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Abstract - In this paper we perform an entropy analysis
and probability distribution analysis over simulated PUFs
operating under a compensated measuring digitization
scheme. The behavior of the PUFs have been simulated
by generating a set of pseudorandom numbers uniformly
distributed, which simulate the measured parameters,
using the definition of the so called ''topology of the PUF"',
i.e. the way in which different parameter measurements
are compared to obtain a digital binary output. At this
respect, we prove the existence of a shortcoming in the
most commonly used PUF topologies. as well as provide
some guidelines to overcome it.
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I. INTRODUCTION

Physically Unclonable Functions (PUFs) are a developing
alternative to ensure cryptographic security in systems whose
physical support is intended to be out of control (portable
devices, internet of things, etc), and thus vulnerable to physical
attacks such as invasive and side channel attacks [1], [2],
[3], [4], [5]. Electronic PUFs are understood as pieces of
hardware which provide a digital response when exposed to
a suitable stimulus. Traditionally PUFs have been classified
depending on the size of this stimuli space as either weak if it
is small (i.e. it can be exhausted in polynomial or less time)
or strong (otherwise) [3]; however it has been proved by some
authors [4] that the amount of information within a given space
is upperly bounded by fundamental physical arguments [6]
to be asymptotically polynomial on the physical parameters
of this space, thus deprecating the “classical” definition of
weak/strong PUFs in terms of complexity theory. For the
sake of simplicity on this communication we will attach to
the “weak/strong” terminology in the sense that the challenge
space of a strong PUF will not be exhausted in a reasonable
amount of time, while weak’s might be.

As a consequence of this intrinsic difference, both types
of PUFs behave in a dramatically different way, and thus
they find application in very different fields: weak PUFs
(also called Physical Obfuscated Keys) provide a secure key
“storage” mechanism in which keys are re-generated from

hardware-specific features of the device rather than stored
in non-volatile memories [1], [2], [3], while strong PUFs
can be used in identification/authentication protocols as well
as key generation [3], [5]. However, in the last few years
some work has been made in proving a number of believed
strong PUFs (e.g. arbiter PUF, XOR arbiter PUF, etc) to be
vulnerable to machine learning driven modeling attacks, since
this kind of PUFs usually lack of a limitation in the number of
stimulus-response pairs (usually called “challenge-response”
pairs, CRP) that an adversary can harvest [7].

In this paper, a new method to asses the security of PUFs
based on a statistical entropy analysis has been proposed.
This method is of application to any type of PUF whose
digitization procedure is based on compensated measuring [5],
i.e. pair comparison of responses extracted from identically
designed hardware; the main example of this scheme is the
ring oscillator PUF (RO-PUF).

The methodology developed in this paper has been used to
compare the security of three different well-known topologies
of RO-PUFs: I-out-of-2, N-1, and All-pairs. Finally, a new
topology, called k-modular has been introduced and compared
with the previous ones. The entropy analysis shows that this
new topology presents some clear advantages with respect to
the previous architectures.

II. BACKGROUND

Given an implementation of a matrix of ring oscillators,
there exists a number of measurement protocols which affects
dramatically the performance of this system as a PUF. These
protocols are designed to obtain a digital binary response from
an intrinsically analog system such as a matrix of frequency-
meters, and are based on the comparison of pairs of ring
oscillators a, b in such a way that the system deploys a “0” if
a < b, or “1” otherwise [9], [10]. From now on we will refer
to the specific way in which pairs of oscillators are compared
as the fopology of the RO-PUF instance; given N different
oscillators there could be a total of N(N—1)/2 comparisons,
which however will show some degree of correlation because
of the transitive property of the ordering operation,
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The least upper bound to the entropy of such a system is
known to be log, N! bits [2], which can be easily understood
considering that since bits are generated from comparison of
frequency-meters, the actual value of the measured frequencies
are irrelevant: the state of the system is specified by the
frequency-ordered array of oscillators only, thus it follows that
every single state of the system can be constructed by changing
the order of the oscillators; since there are N! different ways of
ordering the array, information theory dictates that the entropy
of the system (i.e. the maximum extractable entropy) is given
by log, N! bits, which is obvious from the fact that a trivial
outcome from such a system would be the ordering number
of a specific implementation; since there are N! different
possible orderings there exist V! different possible outcomes,
which require log, N! bits to be specified. Nevertheless, the
implementation of a topology which maximizes the number
of independent bits extracted from this kind of system is
complex and chip-dependent, which at the end of the day
turns out to leave two main design options, as reviewed in
the literature: the so called I out of k topology [2], [5], [11],
and the N-1 bits topology [12]. The first of these takes one bit
out of k different oscillators without repetition, by selecting
the pair whose characteristic frequencies are further apart
from each other. This scheme presents some advantages as it
helps to strengthen the system against environmental variations
(particularly temperature changes), at the cost of a large lost
in performance since the extracted entropy per oscillator ratio
decreases by a factor of k. On the other hand, the N-I bits
strategy is an attempt to maintain the system within reasonable
limits of environmental-robustness by performing comparisons
between adjacent oscillators, while increasing the entropy
outcome to approximately N bits.

III. MEASURING SETUP

In this work we will investigate the probability distributions
that emerge from different topologies 7 when applied to
a set of M numerically simulated frequency arrangements,
{Q’}f\il Each of this frequency arrays ) represents a dif-
ferent RO-PUF realization and contains N random numbers,
{wilwje @}, 0<w<l @)
which emulate the frequency measurement of each oscillator
within the specific instance. Thus the numerical apparatus
Eval that we designed takes two parameters 7 and {w?},
and produces a probability distribution p(x) of the RO-PUF
outcome,

Eval :
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In plain words, the system evaluates each frequency array
according to the instructions provided by a specific topology,
obtaining a binary word. The numerical experiment for each
topology is carried out over a set of ten million different arrays.
Once all binary words have been recovered, they are converted
into decimal numbers (for the sake of statistical analysis)
and used to construct the histogram that approximates the
distribution p(z) of the underlying system.

Figure 1.
oscillators.

Total entropy for each topology analyzed against the number of

Figure 2. Entropy per bit ratio against the number of oscillators.

From these distributions we extract a number of interesting
metrics which have been used as figures of merit: the entropy
per bit ratio S/vit in Fig. 2 might be used to characterize re-
sistance against cryptanalysis, while the entropy per oscillator
ratio S/~ in Fig. 3 influences performance regarding area and
power consumption. Additionally the total Shannon entropy
S and the product S°/n.vit are shown in figures 1 and 4
respectively. All these figures are presented all along with the
supremum value (green line) for each metric.

In the next section, we will show the probability distribu-
tions obtained for different topologies, proving these to be
non-uniform, indicating a potential weakness for this kind of
PUFs whose digitization system is based in pairs comparison.

IV. NUMERICAL RESULTS

In our research we have explored four different topologies:

A. I-out-of-2

In this topology, each bit is obtained by comparing two
adjacent oscillators without repetition, i.e. ¢ and 741 oscillators
produce the %—th bit, thus¥N/2 bits are extracted from N
oscillators. This kind of digitization and others within the /-
out-of-k family (which are expected to behave in a similar
way) are the most common topologies found in literature. It
produces a plain distribution (Fig. 5) because of the lack of
repetition in oscillators comparison, i.e. a high entropy per bit
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Figure 3. Entropy per oscillator ratio against the number of oscillators.

Figure 4. S/vit X S/Ncurve for each topology analyzed. This quantity can
be used as figure of merit as intends to comprise both entropy per bit and
entropy per oscillator ratio within a single curve.

ratio (~ 1, see red dotted line in Fig. 2) which however comes
at the cost of a poor entropy per oscillator ratio of ~ 1/2, red
dotted line in Fig. 3. This results suggest that this topology
is a deeply conservative one, thus useful on systems without
power or area restriction, but might be of less use on mobile
and wireless devices.

B. N-1 topology

In this topology NV —1 bits are extracted from N oscillators
by comparing oscillators ¢ and 2+ 1 in order to obtain the i-th
bit, 1 <i < N — 1. This topology suffers a shortcoming that
arises from the fact that the PUF is trying to accommodate
N1 states on N — 1 bits (which have room for 2V~ different
states, see Fig. 6), i.e. there exists some permutations of
oscillators that leave invariant the comparison pattern between
oscillators pairs, thus leading to identical outcomes for two
different PUF realizations. If managed carefully, an adversary
could take some advantage from this collision probability, for
example by presenting fraudulent keys cleverly chosen in a
probability-descendant way: it would be expected that such an
adversary would succeed in impersonating the legit PUF much
faster than one trying to exhaust the space of keys in a random
fashion (yet further research in this direction is necessary). The
total entropy as a function of the number of oscillators was
found to be linearly dependent (see black dotted line at Fig.
1), while entropy per bit (Fig. 2) and entropy per oscillator
(Fig. 3) evolves to saturation.

Figure 5. Outcome distribution for I-out-of-2 topology: (a) N = 12, (b)
N =16, (c) N =20, (d) N = 24.

Figure 6. Probability distribution for different number of oscillators under
N-1 topology: (a) N =4, (b) N =7, (¢c) N =10, (d) N =13.

C. All-pairs topology

Figure 7. All-pairs probability distribution for different number of oscillators
N:(a) N=3, b) N=4 () N=5 d) N=T.

In this case digitization process is carried out by exhausting
all possible comparison in the matrix of oscillators, thus
N(N-1)/2 pair bits are deployed. This way of extracting strings
from the RO-PUF is infrequent in literature, since it suffers
from a deep correlation as stated by expression 1. However,
we have found it interesting to include it in our work for the
sake of completeness.

Fig. 7 shows the distribution probability of the All-pairs out-
comes; this histogram leaves a large number of blank spaces
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throughout the possible decimal outcomes as expected, since
the bit correlation prevents 2" *~V/> — N states from being
visited; however, interestingly enough the system is uniformly
distributed over the remaining N! values. The escalation of
the entropy with the number of oscillators is shown in Fig. 1
(pink dotted line)

Since each state consists of all possible pairs that can
be made out of a N oscillator matrix, any other topology
construction 7y will have a space of states which will be
a subset of the All-pairs space, and thus the entropy of Ty
will be minor or equal than that of All-pairs. This still stands
for a construction such that it extracts the maximum possible
entropy from the matrix, thus implying that All-pairs actually
deploys the maximum possible entropy, log, N! (see pink
dotted line overlapping green line in Fig. 1).

D. k-modular topology

Figure 8. Probability distributions of the outcome on 3-modular topology for
different number of oscillators: (a) N = 6, (b) N =9, (¢c) N = 12, (d)
N =18.

Figure 9. Probability distribution(a) N = 8, (b) N = 12.

The family of k-modular topologies, which have not been
reported before to the best of our knowledge, represents an
attempt to combine the benefits of avoiding repetition in
oscillators comparison while keeping a high S/n ratio. In order
to achieve that goal the matrix of oscillators is divided in
N/k groups of k oscillators; each of this modulus is treated
like an independent RO-PUF of N = k oscillators, which is
evaluated in an All-pairs fashion as to produce ¥(k—1)/2 bits.
Thus the total number of bits extracted from this topology is
N(k-1)/2 bits. Since every modulus is unconnected to the rest
and entropy turns out to be an additive magnitude, the total
entropy deployed by this system is expected to be:

N
§ = x log, M (4)

Correspondingly the entropy per bit and entropy per oscil-
lator ratios are given by:

S log, k!
bit  k(k—1) )
S log, k!

N- & (6)

The probability distributions for the specific cases of k = 3
and k£ = 4 are shown in figures 8 and 9 respectively; both
of these show a clear improvement in uniformity of the
distribution with respect to the N-I topology case shown in
Fig. 6. According to expression 4, entropy is expected to be
linearly dependent on IV (see orange and blue dotted lines in
Fig. 1), while entropy per bit ratio will be constant on the
number of oscillators and expected to equal S/vic ~ 0.86 for
k = 3 and S/bit = 0.76 for k = 4 (Fig. 2), and 5/~ ~ 0.86 for
k =3 and S/~ = 1.15 for k = 4 (Fig. 3).

Regarding the uniformity of the distribution, this topology
promises to be more robust against a “clever search” attack
as proposed against N-I topology. However, it is noticeable
that the entropy extracted per bit is lesser than that of either
1-out-of-2 or N-1 topologies, which suggests the existence of
different vulnerabilities other than the non-uniformity of prob-
ability distribution. Nevertheless the efficiency of the system in
terms of entropy per oscillator seems to improve with respect
to other topologies while keeping higher S/vit than All-pairs
comparison, which could make this digitization proposal an
interesting alternative for resource-limited systems.

V. CONCLUSIONS

Throughout this work we have analyzed the outcome prob-
ability distribution of compensated measurement PUFs, of
which the best known example is RO-PUF, where the output
frequencies of ring oscillators pairs are compared to generate
an output binary string.

The PUF instances have been simulated with an array of
N uniformly distributed pseudorandom numbers as well as a
topology, i.e. a “recipe” specifying the exact way in which
the comparison will be carried out. A large set of ten million
different PUFs realizations is generated in a sort of Monte-
Carlo simulation as to ensure enough statistic about the output
distribution.

The metrics used to evaluate each probability distribution
were: the total entropy of the distribution, the entropy per bit
and entropy per oscillator ratios. From this figures of merit
we can conclude that our proposed system performs better
than others in terms of entropy per bit, while retaining a
high entropy per oscillator ratio. However, it is noticeable
that a system performing all possible comparisons might be
underestimated in PUF design practice, since it reaches a
good commitment between entropy per bit and oscillator ratios
despite the large correlation between some bits.

Experimental validation over physically implemented PUFs,
which is necessary in order to evaluate the influence of spatial
correlation regarding FPGA implementation, will be provided
in the final version of this paper on the basis of RO-PUF
implementation, although the results shown are of application
to a wider range of PUF types.
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