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Abstract— In a standard pose-graph formulation of simul-
taneous localization and mapping (SLAM), due to the con-
tinuously increasing numbers of nodes (states) and edges
(measurements), the graph may grow prohibitively too large
for long-term navigation. This motivates us to systematically
reduce the pose graph amenable to available processing and
memory resources. In particular, in this paper we introducea
consistent graph sparsification scheme: i) sparsifying nodes via
marginalization of old nodes, while retaining all the information
(consistent relative constraints) – which is conveyed in the
discarded measurements – about the remaining nodes after
marginalization; and ii) sparsifying edges by formulating and
solving a consistentℓ1-regularized minimization problem, which
automatically promotes the sparsity of the graph. The proposed
approach is validated on both synthetic and real data.

I. I NTRODUCTION

Recently, most popular solutions to the simultaneous lo-
calization and mapping (SLAM) problem, either in batch
or incremental fashion, are based on graph optimization
(i.e., all robot poses and/or landmark positions comprise the
nodes of the graph, while each edge encodes a measurement
constraint) [1]–[4]. However, a standard graph formulation
may suffer from unbounded complexity of both processing
and memory, which can grow continuously over time. This is
due to the fact that new robot poses (and new landmarks in
the case of feature-based SLAM) are constantly being added
into the graph, resulting in the number of nodes increasing
constantly in time; and moreover, if frequent loop-closing
events occur in SLAM, loop-closure constraints (edges) can
significantly increase the density of the graph. This, for
example, can be the case where a service robot is operating
inside an office building for an extended period of time.

Even though the issue of reducing the complexity of graph
optimization, in particular, for SLAM, has recently been
addressed [5]–[9], to the best of our knowledge, little work
has yet explicitly taken into account estimation consistency
(i.e., unbiased estimates, and the estimated covariance larger
than or equal to the true covariance [10]) in the design of
graph reduction (sparsification) scheme. This is a significant
limitation, since if an estimator is inconsistent, then the
accuracy of the computed state estimates is unknown, which
in turn makes the estimator unreliable.

To address the aforementioned issue, in this paper we
study in-depthconsistentgraph sparsification for SLAM, and
explicitly enforce consistency during sparsifyingboth nodes
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and edges of the graph. In particular, the main contributions
of this work are the following:

• We sparsify the nodes of the graph by marginalization
of old, matured (accurately estimated) nodes when loop
closure occurs, and deriveconsistentrelative constraints
for (a subset of) the remaining nodes, which encapsulate
all the information – conveyed in the discarded mea-
surements at the time of marginalization – about the
remaining nodes. As a result, the problem size (i.e., the
number of optimization variables) is boundedonly by
the explored area, and independent of the exploration
time. Although marginalization (Schur complement) is
commonly used to reduce the size of the state vector
in batch estimation [11], when applied to graph-based
incremental estimation, to the best of our knowledge,
little work has been shown to optimally (and thus con-
sistently) extract all the information about the remain-
ing nodes from the discarded measurements and then
propagate it to subsequent optimization. In contrast, we
explicitly derive from the discarded measurements the
consistent (i.e., without reuse or loss of information)
relative constraints for the remaining nodes that are
also involved in the discarded measurements. These
induced constraints, in general, arecorrelated, instead
of independent as assumed in most prior work, and are
used as new measurements in subsequent estimation.

• Furthermore, we sparsify the edges of the graph by
formulating and solving aconsistentℓ1-regularized min-
imization problem. In particular, due to marginalization
of old nodes as well as frequent loop closures, it may
become necessary to systematically remove some edges
so as to reduce the processing and memory require-
ments. Towards this end, we formulate the sparsifica-
tion of graph edges as a novel consistency-constrained
ℓ1-regularized minimization problem, which implicitly
imposes the sparsity of the solution due toℓ1 norm. As
a result, its solution renders the sparsified graph which
consistently approximates the original dense graph (i.e.,
by definition, the covariance of the resulting sparsified
graph is larger than or equal to that of the original
one). It is interesting to point out that, whileℓ1-
minimization has been extensively studied in compres-
sive sensing [12], the application to graph sparsifica-
tion treated in this paper is expected to promote its
widespread adoption in robotics.

II. RELATED WORK

The SLAM problem has received considerable attention
over the past two decades and many different estimators were
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employed for solving it. In particular, filtering methods such
as the extended Kalman filter (EKF) recursively estimate
a state vector consisting of the current robot pose and the
observed landmarks [13]–[16]. One appealing property of
such a filtering algorithm is its bounded runtime with respect
to the size of the explored environment, while the quadratic
computational complexity limits its applications to large
areas. Moreover, due to the fact that any linearization-based
filter marginalizes out the previous robot poses, it cannot
relinearize the nonlinear system and measurement models at
the past states, which may result in large linearization errors
and degrade the performance.

A. Graph optimization

Graph-based batch optimization methods for SLAM re-
cently have prevailed (e.g., [1], [3], [4], [17]–[23]). These
methods follow the paradigm of bundle-adjustment (BA)
algorithms originally developed in photogrammetry and com-
puter vision [11], and formulate and solve a batch least-
squares problem for the entire robot trajectory (and all land-
marks), with no marginalization. These BA-based approaches
exploit the sparsity of the measurement graph so as to
speed up computation. However, for large-scale problems,
an optimal batch solution may still be too computationally
expensive to obtain in real time [24].

Therefore, different approximate methods for graph opti-
mization have been developed, which either use a subset of
the data to optimize over only a subset of variables, or solve
the BA problem intermittently. Specifically, sliding-window
filters (SWFs) [25], [26] compute a solution for a constant-
size, sliding window of states (robot poses and landmark
positions) using only the measurements corresponding to that
time interval. Similarly, keyframe-based approaches [27]–
[29] perform batch optimization over only a (heuristically)
selected subset of views or keyframes. On the other hand, in-
cremental approaches to BA, such as the incremental smooth-
ing and mapping (iSAM) algorithm [2], greatly reduce com-
putation by employing factorization-updating methods that
allow reusing the information-matrix factorization available
from previous time steps. Computationally demanding pro-
cedures, such as relinearization and batch factorization,are
only performed periodically. Nevertheless, the incremental
methods still suffer from increased computational cost. For
instance, due to the increased robot trajectory over time
as well as the accumulation of fill-in between periodic
batch steps, iSAM’s efficiency degrades with the increasingly
dense graph (e.g., if the number of constraints is more
than five times the number of poses as reported in [24]).
It becomes necessary to sparsify both the nodes and the
edges of the graph in order to fully take advantage of the
efficiency offered by the incremental estimation algorithms
in large environments.

B. Graph reduction

The keyframe-based approximate approaches for graph
optimization [28], [29] are among the first attempt to reduce
the pose graph for visual SLAM. As mentioned earlier,

these approaches create a sparse skeleton graph of views
(poses) and then perform batch optimization only on these
keyframes. In particular, in order to keep the density of
poses constant in a given region, old poses are marginalized
out from the skeleton graph. However, it is unclear that if
applying these methods to an incremental setting, how the in-
formation (which is conveyed in the discarded measurements
after marginalization) about the remaining poses is utilized
in future optimization. In this work, we explicitly derive the
consistentrelative constraints for (a subset of) the remaining
poses that are involved in the discarded measurements. These
induced constraints describeall the information for the
remaining states available in the discarded measurements,
and are used as new constraints in future estimation.

Similarly, in [5] marginalization is employed to reduce
graph complexity. However, since it composes the relative-
pose constraints for the remaining states directly from the
discarded measurements by geometry, during this process,
the same measurement information may be used multiple
times, which results ininconsistentconstraints. In addition,
it heuristically removes edges based on the degrees of their
nodes; when the degree of a node exceeds an ad-hoc, pre-
chosen threshold, the associated edge with the least residual
error is pruned out. We also notice that the recent work
of [8] bounds the size of the pose graph with respect to
the explored area, instead of the exploration time. To this
end, this approach does not add new nodes at loop closures
(without marginalization), while retaining new relative-pose
constraints between the existing nodes involved in the loop
closures, which are inferred directly from the discarded
measurements in a similar way as in [5].

Recently, compact pose SLAM [6] uses an information-
theoretic method to determine which poses should be added
into the state vector of the information filter [30] and
which measurements should be utilized in the estimation.
In particular, only nonredundant poses are included in the
graph if no other poses are nearby, and only highly infor-
mative loop-closure edges (computed based on the mutual
information gain) are added into the graph, while other
poses and measurements are simply discarded. This clearly
results in loss of information. Interestingly, the proposed
sparsification scheme presented in Section IV can combine
the node reduction idea of [6] to determine which nodes to
marginalize out, while retaining all the information aboutthe
remaining nodes from the discarded measurements.

More recently, an information-theoretic approach is pro-
posed to compress the pose graph,only for laser-based
SLAM [7]. Specifically, this method selects only the most in-
formative laser scans (nodes) with respect to the built map of
the environment; and moreover, it employs theapproximate
marginalization based on Chow-Liu tree to keep the sparsity
of the pose graph. However, it remains unclear that, dur-
ing this approximate marginalization, how the information
conveyed in the discarded laser scans about the remaining
nodes, is extracted and utilized in an incremental framework.
Moreover, the Chow-Liu tree approximation employed in the
marginalization in theory does not guarantee consistency.In
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contrast, both issues are explicitly addressed in our proposed
approach (see Section IV).

We also notice that the most recent publication [9] ad-
dresses the same problem of pose-graph sparsification. In [9],
a marginalization process similar to Section IV-A is used
to sparsify the nodes; and a better Chow-Liu tree-based
approximation than that of [7] is proposed to sparsify the
edges. However, the Chow-Liu tree-based sparsification yet
does not guarantee consistent estimates, which is addressed
in this paper by formulating and solving a consistentℓ1-
regularized sparsification problem.

On the other hand, conservative (consistent) sparsifica-
tion of information matrix is introduced in [31] for sparse
extended information filter (SEIF)-based SLAM [32], [33].
While this approach is closely related to the proposed sparsi-
fication of graph edges (see Section IV-B), we formulate such
consistent sparsification as anℓ1-regularized minimization
problem which implicitly promotes the sparsity byℓ1 norm
and whose solution automatically renders the sparsified in-
formation matrix (graph). As a result, the proposed approach
does not need to know which edges to eliminate beforehand,
which, however, is assumed in [31].

III. PROBLEM FORMULATION

While many problems in robotics and computer vision
can be formulated as graph (network) optimization, in this
section we focus on SLAM to illustrate the graph-based
formulation. In particular, graph-based SLAM [3] consistsof
a front-end and a back-end. The former aims to extract all the
relative-pose constraints from the raw sensor measurements
(e.g., [34]), while the latter is to compute the most likely
configuration of the poses, which is the focus of this paper.

Specifically, in the graph built during the front-end, the
robot poses are described by the nodes of the graph, and
the edges represent the spatial constraints between the
connecting nodes, which are constructed either from pro-
prioceptive (e.g., odometry) or exteroceptive measurements
(e.g., images). Letx =

[

xT
1 , . . . ,x

T
n

]T
be the robot poses

(nodes), andzij = h(xi,xj) + nij be the measurement
constraint (edge) between the nodesi and j, where noise
is commonly assumed to be zero-mean white Gaussian, i.e.,
nij ∼ N (0,Wij). The objective of the back-end is to
compute the maximum likelihood estimate (MLE) of all the
robot poses (nodes) using all the measurement constraints
(edges). By assuming independent measurements, we have
the following factorization of the measurement likelihood
function:

p(Z|x) =
∏

zij∈Z

p(zij |xi,xj) (1)

whereZ = {zij} denotes all the measurements (edges). By
using the Gaussian-noise assumption and taking the negative
logarithm of (1), we can easily show that maximizing the
likelihood (1) is equivalent to minimizing the following least-
squares cost function:

x̂ = argmin
x

c(x) := argmin
x

∑

zij∈Z

||zij − h(xi,xj)||
2
Wij

(2)

where we have used the notation||r||2
W

= rTW−1r, i.e., the
squared Mahalanobis distance of residualr with covariance
W. This is anonlinearleast-squares problem because of the
nonlinearity of the constraintsh(·).

A standard iterative Gauss-Newton approach is often used
for solving (2). In particular, at thek-th Gauss-Newton
iteration, a correction,δx(k), to the current estimate,̂x(k),
is computed by minimizing the second-order Taylor-series
approximation of (2), which can be written as:

c(x̂(k) + δx) ≃
∑

zij∈Z

||zij − h
(

x̂
(k)
i , x̂

(k)
j

)

−H
(k)
ij δx||2

Wij

=: ||J(k)δx− r(k)||2 (3)

where we linearize the measurement constraints at the current
state estimate with Jacobians,H

(k)
ij =

∂h(xi,xj)
∂x

∣

∣

∣

x=x̂(k)
. Note

that hereafter we drop the iteration index(k) for simplicity
of notation. We now have alinear least-squares problem with
respect toδx (3), whereJ is the full Jacobian matrix obtained
by stacking and weighting all the measurement Jacobians,
andr is the corresponding stacked residual vector:
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(4)

We employ QR factorization to solve (3), i.e.,

min
δx
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⇔ min
δx

||Rδx− d||2 (5)

where we have used the reduced QR ofJ [35], since it in
general is tall, i.e.,

J = Q

[

R

0

]

=
[

Q1 Q2

]

[

R

0

]

= Q1R (6)

Once δx is found by back substitution (5), the new state
estimate is updated as:̂x(k+1) = x̂(k) + δx(k).

A. Incremental smoothing and mapping

When a new measurement,zmn, sequentially becomes
available, ideally we need to recompute the full JacobianJ

and solve the batch problem from scratch. However, this is
an expensive operator, even by exploiting the sparsity of the
Hessian matrix [1], [4], [20]. To save computations, we focus
on incremental smoothing and mapping (iSAM) [2], which
reuses the previously-computed Jacobian andincrementally
updates the QR factorization directly.

In particular, we augmentJ (without recomputing it) with
the new measurement JacobianHmn [see (6)]:

Ja :=

[

J

W
−

1
2

mnHmn

]

=

[

Q1 0

0 I

]

[

R

W
−

1
2

mnHmn

]

(7)

We now aim to decomposeJa into triangular form (i.e.,
square-root information matrix). SinceJ was already fac-
torized into the triangularR, we only need to zero out
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the new block row, i.e., the new measurement Jacobian
Hmn, in order to obtain the updated square-root information
matrix Ra. This can be achieved efficiently, for example,
by using Givens QR [35]. Similarly, the corresponding
new vector,da, can be obtained by applying the same
Givens rotations to the augmented residual vector,da :=
[

d

W
− 1

2
mn (zmn − h(x̂m, x̂n))

]

.

It is important to note that, although relinearization is
not needed at each time step when a new measurement
becomes available, in order to reduce the linearization er-
rors, we relinearize the system at the latest, and thus the
best, state estimates periodically [2] or as needed when the
linearization point significantly deviates from the current
state estimate [24]. In addition, we can combine variable
reordering [2] with this batch factorization to reduce fill-in
of the resulting triangular system [see (5)], which can further
speed up the subsequent incremental estimation.

IV. CONSISTENTGRAPH SPARSIFICATION

Even though different algorithms, such as the iSAM pre-
sented in the preceding section (also see [2]), are available to
improve the efficiency of batch least-squares solutions, their
performance degrades with the growing size of the graph as
the robot continuously navigates in its environments. In order
to make the processing and memory requirements amenable
for long-term operation, in this section we introduce consis-
tent sparsification of both the nodes and edges of the graph
within the incremental estimation framework.

A. Consistent node sparsification via marginalization

First of all, we sparsify the nodes of the graph by
marginalizing out the selected old poses, while consistently
retaining all the information that discarded measurements
convey about the remaining nodes, so as to bound the
size of the graph (state vector) only with respect to the
explored area, instead of the exploration time. Note that this
temporally-scalable idea has been explored in [8], which,
however, follows an approximate composition of discarded
measurements. In particular, we partition the nodes (states),

x =

[

xM

xR

]

, where xM denote the nodes to marginalize

out, andxR are those remaining in the graph. In this work
we choosexM to be the old poses when loop closure
occurs. This, however, is not a necessary assumption; instead,
one can selectively discard the most matured (accurately
estimated) or the least informative nodes as compared to the
rest of the graph [6], [7]. We should repeat that in this work
we focus more on how to optimally (and thus consistently)
retrieve all the information from the discarded measurements
about the remaining nodes, instead of on studying which
nodes are the best to marginalize.

The marginalization process is carried out with Schur com-
plement, and yields the following reduced-Hessian matrix for
the remaining statexR:

Ar = ARR −ARMA−1
MM

AMR (8)

where the matrices appearing in the above equation are
defined as partitions of the full-Hessian matrix [see (3)
and (4)]:

A = JTJ =
∑

zij∈Z

HT
ijW

−1
ij Hij =:

[

AMM AMR

ARM ARR

]

(9)

Note that the estimates of the remaining nodes,x̂R, remain
the same before and after this marginalization process [30],
due to the fact that the marginal distribution of a joint
Gaussian distribution is also Gaussian. After marginalization,
all the states inxM, as well as all the measurements that
involve these states, denoted byZM, are discarded, and no
longer participate in the future optimization.

It is important to note that, the discarded measurements
ZM typically involve, and thus convey information about,
a subset of the remaining statesxR. In order for consistent
(i.e., without loss or reuse of information) estimation in an
incremental fashion, we need to retain all such information
and propagate it to subsequent optimization. Therefore, we
now focus on deriving such consistent constraints from the
discarded measurements, which will be used whenever the
batch relinearization occurs in the incremental estimation.

1) Derive consistent relative constraints fromZM: We
further partition the remaining states into two subsets,xR1

which together withxM are involved in the discarded
measurements andxR2

which are not involved, i.e.,xR =
[

xR1

xR2

]

. In order to optimally retrieve all the information

conveyed in the discarded measurements about the subset
of the remaining states, ideally we should solve the MLE
(least-squares) problem of minimizingcm(xM,xR1

), for
xR1

[see (2)]. However, in most cases,ZM contains only
relative pose-to-pose measurement constraints, and does not
include anyglobal information about the involved states.
This implies that the corresponding system isunobservable
and we cannot find the optimal estimates ofxM and xR1

in the global frame of reference without ambiguity [10].
Instead, we canlocally find MLE for the remaining nodes
xR1

, by transforming the involved states into a local frame
of reference of one remaining state (e.g., of the first node
in xR1

). The computed MLE of the relative-state estimates
essentially are the relative-pose constraints that encapsulate
all the information contained in the discarded measurements
for the remaining states, and will be used for computing the
Jacobians and Hessians in the future optimization.

Specifically, we now solve the following least-squares
(MLE) problem usingonly the discarded measurementsZM,
with respect to therelativestates,LxM andLx̄R1

, [see (2)].
Here the symbol “̄ ” denotes that the remaining nodes
exclude the node used to define the local frame{L}.

min
LxM,Lx̄R1

cm(LxM,L x̄R1
) :=

∑

zij∈ZM

||zij − h(Lxi,
L xj)||

2
Wij

(10)

Similarly, a Gauss-Newton approach is employed to solve
the above problem. The information (Hessian) matrix of the
estimates of the relative remaining states (i.e., the relative-
pose constraints), is again obtained using Schur complement
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by marginalizing outLxM [see (9) and (8)]:

Ām =
∑

zij∈ZM

H̄T
ijW

−1
ij H̄ij =

[

ĀMM ĀMR1

ĀR1M ĀR1R1

]

⇒ (11)

Āp = ĀR1R1
− ĀR1MĀ−1

MM
ĀMR1

(12)

where the symbol “̄ ” denotes that all the involved Jacobians
and Hessians are computed with respect to therelativestates,
LxM andLx̄R1

, which are different from (8) and (9).
Close inspection reveals that the information matrixĀm

encapsulates all the information contained in the discarded
measurementsZM; and thusĀp, the Schur complement
of ĀMM in Ām, describesall the information that the
discarded measurements provide us about the relative re-
maining states,Lx̄R1

. Therefore, the relative constraints
for the remaining states induced from the discarded mea-
surements,Lx̄R1

∼ N
(

Lˆ̄xR1
, Ā−1

p

)

, are consistent (i.e.,
without loss/reuse of information). Note that these essentially
are the relative-frame generic linear constraints (GLC) as
derived in [9]. Note also that, due to marginalization (12),
in general, the information matrix̄Ap, and thus the corre-
sponding covariance matrix̄A−1

p , is full. This indicates that
the induced relative constraints for the remaining states are
correlated, instead of independent.

At this point, we stress that although marginalization of
old nodes is often used to reduce the pose graph (e.g.,
[5], [7]), prior to [9] that was developed in parallel to this
work, to the best of our knowledge, little work has yet
explicitly derived optimal (consistent) relative constraints for
the remaining nodes from the discarded edges, for the use in
future estimation. In particular, in [5] the authors compose
a new independentedge (relative constraint) – induced by
marginalization – directly from the connected discarded
edges by geometry. However, since same discarded edges
may be used multiple times in composing new edges, these
new edges should becorrelated. As a result of this reuse
of information of same measurements, inconsistent relative
constraints for the remaining nodes are inferred, which will
negatively impact subsequent estimation. In contrast, in the
proposed approach we infer the optimal relative constraints
by solving a batch MLE (least-squares) problem followed
by marginalization, and hence capture all the correlations
between the induced constraints.

B. Consistent edge sparsification viaℓ1-minimization

Due to marginalization as well as loop closures, the
information (Hessian) matrix, and thus the graph, inevitably
becomes dense, which can significantly increase the com-
putational burden for the graph optimizer (or batch least-
squares solver). To address this issue, we now aim to
sparsify the edges of the graph in aconsistentmanner –
the covariance of the sparsified graph is larger than or equal
to that of the original one.

Mathematically, suppose the original dense graph repre-
senting a Gaussian distribution,N (x̂,Σ). We aim to find a
sparse graph to consistently approximate the original one,
with the mean unchanged, i.e., the corresponding Gaussian
distribution, N (x̂,X−1), whereX is the resulting sparse

information matrix. To this end, as in [31] we choose to
minimize the Kullback-Leibler Divergence (KLD) between
the two Gaussians, while enforcing the consistency constraint
on the covariance matrix, i.e.,

min
X

DKL

(

N (x̂,X−1)
∣

∣

∣

∣

∣

∣
N (x̂,Σ)

)

= (13)

−
1

2

[

ln

(

detX−1

detΣ

)

+ tr (XΣ)− dim(x)

]

subject to X−1 � Σ (14)

By noting that the original covariance matrixΣ as well as the
dimension of the statex is known, this is aconvexproblem,
and hence the global minimum can be guaranteed [36].
In [31] an optimal solution is constructed by assuming that
the edges of the graph to remove are known before sparsifi-
cation, which clearly is not always the case in practice.

In contrast, we notice thatℓ1-minimization, which is
convex and ensures a sparse solution, has been extensively
studied in compressive sensing [12]. By exploiting this idea,
we reformulate the problem (13) and (14) as the following
convex consistency-constrainedℓ1-regularized minimization
problem, whose solution automatically renders a consistent
sparse information matrix:

min
X

− ln (detX) + tr (XΣ) + λ||X||1 (15)

subject to X � Σ−1 (16)

where||·||1 denotes theℓ1 norm, andλ is a design parameter
to control the level of sparsity of the solution, which can
be selected heuristically as [37]. Note that the equivalence
between the constraints (14) and (16) is established based
on Corollary 7.7.4 in [38]. While many different convex
optimization algorithms [36], such as interior point methods,
are available to solve the above problem (15) and (16),
we adapt the alternating direction method of multipliers
(ADMM) [39] to solve it more efficiently.

In particular, ADMM is often used to solve problems of
the following form:

min
X∈Sn

++

f(X) + g(Y) subject to X−Y = 0 (17)

where the optimization variableX is n-dimensional symmet-
ric positive definite, i.e.,X ∈ Sn

++. By defining f(X) :=
− ln (detX) + tr (XΣ), and g(Y) := λ||Y||1, we have
the same problem as in (15), butwithout consistency con-
straint (16). To solve the aboveℓ1-regularized problem (17),
the ADMM algorithm iterates as follows [39]:

X(k+1) = argmin
X

(

f(X) +
ρ

2
||X−Y(k) +U(k)||2F

)

(18)

Y(k+1) = argmin
Y

(

g(Y)+
ρ

2
||X(k+1)−Y+U(k)||2F

)

(19)

U(k+1) = U(k) +X(k+1) −Y(k+1) (20)

whereρ > 0 is a penalty parameter used in the augmented
Lagrangian and|| · ||F denotes the Frobenius norm.

In order to find the desiredconsistentsparse information
matrix, X, we now include the consistency constraint (16)
into the ADMM step (18). In particular, the optimality
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condition of (18) is given by:

−X−1 +Σ+ ρ
(

X−Y(k) +U(k)
)

= 0 ⇒ (21)

ρX−X−1 = −Σ− ρ
(

−Y(k) +U(k)
)

=: VDVT (22)

where we have employed the eigen-decomposition in the
second equality withD = Diag(di). By inspection, the
solution has the following form,X(k+1) := VΓVT , where
Γ = Diag(γi), γi > 0. To find Γ and thusX, substitution
of the above form ofX(k+1) into (22) yields:

V
(

ρΓ− Γ−1
)

VT = VDVT ⇒ (23)

ργi −
1

γi
= di ⇒ γi =

di +
√

d2i + 4ρ

2ρ
(24)

In order to satisfy the consistency constraint (16), we need
to ensureγi (24) is smaller than the minimum eigenvalue of
Σ−1, denoted byλmin(Σ

−1). Therefore, we computeγi as:

γi = min

(

di +
√

d2i + 4ρ

2ρ
, λmin(Σ

−1)

)

(25)

On the other hand, (19) is a well-known lasso problem and
its optimal solution is given by [40]:

Y(k+1) = shrink

(

X(k+1) +U(k),
λ

ρ

)

(26)

where the shrinkage operator,shrink(Ξ, ξ), updates each ele-
mentΞij as: shrink(Ξ, ξ)ij = sgn(Ξij)max (|Ξij | − ξ, 0).
Since no closed-form solution can be found to ensure its
consistency, i.e.,Y(k) < Σ−1 [see (16)], we relax this
consistency constraint in this step. This can be justified by
the fact that, althoughY(k) may not satisfy (16) or even not
be positive definite,X(k+1), which is what we are ultimately
seeking, always remains so by construction.

V. EXPERIMENTAL RESULTS

To validate the proposed consistent graph sparsification,
we have preliminarily tested the algorithm on both synthetic
and real-world data: i) Manhattan3500 (3500 nodes, 5598
edges), ii) City4000 (2815 nodes, 20687 edges), iii) Intel
research lab (909 nodes, 4453 edges), and iv) MIT Killian
court (1940 nodes, 2190 edges). The first two datasets are
synthetic, while the last two are real. For the results presented
in this section, we integrate the proposed graph sparsification
scheme into the iSAM algorithm [2] performing incremental
estimation, termed S-iSAM,1 which is compared with the
ground truth for the simulated data and with the batch least-
squares (BLS) – that is the best result can be obtained in
practice – for the real data. We marginalize out the old poses
when loop closures occur, and sparsify the graph when the
number of non-zeros of the information (Hessian) matrix
exceeds a pre-chosen threshold (for instance, 10% of the
total matrix entries).

In particular, Fig. 1 shows, as an example, the infor-
mation (Hessian) matrices before and after the proposed
sparsification of edges in the case of Manhattan3500. It
is clear that the sparsified information (Hessian) matrix

1It is important to point out that the proposed sparsificationscheme can
be integrated into the SEIF as in [31], besides the iSAM as considered here.
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Fig. 1. Illustration of the proposed consistent sparsification of edges for
the Manhattan3500 graph occurring at a particular time step.

significantly reduces the non-zeros, by 77% in this particular
case, while preserving consistency (which can be easily
verified numerically). Note also that, in practice it is not
necessary to perform the proposed edge sparsification, i.e., to
solve theℓ1-regularized minimization, every time step, thus
saving substantial computational cost, particularly whenthe
graph becomes large. This is due to the fact that the graph
becomes dense only when marginalization or loop closure
occurs, which, in general, is an occasional event (i.e., notas
frequent as adding an edge/node).

Moreover, Figs. 2 and 3 show the estimates and their
errors, respectively, as compared to the benchmarks (i.e.,
ground truth for simulated data, and BLS for the real data).
As evident, the proposed S-iSAM achieves results close to
the benchmarks, while keeping significantly fewer nodes,
i.e., 1971 nodes for Manhattan3500 (56%), 2098 nodes for
City4000 (75%), 507 nodes for Intel (56%), and 1718 nodes
for MIT (89%). We would like to point out that the proposed
node sparsification provides a consistent way of retrievingthe
information about the remaining nodes from the discarded
measurements, rather than intends to find the minimum
number of nodes to represent the original graph. It should be
also stressed that, when a node is marginalized out, all the
measurements (edges) connected to it – including the future
measurements of this kind – are discarded, and hence cannot
be used for the subsequent estimation in order to obtain
causal estimates (without using discarded information). This
implies that the proposed approach may utilize significantly
fewer measurements (depending on the particular graphs)
than the BLS that uses all available measurements, while
achieving comparable performance. This result is attributed
to the fact thatall the information, conveyed in the discarded
measurements, about the remaining states, is retained during
the proposed consistent node sparsification.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have proposed a consistent sparsification
scheme for graph optimization with applications to SLAM.
In particular, we first sparsify the nodes of the graph by
marginalizing out old poses at the times of loop closures,
while retaining all the information for the remaining nodes
conveyed in the discarded measurements. To this end, we for-
mulate a batch MLE (least-squares) problem using only the
discarded measurements, with respect to the relative, instead
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Fig. 2. Experimental results on the synthetic (a and b) and real (d and c) data: In these plots, the dots correspond to the dead-reckoning (DR), the
crosses to the benchmark which is either the ground truth or the batch least-squares (BLS), the squares to the iSAM with the proposed sparsification
scheme (S-iSAM). It is clear that the proposed method achieves results close to the benchmarks, even though it utilizes less information from the available
measurements as some measurements are discarded for the future usage due to marginalization. Note also that in the two real-world datasets (c and d),
the compared approaches produce very similar results (see Fig. 3), which makes the corresponding lines difficult to distinguish.
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Fig. 3. Estimation errors of the proposed S-iSAM as comparedto the benchmarks (ground truth or BLS) in the synthetic and real data. In these plots,
the upper subplots are the estimation errors of the positions and the bottom ones are the orientation estimation errors.It becomes evident that the iSAM
with the proposed graph sparsification scheme attains comparable performance as that of the benchmarks.

of global, states (i.e., in the local frame of reference of one
remaining node involved in the discarded measurements).
Furthermore, we sparsify the edges of the graph based on
a consistentℓ1-regularized convex minimization problem
which promotes the sparsity of the solution imposed byℓ1
norm and is solved by adapting the ADMM algorithm [39].
The solution to this convex problem automatically renders a

sparsified graph that consistently approximates the original
one. The proposed graph sparsification scheme has been
integrated in the iSAM algorithm [2] and validated on both
synthetic and real data.

It should be pointed out that, although the ADMM method
is efficient to solve a relatively small problem of consistent
edge sparsification [see (15) and (16)] (e.g., when the number
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of nodes of the graph is in the order of thousands), it may
not be satisfactory when the graph becomes even larger. For
this reason, in the future we will investigate different ways
to speed up the solution to theℓ1-regularized minimization
problem, for example, by selecting only a dense subgraph to
sparsify via the ADMM approach, instead of the whole graph
as we currently do. Moreover, since, by no means, it would
be optimal to marginalize out the old nodes at loop closures,
we will study in depth the problem of which nodes should
be marginalized out and when, in order to maximize the
information retained in the sparsified graph while achieving
a minimal representation of the original graph. In addition,
we will conduct more thorough evaluations on various large-
scale real-world experiments.
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