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Abstract—The paper proposes a method to use the Fibonacci 

numbers with odd and even indices for synthesis of switched 

capacitor converters (SCCs) with multiphase control. As in the 

previously developed method using high-radix positional numeral 

systems, the capacitors in the proposed method can be connected 

in parallel. For this purpose, a special two-dimensional (2D) array 

of switches is introduced. Thus, all the available earlier target 

voltages as well as those defined by the Fibonacci numbers with 

odd and even indices, can be obtained using the same array of 

switches. Owing to small distance between the neighboring target 

voltages, the total SCC efficiency can be increased. The theoretical 

results were verified by simulations. 
 

Keywords—Charge pump, efficiency, signed-digit number system, 

switched capacitor converter, topology.   

 

I. INTRODUCTION 

Switched capacitor converters (SCCs) are favored in some 

applications due to low EMI and compatibility with integrated 

circuit technology. It is known that SCCs exhibit high efficiency 

only when their output voltage, 𝑉𝑜, is close to the target voltage, 

𝑉𝑇𝑅𝐺 = 𝑀𝑉𝑖𝑛, where 𝑀  is the no-load conversion ratio. When 

a SCC is loaded, the capacitors are cyclically recharged by the 

current through the switches. This current defines the so-called 

conduction losses [1], [2], which are modeled by an equivalent 

resistance, 𝑅𝑒𝑞, as shown in Fig. 1. Thus, a high efficiency is 

provided only in the case if 𝑅𝑒𝑞 value is small. To regulate 𝑉𝑜, 

one can adjust 𝑅𝑒𝑞, while 𝑀  takes only discrete values. 

The name “multiphase SCCs” presumes that these converters 

have a large number of degrees of freedom. The idea of this 

paper is to use the available degrees of freedom to increase the 

total SCC efficiency. Architecturally, the multiphase SCCs can 

be divided into two classes. In the first one, the flying capacitors 

are always connected in series by a one-dimensional (1D) array 

of switches. The 1D class is represented by two different binary 

SCCs [3], [4] and the generalized Fibonacci SCC [5]. In the 

second class, groups of the flying capacitors or the capacitors 

themselves are connected in series and in parallel. All the 

necessary connections are provided by a two-dimensional (2D) 

array of switches. Note that some combinations available in a 

1D array can be not available in a 2D array.  

The 2D class is represented by the Capacitive Transposed 

Series-Parallel (GTSP) topology [6], the so-called GFN based 

SCCs [3], [7] and the binary-ternary SCC [8]. It should be noted 

that for the GFN based SCCs a special 2D array of switches has 

never designed. Theoretically, 4 flying capacitors in this SCC 

allow obtaining 17 different conversions ratios. Thus, the total 

efficiency will have 17 peaks as shown by solid line in Fig. 2. 

The objective of this paper is to introduce additional conversion 

ratios to the GFN based SCC. To this end a new signed-digit 

number system with high redundancy is used. The dashed line 

in Fig. 2 shows the additional peaks of efficiency. It should be 

noted that some conversion ratios can be obtained in different 

ways and therefore the same peak may have different height.  

 

II. SIGNED TERNARY FIBONACCI (STF) REPRESENTATIONS 

For the initial values 𝐹−1 = 1 and 𝐹0 = 0 the Fibonacci 

numbers are defined as: 

 𝐹𝑖 = 𝐹𝑖−1 + 𝐹𝑖−2  (1) 

First eight Fibonacci numbers are given in Table I. 

Table I: 𝐹𝑖 for 𝑖 = 1 … 8. 

𝑖 1 2 3 4 5 6 7 8 

𝐹𝑖 1 1 2 3 5 8 13 21 

Let us denote by 𝛼 and 𝛽 the cases when only odd or only 

even indices are used. Any natural number 𝑁𝑛
𝛼 ∈ [0, 𝐹2𝑛−1] or 

𝑁𝑛
𝛽 ∈ [0, 𝐹2𝑛] with a resolution 𝑛 can be represented as a sum 

of the Fibonacci numbers:  

 𝑁𝑛
𝛼 = ∑ 𝐴𝑗𝐹2(𝑛−𝑗)+1

𝑛

𝑗=1

 (2) 

 𝑁𝑛
𝛽 = ∑ 𝐴𝑗𝐹2(𝑛−𝑗)+2

𝑛

𝑗=1

 (3) 

where 𝐴𝑗 ∈ {0, 1, 2}. It has been shown in [9], [10] that the 

representations (2) and (3) are unique if any two consecutive 2s 

are separated by at least one 0. Each of these representations is 

referred hereinafter to as “original code”. For 𝑛 = 1, 2 the 

original codes of 𝑁𝑛
𝛼 = 1 … 5 and 𝑁𝑛

𝛽 = 1 … 8 are given in 

Table II. 
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Fig. 1: The equivalent circuit of a SCC. Fig. 2: The expected total efficiency of the proposed SCC. 
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Table II: Original codes for 𝑁 = 1 … 8. 

𝑁 
𝐹5 𝐹3 𝐹1 𝐹6 𝐹4 𝐹2 

5 2 1 8 3 1 

1 0 0 1 0 0 1 

2 0 1 0 0 0 2 

3 0 1 1 0 1 0 

4 0 1 2 0 1 1 

5 1 0 0 0 1 2 

6 1 0 1 0 2 0 

7 1 1 0 0 2 1 

8 1 1 1 1 0 0 

Let us consider an addition of two digits in the original code. 

Substituting 𝑘 = 𝑖 + 1 into (1), we can write: 

 𝐹𝑘 = 𝐹𝑘+2 − 𝐹𝑘+1 and 2𝐹𝑘 = 𝐹𝑘+1 + 𝐹𝑘−2 (4) 

Summing these two expressions, we obtain: 

 
3𝐹𝑘 = 𝐹𝑘+2 + 𝐹𝑘−2

4𝐹𝑘 = 𝐹𝑘+2 + 𝐹𝑘 + 𝐹𝑘−2
 (5) 

The indices 𝑘 ± 2 in (5) mean that adding 2 to 𝐴𝑗>0 gives two 

carries, one position to the left and to the right. For 𝐴𝑗=1 the 

sum is equal to 0, and for 𝐴𝑗=2 it is 1. 

For a resolution 𝑛 we define Signed Ternary Fibonacci (STF) 

representations for fractions 𝑀𝑛
𝛼 ∈ [0, 1] and 𝑀𝑛

𝛽 ∈ [0, 1] as: 

 𝑀𝑛
𝛼 = 𝐴0+ ∑ 𝐴𝑗

𝐹2(𝑛−𝑗)+1

𝐹2𝑛+1

𝑛

𝑗=1

 (6) 

 𝑀𝑛
𝛽 = 𝐴0+ ∑ 𝐴𝑗

𝐹2(𝑛−𝑗)+2

𝐹2𝑛+2

𝑛

𝑗=1

 (7) 

where 𝐴0 ∈ {0, 1} and 𝐴𝑗 ∈ {0, ±1, ±2}. Since 𝐴𝑗 takes the 

negative values, both of the STF representations have high 

redundancy. The original codes for 𝑀𝑛
𝛼 and 𝑀𝑛

𝛽 correspond to 

those for 𝑁𝑛
𝛼 and 𝑁𝑛

𝛽. Considering this correspondence, we will 

write hereinafter just “original code” of 𝑀 . 

A rule for spawning the STF codes: Add 2 to any 𝐴𝑗>0  in 

the original code of 𝑀 ≥ 1 2⁄ . This will give either 0 or 1 and 

two carries. To keep the value of 𝑀 , subtract 2 from the 

obtained 𝐴𝑗 and spawn thereby a new STF code. The above 

procedure repeats for all 𝐴𝑗>0 in the original code and for all 

𝐴𝑗>0 in each new STF code. For the complementing fraction, 

1 − 𝑀 , multiply all the obtained STF codes of 𝑀  by −1 and 

add 1 to every 𝐴0. 

Corollary 1: For a resolution 𝑛, the minimum number of STF 

codes is 𝑛+1. This is because each 𝐴𝑗>0 in the original code 

gives a new STF code and two carries. These carries propagate, 

such that each 0 in the original code is turned to 𝐴𝑗>0, which 

is also operated on to spawn a new STF code.  

Corollary 2: Each 𝐴𝑗>0 (𝑗>0) in the STF code gives at least 

one 𝐴𝑗<0  in the same position 𝑗 of another STF code. This is 

because the spawning rule involves subtracting 2 from 𝐴𝑗<2. 

Fig. 3 shows how the first STF code for 𝑀2
𝛼= 4 5⁄  and for 

𝑀2
𝛽= 7 8⁄  is spawned from the corresponding original code. 

Since 𝐹−1 = 𝐹1 = 1, the LSB overflow in the case of odd 

indices (𝑀𝑛
𝛼) means that we just need to add 1 to the LSB digit. 

In the case of even indices (𝑀𝑛
𝛽) this overflow is disregarded, 

since 𝐹0 = 0. For 𝑛 = 1 the STF codes are given in Table III 

and coincide with the corresponding GFN codes.  
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Table III: The STF codes for 𝑀1
𝛼 and 𝑀1

𝛽
. 

𝑀1
𝛽= 1 3⁄  𝑀1

𝛼= 1 2⁄  𝑀1
𝛽= 2 3⁄  

𝐴0 𝐴1 𝐴0 𝐴1 𝐴0 𝐴1 

1 -2 0 1 0 2 

0 1 1 -1 1 -1 
 

Fig. 3: Spawning a first STF code for 𝑀2
𝛼= 4 5⁄  (a) and for 𝑀2

𝛽= 7 8⁄  (b). 

 

For 𝑛 = 2 the STF codes are given separately for the case of 

odd and even indices in Table IV and Table V respectively. 
 

Table IV: The STF codes for all the conversion ratios 𝑀2
𝛼. 

𝑀2
𝛼= 1 5⁄  𝑀2

𝛼= 2 5⁄  𝑀2
𝛼= 3 5⁄  𝑀2

𝛼= 4 5⁄  

𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 

1 -1 -2 1 -1 -1 0 1 1 0 1 2 

1 -2 0 1 -2 1 0 2 -1 0 2 0 

0 1 -1 0 1 0 1 -1 0 1 -1 1 

0 0 1 0 2 -2 1 -2 2 1 0 -1 

   0 0 2 1 0 -2    

 
III. TRANSLATING STF CODES TO SCC TOPOLOGIES 

The rules for translation the STF codes to SCC topologies 

are a particular case of the corresponding rules for the GFN 

based SCCs [3], [7]. Let us have a voltage source 𝑉𝑖𝑛, a set of 

2𝑛 flying capacitors and an output capacitor, 𝐶𝑜, connected in 

parallel with a load 𝑅𝑜. The flying capacitors are divided into 

𝑛 groups of two capacitors 𝐶𝑗.1 and 𝐶𝑗.2 in each group 𝑗. For a 

given 𝑀 , the interconnections of 𝑉𝑖𝑛, 𝐶𝑗.1,2 and 𝐶𝑜 are carried 

out according to the following rules: 

1) If 𝐴0 = 1 then 𝑉𝑖𝑛 is connected. 

2) If 𝐴0 = 0 then 𝑉𝑖𝑛 is disconnected. 

3) If 𝐴𝑗 = -2 then 𝐶𝑗.1 and 𝐶𝑗.2 are connected in series with 

the same polarity and charged.  

4) If 𝐴𝑗 = -1 then 𝐶𝑗.1 and 𝐶𝑗.2 are connected in parallel 

and charged. 

5) If 𝐴𝑗 = 0 then 𝐶𝑗.1 and 𝐶𝑗.2 are disconnected.  

6) If 𝐴𝑗 = 1 then 𝐶𝑗.1 and 𝐶𝑗.2 are connected in parallel and 

discharged.  

7) If 𝐴𝑗 = 2 then 𝐶𝑗.1 and 𝐶𝑗.2 are connected in series with 

the same polarity and discharged 

Let us assume that in steady-state all the capacitors in the SCC 

topologies of Fig. 4 are charged to constant, but unknown 

voltages 𝑉1 = 𝑉1.1 = 𝑉1.2, 𝑉2 = 𝑉2.1 = 𝑉2.2 and 𝑉𝑜. 
 

Table V: The STF codes for all the conversion ratios 𝑀2
𝛽

. 

𝑀2
𝛽= 1 8⁄  𝑀2

𝛽= 2 8⁄  𝑀2
𝛽= 3 8⁄  𝑀2

𝛽= 4 8⁄  𝑀2
𝛽= 5 8⁄  𝑀2

𝛽= 6 8⁄  𝑀2
𝛽= 7 8⁄  

𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 𝐴0 𝐴1 𝐴2 

1 -2 -1 1 -2 0 1 -1 -2 0 1 1 0 1 2 0 2 0 0 2 1 

0 0 1 0 1 -1 1 -2 1 0 2 -2 0 2 -1 1 -1 1 1 0 -1 

0 1 -2 0 0 2 0 1 0 1 -1 -1 1 -1 0 1 0 -2 1 -1 2 

         1 -2 2          
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Fig. 4: Topologies of the ternary Fibonacci step-down SCC with the 

conversion ratio 𝑀2
𝛼 = 4 5⁄ . 

To find these voltages we apply Kirchhoff’s Voltage Law 

(KVL) to each topology, which leads to the following system 

of four linear equations: 

 

(

  
 

1 2 −1
2 0 −1

−1 1 −1
0 −1 −1)

  
 

×

(

  
𝑉1

𝑉2

𝑉𝑜)

  =

(

  
 

0
0

−1
−1)

  
 

𝑉𝑖𝑛 (8) 

Solving this system, we obtain: 𝑉1 = (2
5⁄ )𝑉𝑖𝑛, 𝑉2 = (1

5⁄ )𝑉𝑖𝑛, 

𝑉𝑜 = (4
5⁄ )𝑉𝑖𝑛. It is evident that (8) is overdetermined. We can 

eliminate the redundant equations and rewrite (8) as: 

 

(

  
  
  

1 0 1 1 −1
1 −1 0 0 0

−1 0 1 0 −1
0 0 1 −1 0
0 0 −1 0 −1)

  
  
  

×

(

  
  
  
 

𝑉1.1

𝑉1.2

𝑉2.1

𝑉2.2

𝑉𝑜 )

  
  
  
 

=

(

  
  
  

0
0

−1
0

−1)

  
  
  

𝑉𝑖𝑛 (9) 

Strictly speaking, it is necessary to prove that for any resolution 

𝑛 the KVL system composed of the SFT codes has a unique 

solution. Corollaries 1 and 2 are just a step towards this proof.  

 

IV. TWO-DIMENSIONAL (2D) ARRAY OF SWITCHES 

In the topologies of the ternary Fibonacci SCC each group 

of the capacitors needs to change the connection polarity or be 

disconnected {0, ±1}. In turn, the capacitors within each group 

need to have two types of connections {1, 2}. The 1D array of 

switches considered in [3], [5], [7], [11] provides all the above 

connections and is shown in Fig. 5. The disadvantages of this 

array are that the capacitors cannot be connected directly to the 

input and output and cannot be connected directly one to each 

other. Let all the switches in Fig. 5 have the same on-resistance, 

then topology  in Fig. 4 will look as shown in Fig. 6. 
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Fig. 5: The 1D array of switches used in the previous SCCs, where the 

capacitors are always connected in series.  
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Fig. 6: Topology  in Fig. 4 obtained using the 1D array in Fig. 5.  
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Fig. 7: The proposed 2D array of switches used to obtain the SFT topologies.  
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Fig. 8: Topology  in Fig. 4 obtained using the 2D array in Fig. 7. 

It is evident that the output current in Fig. 6 can be increased 

by adding the resistors (e.g. between 𝐶1.1 and 𝐶2.2). In the 

situation we have, the currents through some resistors will 

differ. This implies that some switches in Fig. 5 will heat 

differently. The currents can be equalized by setting different 

values of on-resistances. However, such a procedure will be 

complicated and not effective, since the topologies for each 𝑀  

may differ dramatically. The problem of direct connection to 

the input and output arises when the SCC operates with low 

resolution. Let us suppose that 𝐶2.1 and 𝐶2.2 in Fig. 6 are not 

used and we want to connect minus of 𝐶1.2 to the output. For 

this, we need three switches in the 1D array in Fig. 5. They are 

connected in series, such that their resistances are summed up 

that increases 𝑅𝑒𝑞, and consequently, increases the losses. 

To connect each of the capacitors to the input and output, we 

can add the corresponding switches into the 1D array in Fig. 5. 

However, in the case of maximum resolution (Fig. 6) these 

switches are not used and therefore cannot increase the output 

current. Thus, we need to use a separate 1D array for each group 

of capacitors that leads us to the 2D array shown in Fig. 7. This 

array comprises 4 switches in each row and in each column plus 

4 switches for each capacitor. Fig. 8 shows how the 2D array 

introduces 3 additional resistors into the circuit in Fig. 6. 

 

V. SIMULATION RESULTS 

The proposed SCC has been simulated in PSIM 9.1 using 

the 2D array shown in Fig. 7. It comprises 32 bidirectional 

switches with an on-resistance of 1.2Ω. Each 𝐶𝑗.1,2 = 4.7𝜇𝐹 , 

𝑉𝑖𝑛 = 8V, and the time slot allotted for each topology 𝑡 = 5𝜇𝑠. 

Since 𝑅𝑒𝑞 is defined for the average (DC) output current, 𝐼𝑎𝑣, 

it is evident from the SCC equivalent circuit in Fig. 1 that  

 
𝑅𝑒𝑞 =

𝑀𝑉𝑖𝑛 − 𝑉𝑜

𝐼𝑎𝑣

 and 𝜂 =
𝑅𝑜

𝑅𝑒𝑞 + 𝑅𝑜

 (10) 

To measure 𝐼𝑎𝑣, we use the examination circuit presented in 

Fig. 9, where 𝑉𝑜 = 0.95𝑀𝑉𝑖𝑛. First the SCC reaches steady 

state, and then 𝐼𝑎𝑣 is read. The efficiency, 𝜂, was calculated for 

𝑅𝑜 = 100Ω. The values of 𝑅𝑒𝑞 and 𝜂 are given in Table VI. 
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Fig. 9: Examination circuit for the SCC. 

The steady-state output current, 𝐼𝑜, is presented in Fig. 10 for 

𝑀2
𝛼 = 4 5⁄  and in Fig. 11 for 𝑀1

𝛼 = 1 2⁄  and 𝑀2
𝛽 = 4 8⁄ . 

Table VI: Measured and calculated parameters. 

𝑀  𝐼𝑎𝑣, mA 𝑅𝑒𝑞, Ω 𝜂, % 

 1 8⁄ , 7 8⁄  153.25 2.284 97.77 

 1 5⁄ , 4 5⁄  144.81 2.210 97.84 

 1 4⁄ , 3 4⁄  120.36 2.493 97.57 

 1 3⁄ , 2 3⁄  170.29 1.566 98.46 

 3 8⁄ , 5 8⁄  109.39 2.285 97.77 

 2 5⁄ , 3 5⁄  104.93 2.287 97.76 

 4 8⁄  69.886 2.862 97.22 

 1 2⁄  195.15 1.025 98.99 
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Fig. 10: The steady-state output current in the 4 topologies of  

 𝑀2
𝛼 = 4 5⁄  shown in Fig. 4.  
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Fig. 11: The steady-state output current. Upper trace: in the 2 topologies of 

𝑀1
𝛼 = 1 2⁄ . Bottom trace: in the 4 topologies of 𝑀2

𝛽 = 4 8⁄ . 

 

VI. CONCLUSIONS 

Based on the numeral systems using the Fibonacci numbers 

with odd and even indices, two new STF representations have 

been proposed. The fact that these representations are redundant 

means that the SCC control needs to be multiphase. To obtain 

the STF codes, an iterative rule is used. The corollaries of this 

rule provide necessary (but not sufficient) condition for correct 

operation of the proposed SCCs. To increase the output current, 

the 2D array of switches has been developed. This array can also 

be used to obtain the conversion ratios available in the GFN 

based SCCs. In case if the 1D class of SCCs is not considered, 

the proposed SCC with 4 flying capacitors allows one to obtain 

22 conversion ratios. Among them 17 are available, but have 

never been realized in the GFN based SCC. These 17 conversion 

ratios include 7 that have been obtained using the proposed 

method. Additional 4 conversion ratios, namely {1
8⁄ , 3

8⁄ , 5
8⁄ , 7

8⁄ },  

were first introduced in this paper. 

 The efficiency of the proposed SCC in the simulations for 

each conversion ratio at 𝑅𝑜 = 100Ω is above 97%. As evident 

from Table VI and Fig. 11, for the same 𝑀1
𝛼 = 𝑀2

𝛽 = 1 2⁄  we 

have different values of 𝑅𝑒𝑞 and different form of the output 

voltage ripple. This feature is useful if one needs to regulate 𝑉𝑜 

in the intervals between the conversion ratios. In general case, 

the regulation is done by frequency or/and duty cycle control, 

but at the expense of increased losses and consequently, a lower 

efficiency. The ripple of the output current can be reduced by 

switching the topologies forward and backward [11]. It would 

be interesting to realize the 2D array of switches on-chip, that is 

to develop further the idea of field programmable array [12]. The 

proposed SCCs can be considered as an analog computer that 

uses an iterative method to solve the systems of linear equations. 
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