Planar Simplification and Texturing of Dense Point Cloud Maps

Lingni Mal, Thomas Whelan?, Egor Bondarev!, Peter H. N. de With! and John McDonald?

Abstract— Dense RGB-D based SLAM techniques and high-
fidelity LIDAR scanners are examples from an abundant set of
systems capable of providing multi-million point datasets. These
large datasets quickly become difficult to process and work
with due to the sheer volume of data, which typically contains
significant redundant information, such as the representation
of planar surfaces with hundreds of thousands of points. In
order to exploit the richness of information provided by dense
methods in real-time robotics, techniques are required to reduce
the inherent redundancy of the data. In this paper we present
a method for efficient triangulation and texturing of planar
surfaces in large point clouds. Experimental results show that
our algorithm removes more than 90% of the input planar
points, leading to a triangulation with only 10% of the original
amount of triangles per planar segment, improving upon
an existing planar simplification algorithm. Despite the large
reduction in vertex count, the principal geometric features of
each segment are well preserved. In addition to this, our texture
generation algorithm preserves all colour information contained
within planar segments, resulting in a visually appealing and
geometrically accurate simplified representation.

I. INTRODUCTION

The generation of 3D models of real-world environments
is of significant interest in many applied fields including
professional civil engineering, environment-based game de-
sign, 3D printing and robotics. Industrial Light Detection
And Ranging (LIDAR) platforms and extended scale RGB-D
mapping systems can output dense high-quality point clouds,
spanning large areas that contain millions of points [1], [2].
Key issues with such large-scale multi-million point datasets
include difficulties in processing the data within reasonable
time and a high memory requirement. In addition to this,
some features of real-world maps, such as walls and floors,
end up being over-represented by thousands of points when
they could be more efficiently and intelligently represented
with geometric primitives. In particular the use of geometric
primitives to represent a large 3D map to localise against has
been demonstrated as a feasible means of real-time robot
localisation [3]. In this paper, we examine the problem of
planar surface simplification in large-scale point clouds with
a focus on quality and computational efficiency.

II. RELATED WORK

In the literature triangular meshing of 3D point clouds is
a well-studied problem with many existing solutions. One
class of triangulation algorithms computes a mathematical
model prior to triangulation to ensure a smooth mesh while

IDepartment of Electrical Engineering, Eindhoven University of Tech-
nology (TU/e), Eindhoven, the Netherlands. 1 .ma at tue.nl

2Department of Computer Science, National University of Ireland
Maynooth, Co. Kildare, Ireland. thomas. j.whelan at nuim.ie

Fig. 1: Scene triangulation showing a simplified mesh for
planar segments with non-planar features highlighted.

being robust to noise [4], [5]. This type of algorithm assumes
surfaces are continuous without holes, which is usually not
the case in open scene scans or maps acquired with typical
robotic sensors. Another class of algorithms connects points
directly, mostly being optimized for high-quality point clouds
with low noise and uniform density. While these algorithms
retain fine details in objects [6], [7], they are again less
applicable to noisy datasets captured with an RGB-D or
LIDAR sensor, where occlusions create large discontinuities.

With real-world environment triangulation in mind, the
Greedy Projection Triangulation (GPT) algorithm has been
developed [8], [9]. The algorithm creates triangles in an
incremental mesh-growing approach, yielding fast and ac-
curate triangulations. However, the GPT algorithm keeps all
available points to preserve geometry, which is not always
necessary for point clouds containing surfaces that are easily
approximated by geometric primitives. To solve this problem
a hybrid triangulation method was developed in [10], where
point clouds are segmented into planar and non-planar re-
gions for separate triangulation. The QuadTree-Based (QTB)
algorithm was developed to decimate planar segments prior
to triangulation. The QTB algorithm significantly reduces the
amount of redundant points, although a number of limitations
degrade its performance. For example, the algorithm does not
guarantee that final planar points will lie inside the original
planar region, which can lead to noticeable shape distortion.
The algorithm also produces duplicate vertices, overlapping
triangles and artificial holes along the boundary.

To summarize, existing triangulation algorithms perform

Point non-planar |' Non-planar
Cloud '— Plane segment S . 1 Mesh
Detection o . . ! (Textured Model)
(coloured) '\ Triangulation ,'

plane 1 - - -
—{ decimation Htrlangu]atlonH (texturing)

plane n - - -
decimation triangulation (texturing)

Planar Segment Triangulation

- ==
- —-

Fig. 2: Parallel system architecture to process point clouds
of large-scale open scene scans or maps.

poorly in removing redundancy in dense point clouds, or are
not suited to the kind of data typically acquired with common
robotic sensors. In this paper we address these problems
with two main contributions based on the work of [10].
Firstly we present an accurate and robust algorithm for planar
segment decimation and triangulation. In comparison to the
existing QTB algorithm, our algorithm guarantees geomet-
rical accuracy during simplification with fewer triangles,
without duplicate points, artificial holes or overlapping faces.
Secondly we present a method to automatically generate
textures for the simplified planar mesh based on dense
coloured vertices. Our experimental results show that the
presented solutions are efficient in processing large datasets,
through the use of a multi-threaded parallel architecture.

III. SYSTEM OVERVIEW
A. Building Blocks

Our system architecture is shown in Figure 2. It takes
a point cloud as input and generates a triangular mesh as
output. If the input is a coloured point cloud, the output
can also be a textured 3D model. The processing pipeline
consists of three main blocks.

Plane Detection segments the input into planar and non-
planar regions to enable separate triangulation and parallel
processing. This design is especially beneficial for real-
world environments, where multiple independent planar sur-
faces occur frequently. In our system we apply a local
curvature-based region growing algorithm for plane segmen-
tation [10], which was shown to out perform RANSAC-based
approaches.

Non-Planar Segment Triangulation generates a triangular
mesh for non-planar segments using the GPT algorithm [9].
Given a coloured point cloud, we preserve the colour infor-
mation for each vertex in the output mesh. Dense triangular
meshes with coloured vertices can be rendered (with Phong
interpolation) to appear similar to textured models. Addi-
tionally, as opposed to using textures, maintaining colour
in vertices of non-planar segments provides easier access
to appearance information for point cloud based object
recognition systems.

Planar Segment Triangulation triangulates planar seg-
ments and textures the mesh afterwards, if given a coloured
point cloud. In our system we improve the decimation

Fig. 3: Undesirable planar triangulation: the left GPT mesh
over-represents the shape while the right boundary-based
Delaunay triangulation produces unnatural skinny triangles.

algorithm in [10] and further develop a more accurate and
robust solution for triangulation. A detailed description of
our algorithm is provided in Section IV. Our method for
planar segment texture generation is described in Section V.

B. Computationally Efficient Architecture

To improve computational performance, a multi-threaded
architecture is adopted, exploiting the common availability
of multi-core CPUs in modern hardware. We apply a coarse-
grained parallelization strategy, following the Single Program
Multiple Data (SPMD) model [11]. Parallel triangulation of
planar segments is easily accomplished by dividing the set
of segments into subsets that are distributed across a pool
of threads. For maximum throughput of the entire pipeline,
segmentation and triangulation overlap in execution. With
an n-core CPU, a single thread is used for segmentation
and the remaining n — 1 threads are used for triangulation,
each with a queue of planar segments to be processed.
Upon segmentation of a new planar region, the segmentation
thread checks all triangulation threads and assigns the latest
segment to the thread with the lowest number of points to
be processed. This strategy ensures an even task distribution
among all threads. When plane segmentation is finished, the
segmentation thread begins the non-planar triangulation in
parallel to the other triangulation threads.

IV. TRIANGULATION OF PLANAR SEGMENTS

In this section, our algorithm for planar segment decima-
tion and triangulation is described. A simplified mesh of a
planar segment is generated by removing redundant points
that fall within the boundary of the segment. In the following
text the input planar segment is denoted as P, made up of
points p € R3. With coloured point clouds, each point p
also contains (R, G, B) colour components.

A. QuadTree-Based Decimation

Planar segments have a simple shape which can be well
described by points on the boundary of the segment. Interior
points only add redundancy to the surface representation
and complicate the triangulation results. Figure 3 shows an
example of this where the planar segment is over-represented
with thousands of triangles generated with the GPT algorithm
using all planar points. However, a naive solution that re-
moves all interior points and triangulates only with boundary

A

AV TAVAVATAN P2 VAT A A RI T AT A

/\/\/\/\/\/\i.“; .
///\\ //\\\ ::(2
it]

VAN

7

I s 3 ¢ 3

VI \/]\\/\/ N\ /N 7’{
YAV 4 Y Y 4 Y » A
SN SRR
N VAN VVAAVANZ AN
Ny WA e

s —

<7

-

e

(a) () (©

S P
(d (e) 6

Fig. 4: Planar decimation and triangulation (boundary and interior points are dark blue and teal, respectively), from left to
right: (a) initialize by subdividing the quadtree bounding box; (b) classify nodes into interior (teal), boundary (dark blue) and
exterior (black); (c) merge interior nodes; (d) generate vertices; (e) point-based triangulation; (f) polygon-based triangulation.

points normally leads to skinny triangles, again shown in
Figure 3. With these observations in mind, the quadtree
proves to be a useful structure to decimate the interior points
of a segment while preserving all boundary points for shape
recovery [10].

1) Preprocessing: To prepare a planar segment for deci-
mation it is first denoised and aligned to the x-y axes. We
employ Principal Component Analysis (PCA) over the planar
segment to compute a least-squares plane fit as well as an
affine transformation 7" for z-y axes alignment. The aligned
planar segment is denoted as P;. Afterwards, the boundary
points of P, are extracted as an a-shape [12], [13]. We denote
the boundary as a concave hull A of the planar segment,
which is an ordered list of vertices describing a polygon for
which Vp € P; and p ¢ H, p is inside the polygon.

2) Decimation: Planar segment point decimation consists
of four steps as shown in Figure 4.

Firstly, a quadtree is constructed by subdividing the
bounding box of P; into a uniform grid of small cells.
Typically the 2D bounding box is non-square, in which
case the smallest side is extended to equalize the width
and height. The resulting bounding box b is composed of
a minimum point b,,;, and a maximum point b, ..., with a
dimension s = by, — bimin. Secondly, the quadtree nodes
are classified as either interior, boundary or exterior. An
interior node is fully contained within the polygon 7, while
an exterior node is fully outside. All others are boundary
nodes, which intersect H. Thirdly, the interior nodes of
the quadtree are merged to create nodes of variable size,
typically largest around the center and becoming increasingly
fine-grained when approaching the boundary. When a parent
node contains only interior children, the four child nodes are
merged into one. The merged node is then also classified as
interior, allowing further recursive merging with its siblings.
Finally, the corner points of the remaining interior nodes
are extracted as the new internal vertices Z of P,, while all
boundary points H are preserved.

B. Triangulation

We provide two methods for triangulation of a simplified
planar segment: 1) a low-complexity Point-Based Triangula-
tion and 2) an alternative Polygon-Based Triangulation. Both

methods make use of the Constrained Delaunay Triangula-
tion (CDT) [14].

1) Point-Based Triangulation: The point-based approach
is a low-complexity triangulation method, where CDT is
directly applied to the decimated segment. The ordered
boundary vertices H serve as constraining edges and the
inner vertices Z are used as input points. An example output
is shown in Figure 4. Point-based triangulation has all of the
advantages of Delaunay triangulation but does produce more
triangles than the polygon-based approach described next.

2) Polygon-Based Triangulation: The regular grid pattern
of the inner vertices Z immediately lends itself to a simple
triangulation strategy, where two right-angled triangles are
created over each interior node of the merged quadtree. To
complete the triangulation, the space between the interior
right-angled triangles and the boundary points H is triangu-
lated using CDT. Two sets of constraining edges are input
to the CDT, one being H and the other being a rectilinear
isothetic polygon that bounds interior triangles. This two-
step triangulation is similar to the QTB algorithm of [10].
However, a major difference lies in how the boundary points
are connected. With our CDT-based approach, we avoid
overlapping triangles and artificial holes that would normally
be produced by the QTB algorithm.

Efficient computation of the polygon which exactly bounds
the interior vertices Z is non-trivial, since the interior nodes
provide only sparse spatial information for geometric oper-
ations. We invoke a solution that maps the interior vertices
onto a binary image, where the bounding polygon can be
easily extracted using a greedy nearest-neighbour tracing
algorithm normally used in image processing [15].

The binary image is represented by an n X n array, where
n =291 4+ 1 and d is the quadtree depth. This provides a
2D grid large enough to represent the empty space between
the two vertices of any edge. To project a vertex v € Z onto
the array, a mapping function f : R3 — N2 is defined by

n(v — bin)

fv) = ——, (1)

S

where b is the bounding box and s is its dimension. The
division is performed on an element-by-element basis. Given
that Z is aligned to the z-y axes, function [effectively
maps from R? to N2, We associate two elements with each

1222222222222222222222221
2 4 4 4 4 4 4 4 4 4 4 4 2
2444444444444444444444442
2 4 4 4 4 4 2
2 4 4 4 4 4 2
2 4 4 4 4 4 2
2444444444 44444444 4444442
2 4 4 4 2
2 4 4 4 2
2 4 4 4 2
2 4 4 4 4 4 44442

Fig. 5: Degree grid of the upper planar segment in Figure 4
(0-valued cells hidden). The underlined bold values are the
degrees of the inner vertices Z.

array cell: a reference to the mapped vertex (effectively
implementing f~!) and a degree value to quantify vertex
connectivity. Initially, the degree is zero for all cells. During
the triangulation of Z, the degree grid is populated. When a
vertex is extracted from the merged quadtree, the reference of
the corresponding cell is updated and its degree is increased
by 1. This policy alone cannot fully recover the degree of a
given vertex, since only the two ends of an edge are obtained
from quadtree vertices. To overcome this problem, all cells
between the two ends of an edge also have their degree
increased by 2. Figure 5 shows a part of the degree grid of
the planar segment in Figure 4. If we consider the interior
triangulation to be a graph, the 2D degree grid resolves
the degree of each vertex. All non-zero cells are treated
as “l-valued” foreground pixels and the rest as “O-valued”
background pixels in the binary image representation.

V. TEXTURE GENERATION

In this section we present our texture generation algorithm
for planar segments using dense coloured point clouds. Due
to the significant loss of coloured vertices during decimation,
the appearance of a simplified planar segment is greatly di-
minished. We therefore generate textures prior to decimation
for the purpose of texture mapping the simplified planar
mesh.

We generate textures by projecting the vertex colours of
the dense planar segment onto a 2D RGB texture &(x,y) €
N3, We define a texture resolution d as some resolution
factor r times s, where s assumes the dimension of the
bounding box b. In our experiments a value of » = 100
provides good-quality textures. The resolution factor can also
be automatically computed based on point cloud density.
Each pixel a € & is first mapped to a 3D point v by a
mapping function g : N? — R3, defined as

9(a) = 3 +boin, @)
with an element-by-element calculation. Since P; is aligned
to the x-y axes, the function g effectively maps to RZ.
A coloured point corresponding to v in P; is found by a
nearest neighbor search using a kd-tree. We have chosen this
approach as it produces good-quality textures while being
computationally inexpensive. However, it can be easily ex-
tended to produce even higher-quality textures by averaging

(@ (b)

Fig. 6: Texture generation, from left to right: (a) plane
segment from a coloured point cloud; (b) generated texture.

a number of k-nearest neighbours. Algorithm 1 describes the
texture generation process. Figure 6 shows an input planar
segment and the output texture.

Algorithm 1: Vertex colour to texture.

Input: P; set of transformed input vertices
Input: # concave hull of P;
Output: £ 2D RGB texture
foreach pixel p in £ do
v+ g(p);
if v is inside H then
n < nearest-neighbour of v in Py;
L P < (nR7 ng, nB),
else
| P+ (0,0,0);

When texture mapping the final planar mesh, the wwv
texture coordinates I/ for the vertices O of each face are
computed with the inverse function g=! : R® — N2, derived
from Equation (2) as

g (v) = 3)

With z-y axes aligned points, g~ is actually mapping from
R2. Algorithm 2 describes the uv-coordinates computation.
The list U guarantees a 1-to-1 mapping to the set O.

S
1

Algorithm 2: uv texture coordinate calculation.

Input: O set of final face vertices
Output: I/ uv texture coordinates for O
foreach vertex v in O do

at g ' (v);
u < 55
v+ 10— Z—y;

Add (u,v) to U,

Any objects lying on a planar segment are completely
excluded from the texture and not projected onto the plane.
In fact, the generated texture implicitly provides the Voronoi
diagram of the face of the object lying on any plane, which
in turn provides position and orientation information of any
object lying on a segmented plane, as shown in Figure 7.

VI. EVALUATION AND RESULTS

In this section we evaluate our work with a series of
experiments. We ran our C++ implementation on Ubuntu

(a)

(b)

Fig. 7: Implicit object information from texture generation, from left to right: (a) input coloured point cloud; (b) generated
texture with implicit Voronoi diagrams and locations of objects resting on the plane highlighted.

Linux 12.04 with an Intel Core 17-3930K CPU at 3.20 GHz
with 16 GB of RAM. Four coloured point clouds of real-
world environments were used in the experiments, as shown
in Figure 10a. These datasets encompass a wide variation in
the number of points, planar segments and their geometry.
All four datasets have been acquired with an implementation
of the Kintinuous dense RGB-D mapping system [16].

A. Triangulation Performance

To assess the triangulation performance, qualitative and
quantitative evaluations are presented. A comparison of the
triangulation algorithms is shown in Figure 10. Additionally
we present map fly-throughs in a video submission avail-
able at http://www.youtube.com/watch?v=L8wLNE9FOMs.
It can be seen that both algorithms produce a highly simpli-
fied triangulation, while preserving the principal geometry
of the planar segments. The video also shows combined
triangulations of all four datasets which use our polygon-
based approach for planar segments in combination with the
GPT mesh generated from non-planar segments.

Further assessment of mesh quality is done by measuring
the angle distribution across meshes. A naive simplified
planar mesh is set as a baseline, which applies Delaunay
triangulation to only the boundary points of a planar segment.
The normalized distribution is shown in Figure 8, collected
from the 400 planar segments of the four datasets. It can
be seen that approximately 80% of the triangles from the
polygon-based triangulation are isosceles right-angle trian-
gles, resulting from the quadtree-based triangulation. With
point-based triangulation, the angles spread over 30°-90°,
whereas the naive boundary-based triangulation shows an
even more random distribution. Defining a skinny triangle as
one with a minimum angle <15°, the percentages of skinny
triangles with boundary-based, point-based and polygon-
based triangulation are 28%, 10% and 10%, respectively.

The effectiveness of planar segment decimation is also
evaluated. Table I shows the point count for planar point
decimation. Approximately 90% of the redundant points are

05 T T T T T T T T T T T T
I b oundary-based
nal [poirt-based |
: I oy gon-based

0.3

0z

0.1

0

15 30 45 6O 75 90 105 120 135 130 165 180

Fig. 8: Triangulation quality measured with a normalised
histogram of the angle distribution of planar meshes.

TABLE I: Planar point reduction with our decimation algo-
rithm in comparison to the QTB algorithm.

Dataset 1 2 3 4

Total points 890,207 1,094,910 2,799,744 5,641,599
Planar points 540,230 708,653 1,303,012 2,430,743
QTB decimation 105,663 303,348 189,772 457,678
Our decimation 47,457 84,711 43,257 76,624

removed with our algorithm, which is 15% more than the
QTB algorithm, despite the fact that both algorithms are
based on a quadtree. Part of this reduction gain comes from
our triangulation methods, which add no extra points once
decimation is completed, unlike the QTB algorithm. In Ta-
ble II, the mesh simplification statistics with triangle counts
are also given. We take the triangle count of GPT for non-
decimated planar segments as the baseline. In accordance
with the point count reduction, both of our algorithms require
no more than 10% of the amount of triangles of a non-
decimated triangulation, and both perform better than the
QTB algorithm.

TABLE II: Planar mesh simplification with our triangulation
algorithms measured with triangle counts, in comparison to
GPT and the QTB algorithm.

Dataset 1 2 3 4

GPT 1,020,241 1,350,004 2,293,599 4,665,067

QTB 90,087 288,833 182,648 433,953
Point-based 85,653 161,270 79,988 143,396
Polygon-based 76,367 130,642 66,413 118,275

TABLE III: Efficiency of triangulation and the parallel
architecture, measured in seconds. The 1:z ratio denotes 1
segmentation thread with x triangulation threads.

Dataset 1 2 3 4

Number of planar segments 101 116 66 117
Serial GPT 186 243 442 91.1

Serial QTB 16.7 187 383 73.1

Serial point-based 6.9 9.8 17.7 40.2

Serial polygon-based 6.9 9.5 17.8 40.0

Serial polygon-based (texture) 83 10.0 203 414
1:1 Polygon-based 6.4 81 151 338

1:1 Polygon-based (texture) 7.6 85 174 352
1:3 Polygon-based 3.6 4.2 83 192

1:3 Polygon-based (texture) 4.4 4.1 92 19.6

1:5 Polygon-based 3.7 3.5 79 16.1
1:5 Polygon-based (texture) 4.7 3.5 87 162

B. Texture Generation Performance

In Figure 10d, generated textures are shown. The output
textures incorporate almost all visual information contained
in the original dense point cloud, enabling a photo-realistic
and aesthetically-pleasing textured 3D model.

C. Computational Performance

Lastly, we evaluate the computational efficiency of our
algorithms and the parallel system for large-scale data pro-
cessing. The baseline for comparison is standard serial pro-
cessing with the GPT and QTB algorithms. Table III shows
the execution times. The point-based and polygon-based
triangulations are approximately of the same speed, both 2 to
3 times faster than the GPT and QTB algorithms. The results
also show that the texture generation algorithm is fast in
execution, processing multi-million point datasets in less than
2 seconds. Examining the bottom half of Table III, it is clear
that the parallel system architecture has a profound effect on
the overall performance. The execution time decreases with
an increasing number of triangulation threads. An effect of
diminishing returns becomes apparent as the number of tri-
angulation threads increases, due to the overhead associated
with the parallel implementation. However, as the per-thread
workload increases, such as inclusion of texture generation,
the overhead of parallelization becomes amortised.

D. Discussion

Both point-based and polygon-based triangulation yield
accurate and computationally efficient planar segment trian-

gulations with significant point and triangle count reductions,
both exceeding the performance of the QTB algorithm. The
point-based approach is of low complexity and maintains
good triangular mesh properties that are desirable for light-
ing and computer graphics operations. The polygon-based
approach yields higher point and triangle count reductions
with a more regularized mesh pattern, capturing information
about the scene in the form of principal geometric features,
such as the principal orientation of a planar segment. While
the polygon-based method produces less triangles, it does
generate T-joints in the mesh. Such features are detrimental
when employing Gouraud shading and other lighting tech-
niques to render a mesh with coloured vertices. The polygon-
based and point-based methods offer a trade-off depending
on the desired number of triangles or the intended use of the
final triangulation. With robot navigation in mind, the low
polygon-count models achieved with our system are suitable
for use in a primitives-based localization system, such as the
KMCL system of Fallon et al. [3].

The gaps between planar and non-planar triangulations
are apparent. The gap can also be closed by including the
boundary vertices of the segmented planes into the non-
planar segment GPT triangulation, as shown in Figure 9.
The number of boundary vertices can be increased with a
smaller alpha value when computing the concave hull of
each segment or by linearly interpolating between boundary
vertices. Extra vertices can also be extracted from the vertex
degree grid used in polygon-based triangulation. In our
system we chose to leave these gaps open, as this separation
gives an easier visual understanding of any map, implicitly
providing a separation between structural features (like walls,
table tops) and “object” features, useful in automatic scene
understanding, manipulation and surface classification.

VII. CONCLUSIONS

In this paper we have studied the problem of triangu-
lation of planar segments from dense point clouds with a
focus on quality and efficiency. Two significant contributions
are made. Firstly, we have made a strong improvement
on planar segment decimation and triangulation. Both of
the presented point-based and polygon-based triangulation
methods produce a more accurate, simpler and robust pla-
nar triangulation than the existing QTB algorithm, while
including the ability to join up planar triangulations with the
dense non-planar triangulation. With these two algorithms
approximately 90% of input planar points are removed, and
the planar segments are triangulated with no more than
10% of the amount of triangles required without decimation.
Secondly, we have developed a computationally inexpensive
algorithm to automatically generate high-quality textures for
planar segments based on coloured point clouds. The results
show that our system provides a computationally manageable
map representation for real-world environment maps and also
generates a visually appealing textured model in a format
useful for real-time robotic systems.

Fig. 9: Joining of GPT mesh with planar segment triangulations. Left shows unjoined segments and right shows segments
joined with interpolated boundary vertices.

[11

[2]

[3]

[4]

[51

[6]

[7]

[8]

REFERENCES

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using Kinect-style depth cameras for dense 3D modeling of
indoor environments,” The Int. Journal of Robotics Research, 2012.
T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended KinectFusion,” in RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Jul
2012.

M. F. Fallon, H. Johannsson, and J. J. Leonard, “Efficient scene
simulation for robust Monte Carlo localization using an RGB-D
camera,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
May 2012.

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proc. of the 4th Eurographics Symposium on Geometry
Processing., pp. 61-70, 2006.

A. C. Jalba and J. B. T. M. Roerdink, “Efficient surface reconstruction
from noisy data using regularized membrane potentials,” IEEE Trans.
on Image Processing, vol. 18, pp. 1119-1134, May 2009.

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
“The ball-pivoting algorithm for surface reconstruction,” IEEE Trans.
on Visualization and Computer Graphics, vol. 5, no. 4, pp. 349-359,
1999.

C. E. Scheidegger, S. Fleishman, and C. T. Silva, “Triangulating point
set surfaces with bounded error,” in Proc. of the 3rd Eurographics
symposium on Geometry Proc., Eurographics Association, 2005.

M. Gopi and S. Krishnan, “A fast and efficient projection-based
approach for surface reconstruction,” in Proc. Computer Graphics and
Image Processing., pp. 179-186, 2002.

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Z. C. Marton, R. B. Rusu, and M. Beetz, “On fast surface reconstruc-
tion methods for large and noisy point clouds,” in Proc. IEEE Inter.
Conf. Robotics and Automation ICRA ’09, pp. 3218-3223, 2009.

L. Ma, R. Favier, L. Do, E. Bondarev, and H. N. de With, Peter,
“Plane segmentation and decimation of point clouds for 3d envi-
ronment reconstruction,” in Proc. the 10th Annual IEEE Consumer
Communications & Networking Conference, Jan. 2013.

F. Darema, D. George, V. Norton, and G. Pfister, “A single-program-
multiple-data computational model for epex/fortran,” Parallel Com-
puting, vol. 7, no. 1, pp. 11 — 24, 1988.

M. Duckham, L. Kulik, M. Worboys, and A. Galton, “Efficient
generation of simple polygons for characterizing the shape of a set
of points in the plane,” Pattern Recogn., vol. 41, no. 10, pp. 3224—
3236, 2008.

B. Pateiro-Lopez and A. Rodriguez-Casal, “Generalizing the convex
hull of a sample: The r package alphahull,” Journal of Statistical
Software, vol. 34, no. 105, 2010.

V. Domiter and B. Zalik, “Sweep-line algorithm for constrained
delaunay triangulation,” Int. J. Geogr. Inf. Sci., vol. 22, pp. 449-462,
Jan. 2008.

J. Marquegnies, “Document layout analysis in SCRIBO,” Tech. Rep.
CSI Seminar 1102, Research and Development Laboratory, EPITA,
http://www.Irde.epita.fr/dload/20110704-Seminar/1102.pdf, July 2011.
T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald,
“Robust real-time visual odometry for dense RGB-D mapping,” in
IEEE Intl. Conf. on Robotics and Automation, ICRA, (Karlsruhe,
Germany), May 2013. To appear.

(e) Complete 3D model with our proposed system.

Fig. 10: Four evaluated datasets (numbered from 1 to 4 from left to right) with various triangulation and texturing results.

