Consistent Sparsification for Graph Optimization

Guoquan Huang, Michael Kaess, and John J. Leonard

Abstract—In a standard pose-graph formulation of simul- and
taneous localization and mapping (SLAM), due to the con-
tinuously increasing numbers of nodes (states) and edges
(measurements), the graph may grow prohibitively too large
for long-term navigation. This motivates us to systematichy
reduce the pose graph amenable to available processing and
memory resources. In particular, in this paper we introduce a
consistent graph sparsification scheme: i) sparsifying nodes via
marginalization of old nodes, while retaining all the information
(consistent relative constraints) — which is conveyed in #n
discarded measurements — about the remaining nodes after
marginalization; and ii) sparsifying edges by formulating and
solving a consistent; -regularized minimization problem, which
automatically promotes the sparsity of the graph. The propsed
approach is validated on both synthetic and real data.

|. INTRODUCTION

Recently, most popular solutions to the simultaneous lo-
calization and mapping (SLAM) problem, either in batch
or incremental fashion, are based on graph optimization
(i.e., all robot poses and/or landmark positions comptige t
nodes of the graph, while each edge encodes a measurement
constraint) [1]-[4]. However, a standard graph formulatio
may suffer from unbounded complexity of both processing
and memory, which can grow continuously over time. This is
due to the fact that new robot poses (and new landmarks in
the case of feature-based SLAM) are constantly being added
into the graph, resulting in the number of nodes increasing
constantly in time; and moreover, if frequent loop-closing .
events occur in SLAM, loop-closure constraints (edges) can
significantly increase the density of the graph. This, for
example, can be the case where a service robot is operating
inside an office building for an extended period of time.

Even though the issue of reducing the complexity of graph
optimization, in particular, for SLAM, has recently been
addressed [5]-[9], to the best of our knowledge, little work
has yet explicitly taken into account estimation consisyen
(i.e., unbiased estimates, and the estimated covariarger la
than or equal to the true covariance [10]) in the design of
graph reduction (sparsification) scheme. This is a sigmifica
limitation, since if an estimator is inconsistent, then the
accuracy of the computed state estimates is unknown, which
in turn makes the estimator unreliable.

To address the aforementioned issue, in this paper we
study in-depttconsistengraph sparsification for SLAM, and
explicitly enforce consistency during sparsifyibgth nodes
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edges of the graph. In particular, the main contribstion

of this work are the following:

We sparsify the nodes of the graph by marginalization
of old, matured (accurately estimated) nodes when loop
closure occurs, and deriv®nsistentelative constraints

for (a subset of) the remaining nodes, which encapsulate
all the information — conveyed in the discarded mea-
surements at the time of marginalization — about the
remaining nodes. As a result, the problem size (i.e., the
number of optimization variables) is boundedly by

the explored area, and independent of the exploration
time. Although marginalization (Schur complement) is
commonly used to reduce the size of the state vector
in batch estimation [11], when applied to graph-based
incremental estimation, to the best of our knowledge,
little work has been shown to optimally (and thus con-
sistently) extract all the information about the remain-
ing nodes from the discarded measurements and then
propagate it to subsequent optimization. In contrast, we
explicitly derive from the discarded measurements the
consistent (i.e., without reuse or loss of information)
relative constraints for the remaining nodes that are
also involved in the discarded measurements. These
induced constraints, in general, azerrelated instead

of independent as assumed in most prior work, and are
used as new measurements in subsequent estimation.
Furthermore, we sparsify the edges of the graph by
formulating and solving aonsistent;-regularized min-
imization problem. In particular, due to marginalization
of old nodes as well as frequent loop closures, it may
become necessary to systematically remove some edges
so as to reduce the processing and memory require-
ments. Towards this end, we formulate the sparsifica-
tion of graph edges as a novel consistency-constrained
£1-regularized minimization problem, which implicitly
imposes the sparsity of the solution due/tonorm. As

a result, its solution renders the sparsified graph which
consistently approximates the original dense graph (i.e.,
by definition, the covariance of the resulting sparsified
graph is larger than or equal to that of the original
one). It is interesting to point out that, whilé,-
minimization has been extensively studied in compres-
sive sensing [12], the application to graph sparsifica-
tion treated in this paper is expected to promote its
widespread adoption in robotics.

II. RELATED WORK

The SLAM problem has received considerable attention
over the past two decades and many different estimators were



employed for solving it. In particular, filtering methodscbu these approaches create a sparse skeleton graph of views
as the extended Kalman filter (EKF) recursively estimatéposes) and then perform batch optimization only on these
a state vector consisting of the current robot pose and tlkeyframes. In particular, in order to keep the density of
observed landmarks [13]-[16]. One appealing property qfoses constant in a given region, old poses are marginalized
such a filtering algorithm is its bounded runtime with regpemut from the skeleton graph. However, it is unclear that if
to the size of the explored environment, while the quadratiapplying these methods to an incremental setting, how the in
computational complexity limits its applications to largeformation (which is conveyed in the discarded measurements
areas. Moreover, due to the fact that any linearizatiorethasafter marginalization) about the remaining poses is iliz
filter marginalizes out the previous robot poses, it cannat future optimization. In this work, we explicitly derivéé
relinearize the nonlinear system and measurement modelscansistentelative constraints for (a subset of) the remaining
the past states, which may result in large linearizatioarsrr poses that are involved in the discarded measurementse Thes

and degrade the performance. induced constraints describall the information for the
o remaining states available in the discarded measurements,
A. Graph optimization and are used as new constraints in future estimation.

Graph-based batch optimization methods for SLAM re- Similarly, in [5] marginalization is employed to reduce
cently have prevailed (e.g., [1], [3], [4], [17]-[23]). T® graph complexity. However, since it composes the relative-
methods follow the paradigm of bundle-adjustment (BApose constraints for the remaining states directly from the
algorithms originally developed in photogrammetry and eomdiscarded measurements by geometry, during this process,
puter vision [11], and formulate and solve a batch leasthe same measurement information may be used multiple
squares problem for the entire robot trajectory (and alti{an times, which results innconsistentconstraints. In addition,
marks), with no marginalization. These BA-based approsiché heuristically removes edges based on the degrees of their
exploit the sparsity of the measurement graph so as twdes; when the degree of a node exceeds an ad-hoc, pre-
speed up computation. However, for large-scale problemshosen threshold, the associated edge with the least adsidu
an optimal batch solution may still be too computationallyerror is pruned out. We also notice that the recent work
expensive to obtain in real time [24]. of [8] bounds the size of the pose graph with respect to

Therefore, different approximate methods for graph optithe explored area, instead of the exploration time. To this
mization have been developed, which either use a subsetefd, this approach does not add new nodes at loop closures
the data to optimize over only a subset of variables, or solMg&ithout marginalization), while retaining new relatipese
the BA problem intermittently. Specifically, sliding-windr  constraints between the existing nodes involved in the loop
filters (SWFs) [25], [26] compute a solution for a constantelosures, which are inferred directly from the discarded
size, sliding window of states (robot poses and landmankeasurements in a similar way as in [5].
positions) using only the measurements correspondingto th Recently, compact pose SLAM [6] uses an information-
time interval. Similarly, keyframe-based approaches f27]theoretic method to determine which poses should be added
[29] perform batch optimization over only a (heuristically into the state vector of the information filter [30] and
selected subset of views or keyframes. On the other hand, ihich measurements should be utilized in the estimation.
cremental approaches to BA, such as the incremental smooth-particular, only nonredundant poses are included in the
ing and mapping (iISAM) algorithm [2], greatly reduce com-graph if no other poses are nearby, and only highly infor-
putation by employing factorization-updating methodst thamative loop-closure edges (computed based on the mutual
allow reusing the information-matrix factorization awdile information gain) are added into the graph, while other
from previous time steps. Computationally demanding prgaoses and measurements are simply discarded. This clearly
cedures, such as relinearization and batch factorizagiom, results in loss of information. Interestingly, the propbse
only performed periodically. Nevertheless, the increrabnt sparsification scheme presented in Section IV can combine
methods still suffer from increased computational cost. Fahe node reduction idea of [6] to determine which nodes to
instance, due to the increased robot trajectory over timmarginalize out, while retaining all the information abdhg
as well as the accumulation of fill-in between periodiaemaining nodes from the discarded measurements.
batch steps, iISAM's efficiency degrades with the incredging More recently, an information-theoretic approach is pro-
dense graph (e.g., if the number of constraints is mongosed to compress the pose grapmly for laser-based
than five times the number of poses as reported in [24]pLAM [7]. Specifically, this method selects only the most in-

It becomes necessary to sparsify both the nodes and tfeemative laser scans (nodes) with respect to the built nfiap o
edges of the graph in order to fully take advantage of thihe environment; and moreover, it employs #gproximate
efficiency offered by the incremental estimation algorithmmarginalization based on Chow-Liu tree to keep the sparsity

in large environments. of the pose graph. However, it remains unclear that, dur-
. ing this approximate marginalization, how the information
B. Graph reduction conveyed in the discarded laser scans about the remaining

The keyframe-based approximate approaches for graplbdes, is extracted and utilized in an incremental framkwor
optimization [28], [29] are among the first attempt to reduc®loreover, the Chow-Liu tree approximation employed in the
the pose graph for visual SLAM. As mentioned earliermarginalization in theory does not guarantee consistdncy.



contrast, both issues are explicitly addressed in our mego where we have used the notation |3, = r’ W'r, i.e., the
approach (see Section V). squared Mahalanobis distance of residualith covariance

We also notice that the most recent publication [9] adW. This is anonlinearleast-squares problem because of the
dresses the same problem of pose-graph sparsificatiorl, In [Bonlinearity of the constraints(-).
a marginalization process similar to Section IV-A is used A standard iterative Gauss-Newton approach is often used
to sparsify the nodes; and a better Chow-Liu tree-basddr solving (2). In particular, at thes-th Gauss-Newton
approximation than that of [7] is proposed to sparsify théeration, a correctionjx(*), to the current estimatez(*),
edges. However, the Chow-Liu tree-based sparsification yist computed by minimizing the second-order Taylor-series
does not guarantee consistent estimates, which is addresapproximation of (2), which can be written as:
in this paper by formulating and solving a consistémnt c(Z® 1 §x) ~ Z l|zi; — b ()A((_k) )A((_k)) _ H(_l_c)(;xHQ
regularized sparsification problem. By ’ E

On the other hand, conservative (consistent) sparsifica- !
tion of information matrix is introduced in [31] for sparse = ||J(k)5x_ r(k)Hg ©)
extended information filter (SEIF)-based SLAM [32], [33].where we linearize the measurement constraints at therturre
While this approach is closely related to the proposed sparstate estimate with Jacobialﬁgf) = Mxx” o Note
fication of graph edges (see Section IV-B), we formulate sudiat hereafter we drop the iteration ind@x) for simplicity
consistent sparsification as d@p-regularized minimization of notation. We now have linear least-squares problem with
problem which implicitly promotes the sparsity By norm  respect tox (3), where] is the full Jacobian matrix obtained
and whose solution automatically renders the sparsified iy stacking and weighting all the measurement Jacobians,
formation matrix (graph). As a result, the proposed apgioaandr is the corresponding stacked residual vector:

does not need to know which edges to eliminate beforehand, —1 —1 .
which, however, is assumed in [31]. Wi, Hip Wio* (212 — (%1, %2))
I1l. PROBLEM FORMULATION J= 1 r= 1 o (4)
While many problems in robotics and computer vision W, Hij W% (zij — h(X;,%;))
can be formulated as graph (network) optimization, in this : :
section we focus on SLAM to illustrate the graph-basegye employ QR factorization to solve (3), i.e.,
formulation. In particular, graph-based SLAM [3] consists R 2
afront-end and a back-end. The former aims to extractall the ~ min ||[J6x —r||* = HQ {0} 0x — rH =
relative-pose constraints from the raw sensor measurement ) )
(e.g., [34]), while the latter is to compute the most likely H [R] Sx — QTrH = H [R] dx — {d] H
configuration of the poses, which is the focus of this paper. 0 0 €
Specifically, in the graph built during the front-end, the = < min ||Rox —d||? (5)

robot poses are described by the nodes of the graph, aiflare we have used the reduced QRJO[35], since it in
the edges represent the spatial constraints between eral is tall. i.e.

connecting nodes, which are constructed either from pro- R R
prioceptive (e.g., odometry) or exteroceptive measurgésnen J=Q {0] = [Ql Qg] {0] =Q:R (6)
(e.g., images). Lek = [x{,... ,xf]T be the robot poses

(nodes), andz;; = h(x;,x;) + n;; be the measurement
constraint (edge) between the nodeand j, where noise
is commonly assumed to be zero-mean white Gaussian, i.8., Incremental smoothing and mapping

ngj o~ N(vaij?- The objective of the back-end is 0 \yhen a new measurement,,,, sequentially becomes
compute the maximum likelihood estimate (MLE) of all theyyajlable, ideally we need to recompute the full Jacotian
robot poses (nodes) using all the measurement constraiigy solve the batch problem from scratch. However, this is
(edges). By assuming independent measurements, we hayfeypensive operator, even by exploiting the sparsity @f th
the following factorization of the measurement likelihoodyegsian matrix [1], [4], [20]. To save computations, we focu

Once 6x is found by back substitution (5), the new state
estimate is updated ag(*+1) = x(*) 4 §x(*),

function: on incremental smoothing and mapping (iISAM) [2], which
p(Z]x) = H p(Zij|%i, %) (1) reuses the previously-computed Jacobian ewedementally
2, €2 updates the QR factorization directly.

where Z = {z;;} denotes all the measurements (edges). By In particular, we augmenk (without recomputing it) with
using the Gaussian-noise assumption and taking the negatil® néw measurement Jacobi,, [see (6)]:
logarithm of (1), we can easily show that maximizing the J Q. o0 R
likelihood (1) is equivalent to minimizing the followingdst- a = W;W%LHWL - [0 I] W;W%LHWL @)
squares cost function: We now aim to decomposéd, into triangular form (i.e.,
% = argmin c(x) :=argmin Y ||z;; — h(x;,x;)|Rv,, (2) square-root information matrix). Sinck was already fac-
" ¥ mgez torized into the triangulaR, we only need to zero out



the new block row, i.e., the new measurement Jacobiavhere the matrices appearing in the above equation are
H,.,, in order to obtain the updated square-root informatiodefined as partitions of the full-Hessian matrix [see (3)
matrix R,. This can be achieved efficiently, for example,and (4)]:

by using Givens QR [35]. Similarly, the corresponding T S Avv AMR

new vector,d,, can be obtained by applying the same A=JJ= Z Hi;W;; Hij = [ARM ARR:| ©)

Givens rotations to the augmented residual veathyr,:=
d Note that the estimates of the remaining nodasg, remain

W_% (Zon — h(Ems %)) | the same before and after this marginalization process [30]
nnmmn e due to the fact that the marginal distribution of a joint

It is important to note that, although relinearization is ussian distribution is also Gaussian. After marqintb
not needed at each time step when a new measuremgﬂaf : : 9 ma
the states inxp, as well as all the measurements that

becomes available, in order to reduce the linearization e .

rors, we relinearize the system at the latest, and thus tﬁyolve the;e_ statgs, denoted E)(/[,_ are d_lscarded, and no

best, state estimates periodically [2] or as needed when a1 97 part|C|pate in the future opt|m_|zat|on.

linearization point significantly deviates from the cutren Itis 'mpo”‘?‘”t to note that, the dlscarded mgasurements

state estimate [24]. In addition, we can combine variablgM typically |nvoIve,.a_nd thus convey mformauon_about,

reordering [2] with this batch factorization to reduce fil- a subsgt of the remaining stat_gﬁ. In o_rder for. COI’I.SIS'[?I‘\'[

of the resulting triangular system [see (5)], which cantfart _(|.e., without Ioss_ or reuse of mforma_tlon) esumguon m a

speed up the subsequent incremental estimation. incremental fashlon, we need to ret_alq aII_ such information
and propagate it to subsequent optimization. Therefore, we

I\V. CONSISTENTGRAPH SPARSIFICATION now focus on deriving such consistent constraints from the

E h h diff lqorith h he ISAM discarded measurements, which will be used whenever the
ven though diiterent algorithms, such as the | Prepatch relinearization occurs in the incremental estinmatio

;ented in the pre.ceding section (also see [2]), are "’,Wait,abl 1) Derive consistent relative constraints fro8\;: We
improve the efficiency of _batch Ieast-_squa_res solutioresy th further partition the remaining states into two subsegig,
performance degrades with the growing size of the graph Ahich together withxy; are involved in the discarded

the robot contmuousl_y navigates in its enwr_onments. beor easurements andg, which are not involved, i.exg =
to make the processing and memory requirements amena

for long-term operation, in this section we introduce censi |, |- In order to optimally retrieve all the information

tent sparsification of both the nodes and edges of the gragbnveyed in the discarded measurements about the subset
within the incremental estimation framework. of the remaining states, ideally we should solve the MLE
(least-squares) problem of minimizing, (xn, Xgr, ), for
xR, [see (2)]. However, in most case§y; contains only

First of all, we sparsify the nodes of the graph byelative pose-to-pose measurement constraints, and does not
marginalizing out the selected old poses, while consistentinclude anyglobal information about the involved states.
retaining all the information that discarded measurementhis implies that the corresponding systenuisobservable
convey about the remaining nodes, so as to bound tl&d we cannot find the optimal estimates>gfi and xr,
size of the graph (state vector) only with respect to thin the global frame of reference without ambiguity [10].
explored area, instead of the exploration time. Note thiat thinstead, we carocally find MLE for the remaining nodes
temporally-scalable idea has been explored in [8], whichg,, by transforming the involved states into a local frame
however, follows an approximate composition of discardedf reference of one remaining state (e.g., of the first node
measurements. In particular, we partition the nodes @tatein xg,). The computed MLE of the relative-state estimates
x = |™™| wherexn denote the nodes to marginalize®Ssentially are the relative-pose constraints that enéatgs

XR o , all the information contained in the discarded measuresnent

out, andxg are those remaining in the graph. In this worki,, the remaining states, and will be used for computing the
we choosexy to be the old poses when loop closure,copians and Hessians in the future optimization.
occurs. This, however, is not a necessary assumptionaihste Specifically, we now solve the following least-squares

one can selectively discard the most matured (accurat WILE) problem usingonly the discarded measuremetitgy
estimated) or the least informative nodes as compared to h respect to theelative states “xns and’%g, , [see (Z)i
; 1 .

rest of the graph [6], [7]. We should repeat that in this work e the symbol “ * denotes that the remaining nodes

we focus more on how to optimally (and thus consistentlyd, -jude the node used to define the local fraffig.
retrieve all the information from the discarded measurdasen

about the remaining nodes, instead of on studying which "5 em(Pxm " %Ry ) = Y Mz — b X))y,
nodes are the best to marginalize. 25 €2m

The marginalization process is carried out with Schur com-_ ) (10)
plement, and yields the following reduced-Hessian mawix f Similarly, a Gauss-Newton approach is employed to solve

z,;€Z

A. Consistent node sparsification via marginalization

the remaining stateg: the_ above problem. The informaﬁon (Hessign) matri_x of the
. estimates of the relative remaining states (i.e., theivelat
A, = Arr — ARMA N MAMR (8)  pose constraints), is again obtained using Schur complemen



by marginalizing out“xy; [see (9) and (8)]: information matrix. To this end, as in [31] we choose to
_ o1 [Aum  Amr, minimize the Kullback-Leibler Divergence (KLD) between
An= ) HHW'H;= L&RlM ARIRJ = (1) the two Gaussians, while enforcing the consistency constra

i zeZM Ao Aol X 12) on the covariance matrix, i.e.,
p — AR1R1 — AR MANMMAMRL
. ~ —1 - o
where the symbol “ ” denotes that all the involved Jacobians S D (N(x, X )HN(X’ 2)) B (13)
and Hessians are computed with respect ta¢teive states, 1 det X1 )
Lxy and“xg,, which are different from (8) and (9). gl gy ) T (XX) — dim(x)
Close inspection reveals that the information matix, subject to X~ = = (14)

encapsulates all the information contained in the dischrde
measurementsZy;; and thusAp, the Schur complement By noting that the original covariance matixas well as the
of Amm in A,,, describesall the information that the dimension of the state is known, this is aconvexproblem,
discarded measurements provide us about the relative &nd hence the global minimum can be guaranteed [36].
maining states,“%gr,. Therefore, the relative constraintsIn [31] an optimal solution is constructed by assuming that
for the remaining states induced from the discarded methe edges of the graph to remove are known before sparsifi-
surements/xr, ~ N (Lfch,A;l), are consistent (i.e., cation, which clearly is not always the case in practice.
without loss/reuse of information). Note that these esakiynt In contrast, we notice that;-minimization, which is
are the relative-frame generic linear constraints (GLC) asonvex and ensures a sparse solution, has been extensively
derived in [9]. Note also that, due to marginalization (12)studied in compressive sensing [12]. By exploiting thisaide
in general, the information matriA,,, and thus the corre- we reformulate the problem (13) and (14) as the following
sponding covariance matrif\;l, is full. This indicates that convex consistency-constrainégregularized minimization
the induced relative constraints for the remaining states aproblem, whose solution automatically renders a condisten
correlated instead of independent. sparse information matrix:

At this pqlnt, we stress that although marginalization of min  — In (det X) + tr (X3) + A[X||x (15)
old nodes is often used to reduce the pose graph (e.g., X
[5], [7]), prior to [9] that was developed in parallel to this subject to X < X1 (16)
work, to the best of our knowledge, little work has yet . .
explicitly derived optimal (consistent) relative congtita for where]|-||; denotes thé; norm, and\ is a design parameter

the remaining nodes from the discarded edges, for the usetbﬂ"l cor;trcz[l ;hi Iev_elt. of”spar3|'g/7ofl\'jh(te st?]Iu:|?hn, wh|ghajcan
future estimation. In particular, in [5] the authors compos € selected heuristically as [37]. Note that the equivalenc

a newindependentedge (relative constraint) — induced bybetween the constraints (14) and (16) is established based

marginalization — directly from the connected discarde§" Corollary 7.7.4 in [38]. While many different convex

edges by geometry. However, since same discarded ed ggimization algorithms [36], such as interior point matbp

may be used multiple times in composing new edges, the Le available to solve the above problem (15) and (16),

new edges should beorrelated As a result of this reuse we adapt the alterna_ting direct_io_n method of multipliers

of information of same measurements, inconsistent relati\gADMM) _[39] to solve It. more efficiently.

constraints for the remaining nodes are inferred, which wil In partu_:ular, ADMM is often used 10 solve problems of

negatively impact subsequent estimation. In contrasthén  the following form:

proposed approach we infer the optimal relative conssaint ~ min  f(X) + g(Y) subject to X =Y =0 (17)

by solving a batch MLE (least-squares) problem followed X€5%+

by marginalization, and hence capture all the correlationghere the optimization variablX is n-dimensional symmet-

between the induced constraints. ric positive definite, i.e.X e S7,. By defining f(X) :=

. e S —1In(det X) + tr (XX), and ¢(Y) := \|[Y]]1, we have

B. Consistent edge sparsification igsminimization the s(ame |2Jrobler(n as)in (15)’( bu)vithout (|:|on|s|istency con-
Due to marginalization as well as loop closures, th&traint (16). To solve the above-regularized problem (17),

information (Hessian) matrix, and thus the graph, ineWtab the ADMM algorithm iterates as follows [39]:
becomes dense, which can significantly increase the com-

putational burden for the graph optimizer (or batch least- X**") = argmin (f(X) + gHX -Y® +U(’“>||§) (18)
squares solver). To address this issue, we now aim to (h+1) x _ P ine (k1) ®1p2
sparsify the edges of the graph incansistentmanner — Y = arg;ﬂm (Q(Y)+§||X -Y+U HF) (19)
the covariance (_)f _the sparsified graph is larger than or equalU<k+1) — gk L x k1) _y kD) (20)
to that of the original one.

Mathematically, suppose the original dense graph repreterep > 0 is a penalty parameter used in the augmented
senting a Gaussian distribution/ (%, 3). We aim to find a Lagrangian and| - ||» denotes the Frobenius norm.
sparse graph to consistently approximate the original one,In order to find the desiredonsistentsparse information
with the mean unchanged, i.e., the corresponding Gaussiaratrix, X, we now include the consistency constraint (16)
distribution, V' (%, X~ 1), where X is the resulting sparse into the ADMM step (18). In particular, the optimality



original information matrix sparsified informaiton matrix

condition of (18) is given by: 0 0
XS4 (XfY(’“) +U(’“)) —0= (21)

.o .o 5 .
oo .

pX-X1l=-%_p (—Y<’“> n U("'>) —VvDVT  (22)
where we have employed the eigen-decomposition in tt
second equality withD = Diag(d;). By inspection, the
solution has the following formX(*+1) .= VI'VT where 2
I' = Diag(vi), v > 0. To find I" and thusX, substitution RS s R
of the above form ofX (*+1) into (22) yields: ¢t N 7 A S
Vv (pF — 1"*1) v = vDV?T = (23) Fig. 1. lllustration of the proposed consistent sparsificabf edges for
1
pri——=di =

the Manhattan3500 graph occurring at a particular time. step
di A2+ 4p (24)
Vi 2p

In order to satisfy the consistency constraint (16), we nee@gnificantly reduces the non-zeros, by 77% in this pargicul
to ensurey; (24) is smaller than the minimum eigenvalue ofcase, while preserving consistency (which can be easily
>, denoted by\,,;,(X1). Therefore, we compute; as: verified numerically). Note also that, in practice it is not

necessary to perform the proposed edge sparsificatiortpoi.e.
di‘i‘\/m B ytop prop ge sp elgie]
o, Amin(E77) (25)

)
10 .
15 .

20

solve the/;-regularized minimization, every time step, thus
saving substantial computational cost, particularly when
On the other hand, (19) is a well-known lasso problem angraph becomes large. This is due to the fact that the graph

v; = min

its optimal solution is given by [40]: becomes dense only when marginalization or loop closure
. ) FD) 5 A occurs, which, in general, is an occasional event (i.e.asot
Y * D = shrink (X( Uk, ;) (26)  frequent as adding an edge/node).

. e Moreover, Figs. 2 and 3 show the estimates and their

Wher(ithe shrlnkagefperatehxlnk(H:.,5), upda;tes each ele- errors, respectively, as compared to the benchmarks (i.e.,

giiztezrijb a;;;}gilg;{ 55)(1')-1”?055110(:”” )b?i;g'n:dijt|o_e§r;£3.re i%roungl truth for simulated data, and BLS for the real data).
s evident, the proposed S-iSAM achieves results close to

. . (k) 1 .
cons!s:ency, I.e.ﬁt{ . t< i Esee _I_(ﬁ.G)]’ web re_laxt_ft_hlj bthe benchmarks, while keeping significantly fewer nodes,
consistency constrain |kn IS step. 1his can be justiiie |¥e., 1971 nodes for Manhattan3500 (56%), 2098 nodes for
the fact that, althougly (*) may not satisfy (16) or even not

o o (B 1) L . City4000 (75%), 507 nodes for Intel (56%), and 1718 nodes
be pqsmve definiteX L which is what we are ultimately for MIT (89%). We would like to point out that the proposed
seeking, always remains so by construction.

node sparsification provides a consistent way of retrietlieg
V. EXPERIMENTAL RESULTS information about the remaining nodes from the discarded

To validate the proposed consistent graph sparsificatiomeasurements’ rather than intend_s _to find the minimum
we have preliminarily tested the algorithm on both Synthetinumber of nodes to represent the original graph. It should be
and real-world data: i) Manhattan3500 (3500 nodes 559%50 stressed that, when a node is marginalized out, all the
edges), ii) City4000 (2815 nodes, 20687 edges), iii) Intdp€asurements (edges) connected to it — including the future
research lab (909 nodes, 4453 edges), and iv) MIT Killiafneasurements of this kind — are discarded, and hence cannot
court (1940 nodes, 2190 edges). The first two datasets é}% used fpr the su_bsequen_t est_|mat|on n order _to obtain
synthetic, while the last two are real. For the results presk _caus_al estimates (without using discarded m_formgtlo_h_)sT
in this section, we integrate the proposed graph sparsificat MPlies that the proposed approach may utilize signifigantl
scheme into the iSAM algorithm [2] performing incrementaf€Wer measurements (depending on the particular graphs)
estimation, termed S-iSAM,which is compared with the thar_1 the BLS that uses all available measurements,_ while
ground truth for the simulated data and with the batch leasiCchieving comparabl_e perfor_mance. This rgsult |s_atte|¢but
squares (BLS) — that is the best result can be obtained tq the fact thaall the |nformat|0n_, (_:onveyed in the dl_scarded_
practice — for the real data. We marginalize out the old poségeasurements, abput the remaining states, is retainesgduri
when loop closures occur, and sparsify the graph when tia€ Proposed consistent node sparsification.
number of non-zeros of the information (Hessian) matrix VI]. CONCLUSIONS ANDEFUTURE WORK

- i 0 . . g .
exceeds a pre-chosen threshold (for instance, 10% of theIn this paper, we have proposed a consistent sparsification

totlal mattr_lx Ientrllei_s). 1 sh le. the inf scheme for graph optimization with applications to SLAM.

?. par||_|cu ar, =g. t's OW;”faS an dexa;[np ?h € Inforg, particular, we first sparsify the nodes of the graph by
mation ( .eSS|an) matrices before and after the prOpos?r(ijarginalizing out old poses at the times of loop closures,
sparsification of edges in the case of Manhattan3500. J\g

. e . . hile retaining all the information for the remaining nodes
is clear that the sparsified information (Hessian) mat”)éonveyed in the discarded measurements. To this end, we for-

1it is important to point out that the proposed sparsificatisheme can mUIate a batch MLE (leaSt'S_quareS) prOblem USing On.|y the
be integrated into the SEIF as in [31], besides the iSAM asidered here. discarded measurements, with respect to the relativesadst
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Fig. 2. Experimental results on the synthetic (a and b) aadl (e and c) data: In these plots, the dots correspond to tad-geekoning (DR), the
crosses to the benchmark which is either the ground truttherbatch least-squares (BLS), the squares to the iISAM withptioposed sparsification
scheme (S-iISAM). It is clear that the proposed method aebiegsults close to the benchmarks, even though it utiless ihformation from the available
measurements as some measurements are discarded forules Usage due to marginalization. Note also that in the tabwerld datasets (c and d),
the compared approaches produce very similar results (ge@) which makes the corresponding lines difficult to idigtiish.
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Fig. 3. Estimation errors of the proposed S-iISAM as compaoethe benchmarks (ground truth or BLS) in the synthetic seal data. In these plots,
the upper subplots are the estimation errors of the positéord the bottom ones are the orientation estimation eritobcomes evident that the iISAM
with the proposed graph sparsification scheme attains a@lgaperformance as that of the benchmarks.

of global, states (i.e., in the local frame of reference of onsparsified graph that consistently approximates the aigin
remaining node involved in the discarded measurement®ne. The proposed graph sparsification scheme has been
Furthermore, we sparsify the edges of the graph based oriegrated in the iSAM algorithm [2] and validated on both

a consistent/;-regularized convex minimization problem synthetic and real data.

which promotes the sparsity of the solution imposed(by |t should be pointed out that, although the ADMM method
norm and is solved by adapting the ADMM algorithm [39].is efficient to solve a relatively small problem of consisten
The solution to this convex problem automatically renders @dge sparsification [see (15) and (16)] (e.g., when the numbe



of nodes of the graph is in the order of thousands), it mals]
not be satisfactory when the graph becomes even larger. For
this reason, in the future we will investigate different way 1)
to speed up the solution to the-regularized minimization
problem, for example, by selecting only a dense subgraph to
sparsify via the ADMM approach, instead of the whole grap@o]
as we currently do. Moreover, since, by no means, it would
be optimal to marginalize out the old nodes at loop closures,
we will study in depth the problem of which nodes shoulq21]
be marginalized out and when, in order to maximize the
information retained in the sparsified graph while achigvin

a minimal representation of the original graph. In addi,tion[zz]
we will conduct more thorough evaluations on various large-
scale real-world experiments.

[23]
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