance to complete this task. In
this way, the log-normal random number calculation does not
occupy any FPGA resources.



Fig. 2. Schematic diagram of the output generation for one channel

The ARM PS and the cores are connected to each other
through AXI4-Lite and AXI4-Interconnect buses, while the
ARM PS communicates with a host PC through an Ethernet
port.

A. Mersenne Twister I-II cores

The Mersenne Twister I core calculates the random num-
bers required in inverse transform sampling to generate log-
normally distributed firing times. The Mersenne Twister II core
is responsible for the generation of the noise.

These cores are based on the pseudo-code and parameters
published in [18], but some modifications were required to
achieve optimal performance during the FPGA implementa-
tion. The initialization phase of the algorithm is not changed,
but the twist and the output generation is separated, since only
the output generation can be pipelined. Using this modified
algorithm the twist step can be performed in 1872 clock cycles,
when N is 624. After this initialization period is completed
a new random number can be generated in each clock cycle.
The twist step is called after generating 624 random numbers.

B. Neural Dataset Generator core

The Neural Dataset Generator core generates the multi-
channel neural dataset. The first part of this process is the
simulation of the action potential spreading through the neigh-
bouring 6 channels. This is based on a pre-defined normally
distributed Gaussian-kernel. The shape of the electrode array
is stored in a Look Up Table (LUT), which is used for proper
indexing of the weight matrix. For each channel and each neu-
ron, the weight matrix contains the corresponding spreading
weight value from the Gaussian-kernel. The electrode array
LUT and the weight matrix is pre-calculated on the ARM PS.
Therefore, the generation of one output sample is a simple
multiplication between the weight coefficient of the actual
channel and the value of the actual spike template. Finally,
an adder tree summarizes the weighted template values and
the result will be the output of one channel at one time. The
architecture of the Neural Dataset Generator core can be seen
in Fig. 2.

TABLE I
AREA REQUIREMENTS AND DEVICE UTILIZATION OF THE SYNTHESIZED

MODULES

Available resources
BRAM DSP FF LUT

102 120 12,150 14,034
Device Utilization

BRAM DSP FF LUT
Mersenne Twister x2 1% 7% 1% 4%
Log-normal (ARM) 4% 20% 3% 11%
Neural Signal
Generator

7% 34% 6% 25%

Summarized 8% 41% 7% 29%

Another important part of the dataset generation is to
set up the log-normally distributed intra-channel spike firing
distances for each individual neuron. On the ARM PS the
generated log-normally distributed random numbers are sorted
in ascending order with the corresponding neuron values and
stored in a structure. This firing structure contains the firing
time and the identification number of the firing neuron.

To generate the final multichannel dataset, the Neural
Dataset Generator core reads the neuron identification value
from the firing time structure and enables that neuron to fire at
the corresponding time stamp. The next fire time will be read
in the next clock cycle. When all neurons are enabled to fire,
then the Neural Dataset Generator core pauses the reading.

The Multi-channel Spike Detection and Online Sorting core
processes the data from the electrode by channel, so the core
gets one channel sample per clock cycle. Therefore the Neural
Dataset Generator core should work in the same fashion.

V. IMPLEMENTATION RESULTS

The proposed Mersenne Twister and Neural Spike Genera-
tor cores (Signal Generation subsystem) are developed and
synthesized using the Vivado High Level Synthesis (HLS)
version 2016.4. The overall architecture is synthesized to a
ZedBoard equipped with a Zynq-7020 FPGA. The available
resources on the Zynq-7020 and the resource requirements of
the cores can be seen in Table I.

During the development, the FPGA and the ARM-based
implementation of the Log-normal core were tested. Since
the ARM PS is capable to generate log-normally distributed
random numbers in 150 FPGA clock cycles, the ARM PS
was chosen for this calculation. In this case this core does not
require any FPGA Programmable Logic resources.

If the resource requirement of the Multichannel Spike
Detect and Online Sorting [15] is added to the resource
requirements of the Spike Generation subsystem, the DSP
resource utilization is greater than 115%. Therefore, the Log-
normal core can not be implemented on the Zynq-7020 FPGA
and this is the second reason why it is important to run this
computation on the ARM PS.

After the Vivado HLS synthesis, the latencies of the cores
can be seen in Table II. In the case of the Mersenne Twister
core, the twist step requires 1872 clock cycles, while the output



TABLE II
DETAILED LATENCIES OF THE SYNTHESIZED CORES

Latency Iteration
Latency Trip Count

init 5607 9 623
twist 1872 3 624Mersenne

Twister output gen 625 3 624
init 57 27 32
maclaurin 140 14 128Log-normal

(ARM) output gen 65 35 32
Neural Signal
Generator dataset gen 2560026 28 2560000

generation requires 624 of it. So, 1872 + 624 = 2496 clock
cycles are needed to generate 624 random numbers. Therefore,
an average of 4 clock cycles are required to generate one
random number. The Log-normal core running on the ARM
PS requires 150 clock cycle latency to generate one log-
normal value. The spike generation is performed in one second
windows using the Neural Signal Generator core. This core
requires only one clock cycle to generate one sample on all
128 channels. Before the first window, a proper initialization
is required. This initialization consists of the electrode array
LUT, the weight matrix, the random number and the log-
normal number generation. These calculations are performed
by the ARM PS, except the random number generation, which
is done by the Mersenne Twister II. core. During the generation
of the channel samples of the next windows, only the log-
normal number generation is required, which can be performed
parallel to the previous window. The clock frequency of the
Zynq-7020 on the ZedBoard is 100 MHz, so the generation of
the channel samples can reach and even exceed the necessary
20 kHz sampling rates.

In Fig. 3 the results of the dataset generation can be
seen on 5 adjacent channels with 3 firing neurons in a 0.1
second window, where the inter-channel signal spreading can
be observed. The spikes are grouped by the firing neurons,
each neuron has a unique color, while multi-unit spikes have
black color.

VI. CONCLUSION

In this paper a real-time multichannel hybrid ground truth
neural dataset generator is presented using a Zynq-7020
FPGA. The results show that the presented architecture can be
implemented on the Zynq-7020 FPGA with 100 MHz clock
frequency and it is capable of generating multichannel neural
samples at every clock cycle. The neural dataset generator will
be used for the validation of our Multichannel OSort spike
sorting architecture. Another purpose of the proposed neural
spike generator could be the pre-calibration or pre-teaching of
the Multichannel OSort architecture.

ACKNOWLEDGMENT

The authors would like to thank Istvan Ulbert for the neural
templates and the theoretical background. The research leading
to these results has received funding from the Hungarian Brain
Research Program Grants (Grant Nos. KTIA 13 NAP-A-I/1
and KTIA-13-NAP-A-IV/1-4,6).

Fig. 3. A 0.1 second long segment of the generated neural data on 5 adjacent
channels (electrodes corresponding to the channels are indicated on the left
side with red circles on the schematic image of the model probe). The spikes
of the three different neurons are highlighted in different colors.

REFERENCES

[1] G. Buzsaki, ”Large-scale recording of neuronal ensembles,” Nat Neurosci,
vol. 7, pp. 446-51, May 2004.

[2] M. S. Lewicki, A review of methods for spike sorting: the detection and
classification of neural action potentials, Network, vol. 9, pp. R53-78,
Nov 1998.

[3] S. Fujisawa, A. Amarasingham, M. T. Harrison, and G. Buzsaki,
Behavior-dependent short-term assembly dynamics in the medial pre-
frontal cortex, Nat Neurosci, vol. 11, pp. 823-33, Jul 2008.

[4] L. R. Hochberg et al., Neuronal ensemble control of prosthetic devices
by a human with tetraplegia, Nature, vol. 442, pp. 164-71, Jul 13 2006.

[5] C. M. Lopez et al., ”An Implantable 455-Active-Electrode 52-Channel
CMOS Neural Probe,” IEEE Journal of Solid-State Circuits, vol. 49, pp.
248-261, Jan 2014.

[6] S. Gibson, J. W. Judy, and D. Markovic, An FPGA-based platform for
accelerated offline spike sorting, J Neurosci Methods, vol. 215, pp. 1-11,
Apr 30 2013.

[7] W. J. Hwang, W. H. Lee, S. J. Lin, and S. Y. Lai, ”Efficient architecture
for spike sorting in reconfigurable hardware,” Sensors (Basel), vol. 13,
pp. 14860-87, 2013.

[8] L. Schaffer, Z. Nagy, Z. Kincses, R. Fiath, I. Ulbert, FPGA-based
clustering of multi-channel neural spike trains, CNNA 2016, Dresden,
Germany, August 23-25. 2016.

[9] M. Pachitariu, N. A. Steinmetz, S. Kadir, M. Carandini and K. D. Harris,
Kilosort: realtime spike-sorting for extracellular electrophysiology with
hundreds of channels, bioRxiv, dx.doi.org/10.1101/061481, 2016

[10] J. J. Jun e al., Real-time spike sorting platform for high-density extra-
cellular probes with ground-truth validation and drift correction, bioRxiv,
dx.doi.org/10.1101/101030, 2017

[11] C. Rossant et al., ”Spike sorting for large, dense electrode arrays,” Nat
Neurosci, vol. 19, no. 4, pp. 634-41, Mar 14 2016.

[12] P. Yger et al., Fast and accurate spike sorting in vitro and in vivo for
up to thousands of electrodes, bioRxiv, dx.doi.org/10.1101/067843, 2016

[13] J. P. Neto et al., ”Validating silicon polytrodes with paired juxtacellular
recordings: method and dataset,” Journal of Neurophysiology, vol. 116,
no. 2, pp. 892-903, Aug 1 2016.

[14] E. Hagen et al., ”ViSAPy: A Python tool for biophysics-based generation
of virtual spiking activity for evaluation of spike-sorting algorithms,”
Journal of Neuroscience Methods, vol. 245, pp. 182-204, Apr 30 2015.

[15] L. Schaffer, Z. Nagy, Z. Kincses, R. Fiath, ”FPGA-based neural probe
positioning to improve spike sorting with OSort algorithm”, ISCAS,
Baltimore, United States, May 28-31. 2017

[16] G. Buzsaki and K. Mizuseki, ”The log-dynamic brain: how skewed
distributions affect network operations,” Nature Reviews Neuroscience,
vol. 15, no. 4, pp. 264-278, 2014.

[17] K. H. Pettersen and G. T. Einevoll, ”Amplitude variability and extracel-
lular low-pass filtering of neuronal spikes,” Biophys J, vol. 94, no. 3, pp.
784-802, Feb 1 2008.

[18] M. Matsumoto, T. Nishimura, ”Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator”, ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), Vol. 8, Issue
1, pp. 3-30, Jan 1 1998


